1
|
Zhang Y, Ma W, Ma C, Zhang Q, Tian Z, Tian Z, Chen H, Guo J, Wan F, Zhou Z. The hsp70 new functions as a regulator of reproduction both female and male in Ophraella communa. Front Mol Biosci 2022; 9:931525. [PMID: 36203880 PMCID: PMC9531545 DOI: 10.3389/fmolb.2022.931525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (Hsps) function as molecular chaperones that enable organisms to withstand stress and maintain normal life activities. In this study, we identified heat shock protein 70 (encoded by hsp70), which exhibits a higher expression in the mature male testis than in the unmature testis of Ophraella communa. Tissue expression profile revealed that Ochsp70 levels in males were highest in the testis, whereas those in females were highest in the head. Moreover, the expression of Ochsp70 was found to be significantly induced in female bursa copulatrix after mating. Double-stranded RNA dsOchsp70 was injected into males to performance RNA interference, which significantly decreased the male Ochsp70 expression levels within 20 d post-injection, whereas no effect was observed on the Ochsp70 expression level in the females after mating with dsOchsp70-injected males. However, significant downregulation of female fertility was marked simultaneously. Furthermore, knockdown of female Ochsp70 expression also led to a significant reduction in fertility. Finally, comparative transcriptomic analysis identified glucose dehydrogenase and insulin-like growth factor binding protein as putative downstream targets of Ochsp70. Overall, we deduced that Ochsp70 is an indispensable gene and a potential male mating factor in O. communa, which regulates reproduction.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinglu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhenqi Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- *Correspondence: Zhongshi Zhou,
| |
Collapse
|
2
|
Kaur T, Manchanda S, Saini V, Lakhman SS, Kaur G. Efficacy of Anti-Epileptic Drugs in the Treatment of Tumor and Its Associated Epilepsy: An in vitro Perspective. Ann Neurosci 2016; 23:33-43. [PMID: 27536020 PMCID: PMC4934412 DOI: 10.1159/000443554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/24/2015] [Indexed: 11/23/2022] Open
Abstract
The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors. We used C6 glioma cell line as model system to study the effect of selected AEDs, viz., gabapentin (GBP), valproic acid (VPA) and topiramate (TPM). Morphometry, cell cycle analysis, apoptosis, expression of different protein markers, viz., GFAP, HSP70 and nuclear factor-κB (NFκB) were studied in AED-treated cultures. The study was further extended to rat hypothalamic primary explant cultures, and cell migration and expression of plasticity markers - neural cell adhesion molecule (NCAM) and polysialylation of NCAM (PSA-NCAM) - were studied in the explants. TPM was observed to show more pronounced increase in apoptosis of glioblastoma cells accompanied by significant downregulation in the expression of HSP70 and NFκB. TPM-treated explants also showed highest process ramification and cellular migration accompanied by intense expression of the plasticity markers as compared to those treated with GBP and VPA. Among the 3 AEDs tested, TPM was observed to show more promising effects on cytoprotection and plasticity of C6 glioma cells.
Collapse
Affiliation(s)
- Taranjeet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Shaffi Manchanda
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Vedangana Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sukhwinder S Lakhman
- Department of Pharmaceutical, Social and Administrative Sciences, D'Youville College School of Pharmacy, Buffalo, N.Y., USA
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
3
|
Stefanovic DI, Manzon LA, McDougall CS, Boreham DR, Somers CM, Wilson JY, Manzon RG. Thermal stress and the heat shock response in embryonic and young of the year juvenile lake whitefish. Comp Biochem Physiol A Mol Integr Physiol 2016; 193:1-10. [DOI: 10.1016/j.cbpa.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023]
|
4
|
Kumar Singh M, Janardhan Reddy PV, Sreedhar AS, Tiwari PK. Molecular characterization and expression analysis of hsp60 gene homologue of sheep blowfly, Lucilia cuprina. J Therm Biol 2015; 52:24-37. [PMID: 26267495 DOI: 10.1016/j.jtherbio.2015.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 01/09/2023]
Abstract
The 60kDa heat shock protein (Hsp60) or chaperonin is one among the highly conserved families of heat shock proteins, known to be involved in variety of cellular activities, including protein folding, thermal protection, etc. In this study we sequence characterized hsp60 gene homologue of Lucilia cuprina, isolated and cloned from the genomic library as well as by genomic PCR, followed by RACE- PCR. The L. cuprina hsp60 gene/protein expression pattern was analyzed in various tissues, either at normal temperature (25±1°C) or after exposure to heat stress (42°C). The analysis of nucleotide sequence of Lchsp60 gene revealed absence of intron and the nuclear localizing signal (NLS). The deduced amino acid sequence showed presence of unique conserved sequences, such as those for mitochondrial localization, ATP binding, etc. Unlike Drosophila, Lucilia showed presence of only one isoform, i.e., hsp60A. Phylogenetic analysis of hsp60 gene homologues from different species revealed Lchsp60 to have >88.36% homology with D. melanogaster, 76.86% with L. sericata, 58.31% with mice, 57.99% with rat, and 57.72% with human. Expression analysis using Real Time PCR and fluorescence imaging showed significant enhancement in the expression level of Lchsp60 upon heat stress in a tissue specific manner, indicating its likely role in thermo-tolerance as well as in normal cellular activities.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Centre for Genomics, Jiwaji University, Gwalior 474 011, India; Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | - A S Sreedhar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - P K Tiwari
- Centre for Genomics, Jiwaji University, Gwalior 474 011, India.
| |
Collapse
|
5
|
Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas. PLoS One 2013; 8:e78764. [PMID: 24205314 PMCID: PMC3811968 DOI: 10.1371/journal.pone.0078764] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas are the most aggressive primary brain tumors and their heterogeneity and complexity often renders them non responsive to various conventional treatments. Search for herbal products having potential anti-cancer activity is an active area of research in the Indian traditional system of medicine i.e., Ayurveda. Tinospora cordifolia, also named as ‘heavenly elixir’ is used in various ayurvedic decoctions as panacea to treat several body ailments. The current study investigated the anti-brain cancer potential of 50% ethanolic extract of Tinospora cordifolia (TCE) using C6 glioma cells. TCE significantly reduced cell proliferation in dose-dependent manner and induced differentiation in C6 glioma cells, resulting in astrocyte-like morphology as indicated by phase contrast images, GFAP expression and process outgrowth data of TCE treated cells which exhibited higher number and longer processes than untreated cells. Reduced proliferation of cells was accompanied by enhanced expression of senescence marker, mortalin and its translocation from perinuclear to pancytoplasmic spaces. Further, TCE showed anti-migratory and anti-invasive potential as depicted by wound scratch assay and reduced expression of plasticity markers NCAM and PSA-NCAM along with MMP-2 and 9. On analysis of the cell cycle and apoptotic markers, TCE treatment was seen to arrest the C6 cells in G0/G1 and G2/M phase, suppressing expression of G1/S phase specific protein cyclin D1 and anti-apoptotic protein Bcl-xL, thus supporting its anti-proliferative and apoptosis inducing potential. Present study provides the first evidence for the presence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastatic potential of TCE in glioma cells and possible signaling pathways involved in its mode of action. Our primary data suggests that TCE and its active components may prove to be promising phytotherapeutic interventions in gliobalstoma multiformae.
Collapse
|
6
|
Kataria H, Wadhwa R, Kaul SC, Kaur G. Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas. PLoS One 2013; 8:e55316. [PMID: 23383150 PMCID: PMC3561198 DOI: 10.1371/journal.pone.0055316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is an aggressive childhood disease of the sympathetic nervous system. Treatments are often ineffective and have serious side effects. Conventional therapy of neuroblastoma includes the differentiation agents. Unlike chemo-radiotherapy, differentiation therapy shows minimal side effects on normal cells, because normal non-malignant cells are already differentiated. Keeping in view the limited toxicity of Withania somnifera (Ashwagandha), the current study was aimed to investigate the efficacy of Ashwagandha water extract (ASH-WEX) for anti-proliferative potential in neuroblastoma and its underlying signalling mechanisms. ASH-WEX significantly reduced cell proliferation and induced cell differentiation as indicated by morphological changes and NF200 expression in human IMR-32 neuroblastoma cells. The induction of differentiation was accompanied by HSP70 and mortalin induction as well as pancytoplasmic translocation of the mortalin in ASH-WEX treated cells. Furthermore, the ASH-WEX treatment lead to induction of neural cell adhesion molecule (NCAM) expression and reduction in its polysialylation, thus elucidating its anti-migratory potential, which was also supported by downregulation of MMP 2 and 9 activity. ASH-WEX treatment led to cell cycle arrest at G0/G1 phase and increase in early apoptotic population. Modulation of cell cycle marker Cyclin D1, anti-apoptotic marker bcl-xl and Akt-P provide evidence that ASH-WEX may prove to be a promising phytotherapeutic intervention in neuroblatoma related malignancies.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- * E-mail:
| |
Collapse
|
7
|
Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion. Parasitol Res 2010; 107:253-60. [PMID: 20514494 DOI: 10.1007/s00436-010-1899-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/27/2010] [Indexed: 12/11/2022]
Abstract
Apicomplexa are primarily obligate intracellular protozoa that have evolved complex developmental stages important for pathogenesis and transmission. Toxoplasma gondii, responsible for the disease toxoplasmosis, has the broadest host range of the Apicomplexa as it infects virtually any warm-blooded vertebrate host. Key to T. gondii's pathogenesis is its ability to differentiate from a rapidly replicating tachyzoite stage during acute infection to a relatively non-immunogenic, dormant bradyzoite stage contained in tissue cysts. These bradyzoite cysts can reconvert back to tachyzoites years later causing serious pathology and death if a person becomes immune-compromised. Like the sexual stage sporozoites, bradyzoites are also orally infectious and a major contributor to transmission. Because of the critical role of stage conversion to pathogenesis and transmission, a major research focus is aimed at identifying molecular mediators and pathways that regulate differentiation. Tachyzoite to bradyzoite development can occur spontaneously in vitro and be induced in response to exogenous stress including but not limited to host immunity. The purpose of this review is to explore the potential contributors to stage differentiation in infection and how a determination is made by the parasite to differentiate from tachyzoites to bradyzoites.
Collapse
|
8
|
Georg RDC, Gomes SL. Comparative expression analysis of members of the Hsp70 family in the chytridiomycete Blastocladiella emersonii. Gene 2006; 386:24-34. [PMID: 17185163 DOI: 10.1016/j.gene.2006.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/21/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Sequencing of a large number of expressed sequence tags from Blastocladiella emersonii revealed the presence of ten distinct putative members of the 70 kDa-heat shock protein (Hsp70) family in this fungus. The amino acid sequence deduced from eight of these cDNAs showed significant similarity to members of the Saccharomyces cerevisiae Hsp70 family, and the remaining displayed high sequence homology with hsp70 gene products from other organisms. The hsp70-3 gene was the most highly expressed at normal temperatures and was poorly induced during heat shock. Except for hsp70-4 and hsp70-6, all other hsp70 genes were induced to different degrees upon exposure of B. emersonii cells to heat shock, with hsp70-1 gene presenting the highest transcript levels. Phylogenetic analysis of complete B. emersonii putative Hsp70 protein sequences indicated that Hsp70-1 and Hsp70-3 corresponded to cytosolic proteins, whereas Hsp70-7 and Hsp70-9 are probably localized in the endoplasmic reticulum and mitochondria, respectively.
Collapse
|
9
|
Ma YF, Zhang Y, Kim K, Weiss LM. Identification and characterisation of a regulatory region in the Toxoplasma gondii hsp70 genomic locus. Int J Parasitol 2004; 34:333-46. [PMID: 15003494 PMCID: PMC3109639 DOI: 10.1016/j.ijpara.2003.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 11/21/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii is an important human and veterinary pathogen. The induction of bradyzoite development in vitro has been linked to temperature, pH, mitochondrial inhibitors, sodium arsenite and many of the other stressors associated with heat shock protein induction. Heat shock or stress induced activation of a set of heat shock protein genes, is characteristic of almost all eukaryotic and prokaryotic cells. Studies in other organisms indicate that heat shock proteins are developmentally regulated. We have established that increases in the expression of bag1/hsp30 and hsp70 are associated with bradyzoite development. The T. gondii hsp70 gene locus was cloned and sequenced. The regulatory regions of this gene were analysed by deletion analysis using beta-galactosidase expression vectors transiently transfected into RH strain T. gondii. Expression was measured at pH 7.1 and 8.1 (i.e. pH shock) and compared to the expression obtained with similar constructs using BAG1 and SAG1 promoters. A pH-regulated region of the Tg-hsp70 gene locus was identified which has some similarities to heat shock elements described in other eukaryotic systems. Green fluorescent protein expression vectors driven by the Tg-hsp70 regulatory region were constructed and stably transfected into T. gondii. Expression of green fluorescent protein in these parasites was induced by pH shock in those lines carrying the Tg-hsp70 regulatory constructs. Gel shift analysis was carried out using oligomers corresponding to the pH-regulated region and a putative DNA binding protein was identified. These data support the identification of a pH responsive cis-regulatory element in the T. gondii hsp70 gene locus. A model of the interaction of hsp70 and small heat shock proteins (e.g. BAG1) in development is presented.
Collapse
Affiliation(s)
- Yan Fen Ma
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
| | - YiWei Zhang
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
| | - Kami Kim
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M. Weiss
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Ovakim DH, Heikkila JJ. Effect of histone deacetylase inhibitors on heat shock protein gene expression during Xenopus development. Genesis 2003; 36:88-96. [PMID: 12820170 DOI: 10.1002/gene.10202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We examined the effect of histone deacetylase inhibitors (HDIs), trichostatin A (TSA), valproic acid (VPA), and sodium butyrate (NaB) on heat shock protein (hsp) gene expression during early Xenopus laevis development. HDIs enhance histone acetylation and result in the relief of repressed chromatin domains and ultimately increase the accessibility of transcription factors to target cis-acting regulatory sites. Treatment of embryos with HDIs enhanced the heat shock-induced accumulation of hsp70 mRNA in post-midblastula stage embryos. No effect was observed with actin mRNA or other hsp70 family members including heat shock cognate 70 and immunoglobulin binding protein. Normally, hsp30 genes are not heat-inducible until the late neurula or early tailbud stage of development. Treatment with HDIs resulted in heat-induced expression of hsp30 genes at the gastrula stage with enhanced heat-induced accumulation in neurula and tailbud stages. HDI treatment alone did not induce the accumulation of hsp70 or hsp30 mRNA. Whole-mount in situ hybridization verified the RNA blot analyses and additionally revealed that TSA treatment did not result in any major alterations in the spatial pattern of stress-induced hsp70 or hsp30 mRNA accumulation in early embryos. This study suggests that the states of Xenopus hsp70 and 30 chromatin are subject to repression beyond the midblastula transition.
Collapse
Affiliation(s)
- Daniel H Ovakim
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
11
|
Isaenko OA, Karr TL, Feder ME. Hsp70 and thermal pretreatment mitigate developmental damage caused by mitotic poisons in Drosophila. Cell Stress Chaperones 2002; 7:297-308. [PMID: 12482205 PMCID: PMC514829 DOI: 10.1379/1466-1268(2002)007<0297:hatpmd>2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To assess the ability of the heat-inducible molecular chaperone heat-shock protein 70 (Hsp70) to mitigate a specific developmental lesion, we administered the antimicrotubule drugs vinblastine (VB) and colchicine (COL) to larvae of Drosophila engineered to express differing levels of Hsp70 after heat pretreatment (HP). VB and COL decreased survival during metamorphosis, disrupted development of the adult eye and other structures as well as their precursor imaginal disks, and induced chromosome nondisjunction in the wing imaginal disk as indicated by the somatic mutation and recombination test (SMART) assay. Hsp70-inducing HP reduced many of these effects. For the traits viability, adult eye morphology, eye imaginal disk morphology, cell death in the eye imaginal disks, and single and total mutant clone formation in the SMART assay, HP reduced the impact of VB to a greater extent in Drosophila with 6 hsp70 transgenes than in a sister strain from which the transgenes had been excised. Because the extra-copy strain has higher levels of Hsp70 than does the excision strain but is otherwise almost identical in genetic background to the excision strain, these outcomes are attributable to Hsp70. The hsp70 copy number had a variable interaction with HP and COL administration.
Collapse
Affiliation(s)
- Olga A Isaenko
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
12
|
Kalmar B, Burnstock G, Vrbová G, Urbanics R, Csermely P, Greensmith L. Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp Neurol 2002; 176:87-97. [PMID: 12093085 DOI: 10.1006/exnr.2002.7945] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heat shock proteins (hsps) are induced in a variety of cells following periods of stress, where they promote cell survival. In this study, we examined the effect of upregulating hsp expression by treatment with BRX-220, a co-inducer of hsps, on the survival of injured motoneurones. Following sciatic nerve crush at birth, rat pups were treated daily with BRX-220. The expression of hsp70 and hsp90, motoneurone survival, and muscle function was examined at various intervals later and the number of functional motor units was assessed by in vivo isometric tension recordings. Fourteen days after injury, significantly more motoneurones survived in the BRX-220-treated group (39 +/- 2.8%) compared to the saline-treated group (21 +/- 1.7%). Moreover, in the BRX-220-treated group no further loss of motoneurones occurred, so that at 10 weeks 42 +/- 2.1% of motoneurones survived compared to 15 +/- 0.6% in the untreated group. There were also more functional motor units in the hindlimb muscles of BRX-220-treated animals. In addition, treatment with BRX-220 resulted in a significant increase in the expression of hsp70 and hsp90 in glia and neurones. Thus, treatment with BRX-220, a co-inducer of hsps, protects motoneurones from axotomy-induced cell death.
Collapse
Affiliation(s)
- B Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Kalmár B, Burnstock G, Vrbová G, Greensmith L. The effect of neonatal nerve injury on the expression of heat shock proteins in developing rat motoneurones. J Neurotrauma 2002; 19:667-79. [PMID: 12042100 DOI: 10.1089/089771502753754127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The expression of the heat shock proteins hsp27 and hsp70 was examined in the spinal cord and sciatic nerves of developing rats. Using immunohistochemistry, we found that hsp27 is present in many motoneurones at birth. With development, the intensity of staining increases, reaching adult levels by 21 days, when all sciatic motoneurones express hsp27. In the sciatic nerve, hsp27 is strongly expressed throughout postnatal development. In contrast, hsp70 immunoreactivity in motoneurones and the sciatic nerve is weak at birth and does not change with development. The expression of heat shock proteins has been shown to increase in cells under conditions of stress, where they have beneficial effects on cell survival. The effect of neonatal nerve injury on hsp27 and hsp70 expression was also examined in this study. Four days after injury, staining for hsp27 increases in motoneurones, whereas hsp70 does not change. However, there is a significant increase in hsp70 staining in glial cells surrounding the injured motor pool, predominantly in astrocytes. Since neonatal nerve injury induces apoptotic motoneurone death, we also studied the co-expression of hsp27 with markers of apoptosis. No hsp27-positive motoneurones were found to be apoptotic, as assessed by both TUNEL and caspase-3 immunoreactivity. Therefore, it is possible that the upregulation of hsp27 observed in injured motoneurones may play a role in protecting motoneurones from apoptotic cell death following nerve injury.
Collapse
Affiliation(s)
- Bernadett Kalmár
- Sobell Department of Neurophysiology, Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
14
|
Shinohara ML, Correa A, Bell-Pedersen D, Dunlap JC, Loros JJ. Neurospora clock-controlled gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development. EUKARYOTIC CELL 2002; 1:33-43. [PMID: 12455969 PMCID: PMC118043 DOI: 10.1128/ec.1.1.33-43.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Accepted: 11/27/2001] [Indexed: 11/20/2022]
Abstract
The circadian clock of Neurospora crassa regulates the rhythmic expression of a number of genes encoding diverse functions which, as an ensemble, are adaptive to life in a rhythmic environment of alternating levels of light and dark, warmth and coolness, and dryness and humidity. Previous differential screens have identified a number of such genes based solely on their cycling expression, including clock-controlled gene 9 (ccg-9). Sequence analysis now shows the predicted CCG-9 polypeptide to be homologous to a novel form of trehalose synthase; as such it would catalyze the synthesis of the disaccharide trehalose, which plays an important role in protecting many cells from environmental stresses. Consistent with this, heat, glucose starvation, and osmotic stress induce ccg-9 transcript accumulation. Surprisingly, however, a parallel role in development is suggested by the finding that inactivation of ccg-9 results in altered conidiophore morphology and abolishes the normal circadian rhythm of asexual macroconidial development. Examination of a clock component, FRQ, in the ccg-9-null strain revealed normal cycling, phosphorylation, and light induction, indicating that loss of the conidiation rhythm is not due to changes in either the circadian oscillator or light input into the clock but pointing instead to a defect in circadian output. These data imply an interplay between a role of trehalose in stress protection and an apparent requirement for trehalose in clock regulation of conidiation under constant environmental conditions. This requirement can be bypassed by a daily light signal which drives a light-entrained rhythm in conidiation in the ccg-9-null strain; this bypass suggests that the trehalose requirement is related to clock control of development and not to the developmental process itself. Circadian control of trehalose synthase suggests a link between clock control of stress responses and that of development.
Collapse
Affiliation(s)
- Mari L Shinohara
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
15
|
Loones MT, Chang Y, Morange M. The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 2001. [PMID: 11048652 DOI: 10.1379/1466-1268(2000)005<0291:tdohsp>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heat shock proteins (Hsps) act as molecular chaperones and are generally constitutively expressed in the absence of stress. Hsps are also inducible by a variety of stressors whose effects could be disastrous on the brain. It has been shown previously that Hsps are differentially expressed in glial and neuronal cells, as well as in the different structures of the brain. This differential expression has been related to specific functions distinct from their general chaperone function, such as intracellular transport. We investigated here the constitutive expression of 5 Hsps (the small Hsp, Hsp25, the constitutive Hsc70 and Hsp90beta, the mainly inducible Hsp70 and Hsp90alpha), and of a molecular chaperone, TCP-1alpha during mouse nervous system development. We analyzed, by immunohistochemistry, their distribution in the central nervous system and in the ganglia of the peripheral nervous system from day 9.5 (E9.5) to day 17.5 (E17.5) of gestation. Hsps are expressed in different cell classes (neuronal, glial, and vascular). The different proteins display different but often overlapping patterns of expression in different regions of the developing nervous system, suggesting unique roles at different stages of neural maturation. Their putative function in cell remodeling during migration or differentiation and in protein transport is discussed. Moreover we consider Hsp90 function in cell signaling and the role of Hsp25 in apoptosis protection.
Collapse
Affiliation(s)
- M T Loones
- Département de Biologie, UMR 8541, Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
16
|
Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK. Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 2001; 15:393-402. [PMID: 11156955 DOI: 10.1096/fj.00-0199com] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated whether enhanced expression of alphaB crystallin, a stress-inducible molecular chaperone of the small heat shock family, can protect myocardial contractile apparatus against ischemia reperfusion (I/R) injury. Transgenic mice overexpressing alphaB crystallin were generated using the 0.76 kb rat alphaB crystallin cDNA cloned into a pCAGGS plasmid driven by a human cytomegalovirus expression system. Southern analysis confirmed transgene integration and Northern and Western blotting characterized expression (3.1-fold and 6.9-fold elevations in myocardial mRNA and protein levels, respectively). Extent of functional recovery over a 3 h reperfusion period following a 20 min ischemic period in transgenic and wild-type mouse hearts was assessed using an ex vivo work-performing heart preparation. The transgenic group displayed significantly higher values of DP at R45 min (29.14+/-1.9 mm Hg vs. 17.6+/-0.7 mm Hg), R60 min (31.56+/-1.7 mm Hg vs. 17.8+/-0.8 mm Hg), and R75 min (32.5+/-2.2 mm Hg vs. 16.9+/-0.9 mm Hg), and of dLVP/dt at R45 min (1740.2+/-111.5 mm Hg.s-1 vs. 548.7+/-82.2 mm Hg.s-1) and R60 min (1199.8+/-104.6 mm Hg.s-1 vs. 466.9+/-61.1 mm Hg.s-1). The transgenic group also displayed development of less oxidative stress, decreased extent of infarction, and attenuated cardiomyocyte apoptotic cell death. Transgene overexpression of alphaB crystallin was therefore successful in diminishing the independent contributory effects of both necrosis and apoptosis on I/R-induced cell death.
Collapse
Affiliation(s)
- P S Ray
- Cardiovascular Research Center, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030-1110, USA
| | | | | | | | | | | |
Collapse
|
17
|
Loones MT, Chang Y, Morange M. The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 2000; 5:291-305. [PMID: 11048652 PMCID: PMC312859 DOI: 10.1379/1466-1268(2000)005<0291:tdohsp>2.0.co;2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Revised: 04/05/2000] [Accepted: 04/10/2000] [Indexed: 11/24/2022] Open
Abstract
Heat shock proteins (Hsps) act as molecular chaperones and are generally constitutively expressed in the absence of stress. Hsps are also inducible by a variety of stressors whose effects could be disastrous on the brain. It has been shown previously that Hsps are differentially expressed in glial and neuronal cells, as well as in the different structures of the brain. This differential expression has been related to specific functions distinct from their general chaperone function, such as intracellular transport. We investigated here the constitutive expression of 5 Hsps (the small Hsp, Hsp25, the constitutive Hsc70 and Hsp90beta, the mainly inducible Hsp70 and Hsp90alpha), and of a molecular chaperone, TCP-1alpha during mouse nervous system development. We analyzed, by immunohistochemistry, their distribution in the central nervous system and in the ganglia of the peripheral nervous system from day 9.5 (E9.5) to day 17.5 (E17.5) of gestation. Hsps are expressed in different cell classes (neuronal, glial, and vascular). The different proteins display different but often overlapping patterns of expression in different regions of the developing nervous system, suggesting unique roles at different stages of neural maturation. Their putative function in cell remodeling during migration or differentiation and in protein transport is discussed. Moreover we consider Hsp90 function in cell signaling and the role of Hsp25 in apoptosis protection.
Collapse
Affiliation(s)
- M T Loones
- Département de Biologie, UMR 8541, Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
18
|
Santacruz H, Vriz S, Angelier N. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. DEVELOPMENTAL GENETICS 2000; 21:223-33. [PMID: 9397538 DOI: 10.1002/(sici)1520-6408(1997)21:3<223::aid-dvg5>3.0.co;2-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To elucidate the potential role of the hsp70 gene family in developmental processes in vertebrates, we chose to study the expression of one of these genes in zebrafish. A zebrafish gastrula cDNA library was screened with a Pleurodeles waltl hsp70 cDNA probe. A 2.3-kb cDNA was thus isolated and sequenced. The predicted amino acid sequence contained an open reading frame encoding for a 649-amino acid polypeptide. Sequence analysis showed strong homology with hsp70-related gene sequences in other species; in particular, the strongest homology was found with the cognate members of this family. Tests of heat inducibility revealed that transcripts were expressed at normal temperature, but the level of transcript expression increased after heat shock. Moreover, experiments of the neosynthesis of total proteins in heat shock conditions and corresponding immunoblotting assays showed that 24-h-stage embryos are able to respond to heat shock. The quantity of 70 kDa proteins, recognized by a specific antibody of the HSP/C70 protein family, is expressed in control condition and increased significantly after heat shock. Furthermore, Northern blot analysis of transcript expression showed that the corresponding mRNAs were detected throughout embryonic development in the absence of any heat shock. Our clone, named hsc70, thus corresponded to a cognate member of the hsp70 gene family, expressed under normal conditions during development, but also heat inducible. The spatio-temporal pattern of transcripts during development was determined by in situ hybridization on wholemount embryos at different stages. As a maternal RNA, hsc70 mRNA was uniformly present in the embryo, up to the end of gastrulation. Later, a tissue-specific enrichment of hsc70 transcripts was detected in the central nervous system (CNS) and in a fraction of the somites. These results suggest that the hsc70 gene may be involved in developmental differentiation events.
Collapse
Affiliation(s)
- H Santacruz
- Laboratoire de Biologie Moléculaire et Cellulaire du Développement, UA 1135 CNRS-UPMC, Paris, France
| | | | | |
Collapse
|
19
|
Lele Z, Engel S, Krone PH. hsp47 and hsp70 gene expression is differentially regulated in a stress- and tissue-specific manner in zebrafish embryos. DEVELOPMENTAL GENETICS 2000; 21:123-33. [PMID: 9332971 DOI: 10.1002/(sici)1520-6408(1997)21:2<123::aid-dvg2>3.0.co;2-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined differences in the spatial and temporal regulation of stress-induced hsp47 and hsp70 gene expression following exposure of zebrafish embryos to heat shock or ethanol. Using Northern blot analysis, we found that levels of hsp47 and hsp70 mRNA were dramatically elevated during heat shock in 2-day-old embryos. In contrast, ethanol exposure resulted in strong upregulation of the hsp47 gene whereas hsp70 mRNA levels increased only slightly following the same treatment. Whole-mount in situ hybridization analysis revealed that hsp47 mRNA was expressed predominantly in precartilagenous cells, as well as several other connective tissue cell populations within the embryo following exposure to either stress. hsp70 mRNA displayed a very different cell-specific distribution. For example, neither stress induced hsp70 mRNA accumulation in precartilagenous cells. However, high levels of hsp70 mRNA were detectable in epithelial cells of the developing epidermis following exposure to heat shock, but not to ethanol. These cells did not express the hsp47 gene following exposure to either of these stresses. The results suggest the presence of different inducible regulatory mechanisms for these genes which operate in a cell- and stress-specific manner in zebrafish embryos.
Collapse
Affiliation(s)
- Z Lele
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
20
|
Somasundaram T, Bhat SP. Canonical heat shock element in the alpha B-crystallin gene shows tissue-specific and developmentally controlled interactions with heat shock factor. J Biol Chem 2000; 275:17154-9. [PMID: 10747896 DOI: 10.1074/jbc.m000304200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligomerization of the heat shock factor (HSF) and its interaction with the heat shock element (HSE) are the hallmark of active transcriptional response to tangible physical or chemical stress. It is unknown if these interactions are subject to control and modulation by developmental cues and thus have tissue or stage specificity. By using promoter sequences containing a canonical HSE from the alphaB-crystallin gene, we demonstrate a tissue-specific transition from monomeric (in fetal and early neonatal stages that lack oligomeric HSF.HSE complexes) to oligomeric HSF-HSE interactions by postnatal day 10-21 in the ocular lens. Developmental control of these interactions is further demonstrated by induction of oligomeric HSF.HSE complexes in neonatal extracts by in vitro manipulations, interestingly, only in the lens and not in the brain, heart, or liver extracts. The exclusive presence of oligomeric HSF.HSE complexes in the postnatal/adult lens corresponds to known highly increased number of alphaB-crystallin transcripts in this tissue.
Collapse
Affiliation(s)
- T Somasundaram
- Jules Stein Eye Institute and Brain Research Institute, UCLA, Los Angeles, California 90095-7000, USA
| | | |
Collapse
|
21
|
Lang L, Miskovic D, Lo M, Heikkila JJ. Stress-induced, tissue-specific enrichment of hsp70 mRNA accumulation in Xenopus laevis embryos. Cell Stress Chaperones 2000. [PMID: 10701838 DOI: 10.1379/1466-1268(2000)005<0036:sitseo>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this study, we have employed whole-mount, in situ hybridization to study the spatial pattern of hsc70 and hsp70 mRNA accumulation in normal and heat shocked embryos during Xenopus laevis development. Our findings revealed that hsc70 mRNA was constitutively present in a global fashion throughout the embryo and was not heat inducible. Accumulation of hsp70 mRNA, however, was detected only in heat shocked embryos. Furthermore, hsp70 mRNA accumulation was enriched in a tissue-specific manner in X. laevis tailbud embryos within 15 minutes of a 33 degrees C heat shock. Abundant levels of heat shock-induced hsp70 mRNA were detected in the head region, including the lens placode, the cement gland, and in the somitic region and proctodeum. Preferential heat-induced accumulation of hsp70 mRNA was first detected at a heat shock temperature of 30 degrees C. Placement of embryos at 22 degrees C after a 1-hour, 33 degrees C heat shock resulted in decreased hsp70 mRNA with time, but the message persisted in selected tissues, including the lens placode and somites. Treatment of tailbud embryos with either sodium arsenite or zinc chloride induced a tissue-specific enrichment of hsp70 mRNA in the lens placode and somitic region. These studies reveal the complex nature of the heat shock response in different embryonic tissues and suggest the presence of regulatory mechanisms that lead to a stressor-induced, tissue-specific enrichment of hsp70 mRNA.
Collapse
Affiliation(s)
- L Lang
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Adám A, Bártfai R, Lele Z, Krone PH, Orbán L. Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Exp Cell Res 2000; 256:282-90. [PMID: 10739675 DOI: 10.1006/excr.2000.4805] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat-inducibility of two reporter constructs expressing lacZ gene under the control of mouse and Xenopus hsp70 promoters was tested in zebrafish (Danio rerio) embryos using a transient expression system. Cells expressing beta-galactosidase were stained blue by histochemical staining and their average number per embryo was used as an indicator of the expression level of the reporter gene. Both constructs were heat-inducible in the embryonic tissues and showed similar heat dependence (increasing expression levels from 35-36 degrees C up to 39 degrees C with an apparent decrease at 40 degrees C), resembling that of the zebrafish hsp70 genes. However, their induction kinetics were different, which might be due to differences in their 5' UTRs. Spatial expression patterns of the two hsp/lacZ constructs and an endogenous hsp70 gene were mostly similar on the RNA level. These results indicate that our approach is applicable for in vivo analysis of the heat-shock response and that exogenous heat-shock promoters may be useful for inducible expression of transgenes in fish.
Collapse
Affiliation(s)
- A Adám
- Laboratory of Aquatic Molecular Biology, Agricultural Biotechnology Center, Gödöllo, Hungary
| | | | | | | | | |
Collapse
|
23
|
Weiss LM, Kim K. The development and biology of bradyzoites of Toxoplasma gondii. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2000; 5:D391-405. [PMID: 10762601 PMCID: PMC3109641 DOI: 10.2741/weiss] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is a protozoan parasite of mammals and birds that is an important human pathogen. Infection with this Apicomplexan parasite results in its dissemination throughout its host via the tachyzoite life-stage. After dissemination these tachyzoites differentiate into bradyzoites within cysts that remain latent. These bradyzoites can transform back into tachyzoites and in immunosupressed individuals this often results in symptomatic disease. Both tachyzoites and bradyzoites develop in tissue culture and thus this crucial differentiation event can be studied. Recent advances in the genetic manipulation of T. gondii have expanded the molecular tools that can be applied to studies on bradyzoite differentiation. Evidence is accumulating that this differentiation event is stress mediated and may share common pathways with other stress-induced differentiation events in other eukaryotic organisms. Study of the stress response and signaling pathways are areas of active research in this organism. In addition, characterization of unique bradyzoite-specific structures, such as the cyst wall, should lead to a further understanding of T. gondii biology. This review focuses on the biology and development of bradyzoites and current approaches to the study of the tachyzoite to bradyzoite differentiation process.
Collapse
Affiliation(s)
- Louis M. Weiss
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| |
Collapse
|
24
|
Bova MP, McHaourab HS, Han Y, Fung BK. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 2000; 275:1035-42. [PMID: 10625643 DOI: 10.1074/jbc.275.2.1035] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alphaA-Crystallin, a member of the small heat shock protein (sHsp) family, is a large multimeric protein composed of 30-40 identical subunits. Its quaternary structure is highly dynamic, with subunits capable of freely and rapidly exchanging between oligomers. We report here the development of a fluorescence resonance energy transfer method for measuring structural compatibility between alphaA-crystallin and other proteins. We found that Hsp27 and alphaB-crystallin readily exchanged with fluorescence-labeled alphaA-crystallin, but not with other proteins structurally unrelated to sHsps. Truncation of 19 residues from the N terminus or 10 residues from the C terminus of alphaA-crystallin did not significantly change its subunit organization or exchange rate constant. In contrast, removal of the first 56 or more residues converts alphaA-crystallin into a predominantly small multimeric form consisting of three or four subunits, with a concomitant loss of exchange activity. These findings suggest residues 20-56 are essential for the formation of large oligomers and the exchange of subunits. Similar results were obtained with truncated Hsp27 lacking the first 87 residues. We further showed that the exchange rate is independent of alphaA-crystallin concentration, suggesting subunit dissociation may be the rate-limiting step in the exchange reaction. Our findings reveal a quarternary structure of alphaA-crystallin, consisting of small multimers of alphaA-crystallin subunits in a dynamic equilibrium with the oligomeric complex.
Collapse
Affiliation(s)
- M P Bova
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
25
|
Lang L, Miskovic D, Lo M, Heikkila JJ. Stress-induced, tissue-specific enrichment of hsp70 mRNA accumulation in Xenopus laevis embryos. Cell Stress Chaperones 2000. [DOI: 10.1379/1466-1268(2000)005<0036:sitseo>2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Lang L, Miskovic D, Fernando P, Heikkila JJ. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos. DEVELOPMENTAL GENETICS 1999; 25:365-74. [PMID: 10570468 DOI: 10.1002/(sici)1520-6408(1999)25:4<365::aid-dvg10>3.0.co;2-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We employed whole-mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock-induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33 degrees C heatshock. The lowest temperature capable of inducing this pattern was 30 degrees C. Placement of embryos at 22 degrees C following a 1-h 33 degrees C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues.
Collapse
Affiliation(s)
- L Lang
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Wood LA, Brown IR, Youson JH. Tissue and developmental variations in the heat shock response of sea lampreys (Petromyzon marinus): effects of an increase in acclimation temperature. Comp Biochem Physiol A Mol Integr Physiol 1999. [DOI: 10.1016/s1095-6433(99)00035-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Liang P, MacRae TH. The synthesis of a small heat shock/alpha-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 1999; 207:445-56. [PMID: 10068475 DOI: 10.1006/dbio.1998.9138] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilized oocytes of the brine shrimp Artemia franciscana undergo either ovoviviparous or oviparous development, yielding free-swimming larvae (nauplii) or encysted gastrulae (cysts), respectively. Encystment is followed by diapause, wherein metabolism is greatly reduced; the resulting cysts are very resistant to extreme stress, including desiccation and long-term anoxia. The synthesis of p26, a small heat shock/alpha-crystallin protein produced only in oviparously developing Artemia, is shown in this paper to be transcriptionally regulated. A p26 mRNA of about 0.7 kb was detected on Northern blots in the second day after oocyte fertilization. It peaked as embryos encysted and declined rapidly when activated cysts resumed development. The appearance of p26 protein, as indicated by immunoprobing of Western blots, followed mRNA by 1 day; it also increased as encystment occurred but remained constant during postgastrula development of cysts. However, p26 underwent a marked reduction during emergence of nauplii and could not be detected in cell-free extracts of second-instar larvae. p26 entered nuclei of encysting embryos soon after synthesis and was localized therein as late as instar II, when it was restricted to a small set of salt gland nuclei. First-instar larvae derived from cysts were more thermotolerant than larvae that had developed ovoviviparously, but synthesis of p26 was not induced by heat under the experimental conditions employed. Additionally, transformed bacteria synthesizing p26 were more thermotolerant than bacteria that lacked the protein. The results support the proposal that p26, a developmentally regulated protein synthesized during embryo encystment, has chaperone activity in vivo and protects the proteins of encysted Artemia from stress-induced denaturation.
Collapse
Affiliation(s)
- P Liang
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada
| | | |
Collapse
|
29
|
Rensing L, Monnerjahn C, Meyer U. Differential stress gene expression during the development of Neurospora crassa and other fungi. FEMS Microbiol Lett 1998; 168:159-66. [PMID: 9835024 DOI: 10.1111/j.1574-6968.1998.tb13268.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Stress genes are differentially expressed during the development of Neurospora crassa and other fungi. Large amounts of constitutive heat shock protein 70 (HSC70) are found in dormant conidia of N. crassa, whereas little mRNA of the related glucose-regulated protein (grp78) is detected. It is, however, not generally clear whether heat shock protein or mRNA is preferentially stored in dormant spores. Germinating spores of N. crassa increase the level of grp mRNA. During this developmental stage, the induction of inducible heat shock protein (hsp) genes can be elicited by heat shock only at certain times after the beginning of germination. Exponential growth (proliferation) is paralleled by increased levels of HSCs. The stationary state is characterized by decreased levels of some HSCs and increased levels of others. Conidiation in N. crassa is accompanied by a strong enhancement of the synthesis and levels of HSCs but also of HSPs after heat shock. This increase may serve a need for additional rounds of replication, for the expression and transport of sporulation-specific proteins or for stabilization of macromolecules in the spores and their preservation for germination. The control mechanisms involved in the differential expression of hsc genes are currently not known.
Collapse
Affiliation(s)
- L Rensing
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany.
| | | | | |
Collapse
|
30
|
Jantschitsch C, Kindas-Mügge I, Metze D, Amann G, Micksche M, Trautinger F. Expression of the small heat shock protein HSP 27 in developing human skin. Br J Dermatol 1998; 139:247-53. [PMID: 9767238 DOI: 10.1046/j.1365-2133.1998.02361.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 27 kDa heat shock protein (HSP 27) is expressed in keratinocytes of the upper epidermal layers, and recent evidence suggests that this protein is involved in the regulation of epidermal differentiation. The expression of HSP 27 was investigated in developing human skin by immunohistochemistry utilizing a specific monoclonal antibody. We used formalin-fixed, paraffin-embedded tissue of abdominal skin obtained from 34 human fetuses ranging between 13 and 30 weeks estimated gestational age (EGA). We found that HSP 27 is not expressed in keratinocytes until week 14 EGA. At this stage staining is observed in the periderm and the upper intermediate cells but not in hair germs. During further development, HSP 27 expression correlates with increasing epidermal differentiation, i.e. shedding of the periderm and beginning of keratinization. HSP 27 expression is confined to the upper cell layers and sparse basal cells. In hair follicles, HSP 27 can be detected in the innermost cell layer of the outer root sheath and in keratinocytes of the bulge identical to what is observed in adult skin. The hair papilla, matrix cells and sebaceous glands are negative for HSP 27 and remain so during further development. In eccrine sweat glands of the 24th week EGA, HSP 27 is confined to the superficial cell layer of the sweat ducts. In the present report we demonstrate differentiation-related expression of HSP 27 in developing human skin. Further in vitro studies will address the molecular function of HSP 27 in epidermal differentiation and development.
Collapse
Affiliation(s)
- C Jantschitsch
- Institute of Tumour Biology, University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
31
|
Weiss LM, Ma YF, Takvorian PM, Tanowitz HB, Wittner M. Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infect Immun 1998; 66:3295-302. [PMID: 9632598 PMCID: PMC108345 DOI: 10.1128/iai.66.7.3295-3302.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/1997] [Accepted: 04/15/1998] [Indexed: 02/07/2023] Open
Abstract
Toxoplasma gondii is a well-described ubiquitous Apicomplexan protozoan parasite that is an important opportunistic pathogen. The factors affecting the transition of tachyzoites to the latent bradyzoite stage remain to be defined. The induction of bradyzoite development in vitro has been linked to temperature, pH, mitochondrial inhibitors, sodium arsenite, and many of the other stressors associated with heat shock protein (hsp) induction. There is evidence for other organisms that hsps are developmentally regulated. Therefore, we examined whether hsp induction is an early event in bradyzoite differentiation. Extracellular and intracellular T. gondii cells, after exposure to pH 8.1 or 7.1, were analyzed for the expression of inducible hsp70 by using monoclonal antibody C92F3A-5 (specific to hsp70). Western blotting demonstrated that a 72-kDa protein reactive with C92F3A-5 (hsp70), which we believe is part of the hsp70 family, is induced during bradyzoite development. By immunofluorescence and immunoelectron microscopy, we were able to demonstrate that hsp70 staining colocalized to T. gondii expressing bradyzoite-specific antigens and the presence of hsp70 in bradyzoites isolated from mouse brain. Quercetin, a bioflavonoid which inhibits the synthesis of hsp90, hsp70, and hsp27, suppresses the induction of bradyzoite development in vitro. Reverse transcription-PCR with conserved hsp70 primers demonstrated an increase in hsp70 in T. gondii on exposure to conditions which induce bradyzoite formation. A T. gondii hsp70 was subsequently cloned and sequenced by using this amplified fragment. We believe our evidence suggests that hsps are important in the process of bradyzoite differentiation.
Collapse
Affiliation(s)
- L M Weiss
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | |
Collapse
|
32
|
Wood LA, Brown IR, Youson JH. Characterization of the heat shock response in the gills of sea lampreys and a brook lamprey at different intervals of their life cycles. Comp Biochem Physiol A Mol Integr Physiol 1998; 120:509-18. [PMID: 9787831 DOI: 10.1016/s1095-6433(98)10061-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The heat shock response (HSR) was characterized in the gills of two lamprey species that differ with respect to their adult life history. In vivo labelling with [35S]methionine revealed an enhanced synthesis of heat shock proteins (HSPs) having approximate molecular weights of 70 kDa (HSP70) and 90 kDa (HSP90) following heat treatment. Induction of the HSR occurred in larval lampreys (ammocoetes) following temperature elevations of 13-16 degrees C for the parasitic species, the sea lamprey (Petromyzon marinus) and 16-20 degrees C for the nonparasitic species, the brook lamprey (Lampetra appendix). The case in L. appendix represents the greatest increase in temperature required to induce the HSR in gill tissue among aquatic poikilotherms studied to data and induction occurs within a temperature range (25-29 degrees C) not normally experienced by these animals. Western blotting detected the presence of 70 and 90 kDa HSPs and HSP70 levels were greater in post-metamorphic L. appendix than in ammocoetes both before and after heat shock. The HSR of lampreys appears to be induced during times of emergency when large, rapid temperature increases are experienced. The high set-point temperature for induction of the response may be a consequence of both the environments they presently inhabit and their experiences during evolution.
Collapse
Affiliation(s)
- L A Wood
- Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada
| | | | | |
Collapse
|
33
|
Uma S, Barret DJ, Matts RL. Changes in the expression of the heme-regulated eIF-2 alpha kinase and heat shock proteins in rabbit reticulocytes maturing during recovery from anemia. Exp Cell Res 1998; 238:273-82. [PMID: 9457081 DOI: 10.1006/excr.1997.3860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in the expression of the heme-regulated eIF-2 alpha kinase (HRI), heat shock proteins (Hsps, Hsp90, and 70) and their associated cohorts (p60 and p23) were studied in maturing rabbit reticulocytes during recovery from anemia. Reticulocytosis was induced by injection of N-acetylphenylhydrazine or by phlebotomy from the ear vein, and circulating red blood cells were fractionated on histopaque density gradients. Northern and Western blot analyses indicated that HRI and hsps mRNA and protein content gradually decreased during maturation of reticulocytes into erythrocytes. Reduction in levels of hsps and HRI was also observed when cells of same age group (density) were compared as the animals recovered from the anemia. Low hematocrits correlated with high levels of hsps expression and with increasing hematocrits hsps expression decreased. Under the conditions used to quantify these protein levels, Hsc70 and p60 were detected in erythrocytes of fully recovered animals. Maintenance of Hsc70 and p60 suggests important ongoing roles for these hsps in protecting the structure and function of proteins in erythrocytes lacking transcriptional and translational machinery.
Collapse
Affiliation(s)
- S Uma
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74078-3035, USA
| | | | | |
Collapse
|
34
|
Mirkes PE. Molecular/cellular biology of the heat stress response and its role in agent-induced teratogenesis. Mutat Res 1997; 396:163-73. [PMID: 9434867 DOI: 10.1016/s0027-5107(97)00182-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Available data indicate that heat shock proteins act as chaperones under non-stress conditions by assisting in: (1) the folding of newly synthesized proteins, (2) the intracellular translocation of proteins, and (3) the function of other proteins. As we gain additional information concerning cellular physiology, we may find that heat shock proteins play a key role in many additional cellular functions. When cells experience thermal or chemical stress, heat shock proteins take on a new role, conserved from bacteria to humans, of protecting cells from the detrimental effects of stress. This latter role takes on added significance for the embryo in which the developmental program must be read linearly, with little opportunity to cycle backward to complete a missed segment of the program. Although circumstantial evidence clearly implicates heat shock proteins in protecting embryos from thermal stress, definitive evidence is still lacking. The challenge for the future is to obtain such definitive data. Ideally, such information will lead to new therapeutic paradigms that will afford protection to the human embryo/fetus exposed to thermal/chemical stress.
Collapse
Affiliation(s)
- P E Mirkes
- Department of Pediatrics, University of Washington, Seattle 98195, USA.
| |
Collapse
|
35
|
Krone PH, Lele Z, Sass JB. Heat shock genes and the heat shock response in zebrafish embryos. Biochem Cell Biol 1997. [DOI: 10.1139/o97-083] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat shock genes exhibit complex patterns of spatial and temporal regulation during embryonic development in a wide range of organisms. Our laboratory has initiated an analysis of heat shock protein gene expression in the zebrafish, a model system that is now utilized extensively for the examination of early embryonic development of vertebrates. We have cloned members of the zebrafish hsp47, hsp70,\i and hsp90 gene families and shown them to be closely related to their counterparts in higher vertebrates. Whole mount in situ hybridization and Northern blot analyses have revealed that these genes are regulated in distinct spatial, temporal, and stress-specific manners. Furthermore, the tissue-specific expression patterns of the hsp47 and hsp90 alpha genes correlate closely with the expression of genes encoding known chaperone targets of Hsp47 and Hsp90 in other systems. The data raise a number of interesting questions regarding the function and regulation of these heat shock genes in zebrafish embryos during normal development and following exposure to environmental stress.
Collapse
|
36
|
Prudhomme C, Moreau N, Angelier N. Conditions for a heat shock response during oogenesis and embryogenesis of the amphibian Pleurodeles waltl. Dev Growth Differ 1997; 39:477-84. [PMID: 9352202 DOI: 10.1046/j.1440-169x.1997.t01-3-00009.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The optimal conditions capable of inducing an increase in HSP70 neosynthesis during development of the urodele amphibian Pleurodeles waltl were determined in this study. These conditions depend on temperature, heat shock duration and recovery duration. In oocytes, a heat shock response was repeatedly obtained at 37 degrees C for 15 min followed by 1 h recovery. These results provided evidence for heat shock response at every stage considered. An increase in HSP70 synthesis was noted throughout oogenesis, but it did not lead to an increase in the amount of soluble HSP70, except for stage VI oocytes. Such results suggest that from stage II to stage IV oocytes, an equilibrium occurs between the HSP70 used and the HSP70 neosynthesized. In contrast, in stage VI oocytes, heat shock led to overproduction of HSP70. During early development, the heat shock response was repeatedly obtained only from the gastrula stage with a 37 degrees C shock and a 15 min duration of treatment. Surprisingly, during cleavage stage, the soluble HSP70 total amount increased after heat shock at a time when no HSP70 neosynthesis occurred.
Collapse
Affiliation(s)
- C Prudhomme
- Groupe Gènes et Développement, UA 1135 Université Pierre et Marie Curie-Centre National de la Recherche Scientifique Laboratoire de Biologie Moléculaire et Cellulaire du Développement Bâtiment C, Paris, France
| | | | | |
Collapse
|
37
|
Sass JB, Krone PH. HSP90alpha gene expression may be a conserved feature of vertebrate somitogenesis. Exp Cell Res 1997; 233:391-4. [PMID: 9194501 DOI: 10.1006/excr.1997.3572] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously demonstrated that the hsp90alpha and hsp90beta genes in zebrafish are expressed in dramatically different spatial and temporal patterns in early embryos. In the case of hsp90alpha, expression is spatially restricted within the somites to putative myogenic cells which also express mRNA encoding the myogenic bHLH transcription factor myoD and is downregulated along with myoD following myogenesis. In the present study, we have examined hsp90alpha gene expression in developing chicken embryos using a gene-specific probe. We show that hsp90alpha gene expression is also localized to a subset of cells within the somites of chicken embryos and that the expression pattern correlates closely to that observed for myoD. Furthermore, expression of the hsp90alpha gene is strongly upregulated throughout the embryo following heat shock in a manner similar to that observed in heat-shocked zebrafish embryos. The data suggest that the hsp90alpha gene may play an evolutionarily conserved role during somitogenesis in vertebrates in addition to providing protection to all cells of the embryo following stress.
Collapse
Affiliation(s)
- J B Sass
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
38
|
Benjamin IJ, Shelton J, Garry DJ, Richardson JA. Temporospatial expression of the small HSP/alpha B-crystallin in cardiac and skeletal muscle during mouse development. Dev Dyn 1997; 208:75-84. [PMID: 8989522 DOI: 10.1002/(sici)1097-0177(199701)208:1<75::aid-aja7>3.0.co;2-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although the small (22 Kd) heat shock protein/alpha B-crystallin functions as a major structural protein and molecular chaperone in the vertebrate lens, little is known about the protein's role in nonlenticular tissues such as the heart and skeletal muscle. Recent studies have demonstrated that alpha B-crystallin expression is uniquely regulated during myogenesis in vitro. We report here for the first time that the temporal and spatial expression of alpha B-crystallin is similarly regulated in vivo during mouse embryogenesis. Expression of alpha B-crystallin mRNA was detected by in situ hybridization in the primitive heart at 8.5 days postconception (p.c.) and in the myotome of the somites at 10.5 days p.c. This tissue-restricted pattern was corroborated by immunohistochemical studies. alpha B-crystallin mRNA and protein expression were uniform in the developing atria and ventricles without regional differences or gradients. alpha B-crystallin expression was absent in the endocardial cushion, pulmonary trunk, aorta, and endothelium. Examination of muscle precursors revealed expression throughout the dorsoventral aspect of the myotomes and in developing skeletal muscle. Our findings suggest that alpha B-crystallin may serve pivotal roles as a structural protein and a molecular chaperone in myofiber stabilization of metabolically active tissues during early embryogenesis. Thus, early alpha B-crystallin expression in myogenic lineages supports the hypothesis that the putative functions of alpha B-crystallin are coupled to the activation of genetic programs responsible for myogenic differentiation and cardiac morphogenesis.
Collapse
Affiliation(s)
- I J Benjamin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | | | | | |
Collapse
|
39
|
Murashov AK, Wolgemuth DJ. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 37:85-95. [PMID: 8738139 DOI: 10.1016/0169-328x(95)00288-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.
Collapse
Affiliation(s)
- A K Murashov
- Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
40
|
Pearson DS, Kulyk WM, Kelly GM, Krone PH. Cloning and characterization of a cDNA encoding the collagen-binding stress protein hsp47 in zebrafish. DNA Cell Biol 1996; 15:263-72. [PMID: 8634155 DOI: 10.1089/dna.1996.15.263] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hsp47 is a major stress-inducible protein that is localized to the endoplasmic reticulum of avian and mammalian cells and is thought to act as a molecular chaperone specific for the processing of procollagen. Although hsp47 is coordinately expressed together with several collagen types, and vertebrate embryos are known to express collagen genes in complex spatial and temporal patterns, limited information is available regarding the function or regulation of hsp47 during early embryonic development. We have initiated an examination of hsp47 in the zebrafish, Danio rerio, which offers a number of features that make it attractive as a model developmental system with which to examine the expression and function of hsp47. A polymerase chain reaction (PCR)-based cloning strategy was used to isolate a hsp47 cDNA from an embryonic zebrafish cDNA library. The deduced translation product of the cDNA is a 404-amino-acid polypeptide that is 72% identical to chicken, 64% identical to mouse and rat, and 69% identical to human hsp47. The protein contains a typical hydrophobic signal sequence, an RDEL endoplasmic reticulum retention signal, and a serine protease inhibitor signature sequence, all of which are characteristic of hsp47 in higher vertebrates. Thus, it is likely that hsp47 in zebrafish is also localized to the endoplasmic reticulum and may play a similar role to its counterpart in higher vertebrates. Northern blot analysis revealed that the hsp47 gene is expressed at relatively low levels in embryos during normal development but is strongly induced following exposure to heat shock at the gastrula, midsomitogenesis, 2-day, and 3-day larval stages. The level of induction was much higher than has previously been reported in chicken and mouse cells.
Collapse
Affiliation(s)
- D S Pearson
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
41
|
Sass JB, Weinberg ES, Krone PH. Specific localization of zebrafish hsp90 alpha mRNA to myoD-expressing cells suggests a role for hsp90 alpha during normal muscle development. Mech Dev 1996; 54:195-204. [PMID: 8652412 DOI: 10.1016/0925-4773(95)00476-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Members of the eukaryotic hsp90 family function as important molecular chaperones in the assembly, folding and activation of a select group of cellular signalling molecules and transcription factors. Several of the molecules with which hsp90 interacts, such as the bHLH transcription factor myoD, are known to be important regulators of developmental events in vertebrates. However, little information is available in support of any specific role for hsp90 in developing embryos in vivo. In this study, we provide the first in vivo evidence that the hsp90 alpha gene may play a role in the process of myogenesis. We show that constitutive hsp90 alpha mRNA in zebrafish embryos is restricted primarily to a subset of cells within the somites and pectoral fin buds which also express myoD. Furthermore, expression of the hsp90 alpha gene is down-regulated along with myoD in differentiated muscles of the trunk at a time when levels of mRNA encoding the muscle structural protein alpha-tropomyosin remain high. No hsp90 alpha mRNA is detectable within the CNS at control temperatures. In contrast, heat shock-induced expression of the hsp90 alpha gene occurs throughout the embryo at all stages of development examined. The expression patterns strongly suggest that the hsp90 alpha gene plays a specific role in the normal process of myogenesis in addition to providing protection to all cells of the embryo during periods of environmental stress.
Collapse
Affiliation(s)
- J B Sass
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
42
|
Murashov AK, Wolgemuth DJ. Distinct transcripts are recognized by sense and antisense riboprobes for a member of the murine HSP70 gene family, HSP70.2, in various reproductive tissues. Mol Reprod Dev 1996; 43:17-24. [PMID: 9110944 DOI: 10.1002/(sici)1098-2795(199601)43:1<17::aid-mrd3>3.0.co;2-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of hsp70.2, an hsp70 gene family member, originally characterized by its high levels of expression in germ cells in the adult mouse testis, was detected in several other reproductive tissues, including epididymis, prostate, and seminal vesicles, as well as in extraembryonic tissues of mid-gestation fetuses. In addition, hybridization with RNA probes transcribed in the sense orientation surprisingly indicated the presence of slightly larger "antisense" transcripts in several tissues. The levels of antisense transcripts varied among the tissues, with the highest signal detected in the prostate and no signal being detectable in the testis. Consistent with these results, in situ hybridization analysis clearly localized the sense-orientation transcripts to pachytene spermatocytes, while no antisense-orientation transcripts were observed in adjacent sections of the same tubules. Our findings have thus shown that although hsp70.2 was expressed abundantly and in a highly stage-specific manner in the male germ line, it was also expressed in other murine tissues. Furthermore, we have made the surprising observation of antisense transcription of the hsp70.2 gene in several mouse tissues, revealing another level of complexity in the regulation and function of heat shock proteins.
Collapse
Affiliation(s)
- A K Murashov
- Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
43
|
Minowada G, Welch W. Variation in the expression and/or phosphorylation of the human low molecular weight stress protein during in vitro cell differentiation. J Biol Chem 1995; 270:7047-54. [PMID: 7706242 DOI: 10.1074/jbc.270.13.7047] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the low molecular weight heat shock protein (hsp) family show regulated expression in both Drosophila and mice during development and differentiation. Here we have examined whether similar regulation of the single low molecular weight hsp (hsp 28) of humans exhibits differences in either its expression and/or phosphorylation during the course of in vitro differentiation of hematopoietic cells. In the promyelocytic leukemic cell line, HL-60, we show that early after commitment of the cells to a macrophage-like phenotype (via exposure to phorbol ester myristate, PMA) there occurs an accompanying increased phosphorylation of hsp 28. Over time and as the cells become terminally differentiated the levels of hsp 28 increase significantly. In contrast, cells stimulated to adopt a granulocyte-like phenotype (e.g. exposed to either dimethyl sulfoxide or retinoic acid) show no changes in either the phosphorylation or expression of hsp 28. Moreover, once differentiated the granulocyte-like cells no longer appear capable of phosphorylating hsp 28. Human K562 cells, in response to hemin, rapidly increase their expression and phosphorylation of hsp 28 during the course of their differentiation into erythroid-like cells. Addition of PMA to the K562 cells induces differentiation into a megakaryocyte-like phenotype but is not accompanied by changes in hsp 28 phosphorylation/expression. In the case of the HL-60 cells, differentiation toward the macrophage like lineage is accompanied by an increased adherence of the cells to their substratum and an apparent association of hsp 28 with the actin cytoskeleton.
Collapse
Affiliation(s)
- G Minowada
- Department of Medicine, University of California, San Francisco 94143, USA
| | | |
Collapse
|
44
|
Tam Y, Heikkila JJ. Identification of members of the HSP30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos. DEVELOPMENTAL GENETICS 1995; 17:331-9. [PMID: 8641051 DOI: 10.1002/dvg.1020170406] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study we have characterized the synthesis of members of the HSP30 family during Xenopus laevis development using a polyclonal antipeptide antibody derived from the carboxyl end of HSP30C. Two-dimensional PAGE/immunoblot analysis was unable to detect any heat-inducible small HSPs in cleavage, blastula, gastrula, or neurula stage embryos. However, heat-inducible accumulation of a single protein was first detectable in early tailbud embryos with an additional 5 HSPs at the late tailbud stage and a total of 13 small HSPs at the early tadpole stage. In the Xenopus A6 kidney epithelial cell line, a total of eight heat-inducible small HSPs were detected by this antibody. Comparison of the pattern of protein synthesis in embryos and somatic cells revealed a number of common and unique heat inducible proteins in Xenopus embryos and cultured kidney epithelial cells. To specifically identify the protein product of the HSP30C gene, we made a chimeric gene construct with the Xenopus HSP30C coding sequence under the control of a constitutive promoter. This construct was microinjected into fertilized eggs and resulted in the premature and constitutive synthesis of the HSP30C protein in gastrula stage embryos. Through a series of mixing experiments, we were able to specifically identify the protein encoded by the HSP30C gene in embryos and somatic cells and to conclude that HSP30C synthesis was first head-inducible at the early tailbud stage of development. The differential pattern of heat-inducible accumulation of members of the HSP30 family during Xenopus development suggests that these proteins may have distinct functions at specific embryonic stages during a stress response.
Collapse
Affiliation(s)
- Y Tam
- Department of Biology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
45
|
Ohan NW, Heikkila JJ. Involvement of differential gene expression and mRNA stability in the developmental regulation of the hsp 30 gene family in heat-shocked Xenopus laevis embryos. DEVELOPMENTAL GENETICS 1995; 17:176-84. [PMID: 7586758 DOI: 10.1002/dvg.1020170209] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Four complete hsp 30 genes have been isolated from Xenopus laevis: hsp 30A, hsp 30B (a pseudogene), hsp 30C, and hsp 30D. The hsp 30A and hsp 30C genes are first heat inducible at the early tailbud stage, as determined by RNase protection and RT-PCR assays. In this study, we determined by RT-PCR that the hsp 30D gene was first heat inducible (33 degrees C for 1 h) at the mid-tailbud stage, approximately 1 day later in development than hsp 30A and hsp 30C. Furthermore, using Northern blot analysis, we detected the presence of very low levels of hsp 30 mRNA at the heat-shocked late blastula stage. The relative levels of these pre-tailbud (PTB) hsp 30 mRNAs increased at the gastrula and neurula stage followed by a dramatic enhancement in heat shocked tailbud and tadpole stage embryos (50- to 100- fold relative to late blastula). Interestingly, treatment of blastula or gastrula embryos at high temperatures (37 degrees C for 1 h) or with the protein synthesis inhibitor, cycloheximide, followed by heat shock, led to enhanced accumulation of the pre-tailbud (PTB) hsp 30 mRNAs. hsp 70, hsp 87, and actin messages were not stabilized at high temperatures or by cycloheximide treatment. Finally, hsp 30D mRNA was not detected by RT-PCR analysis of cycloheximide-treated, heat-shocked blastula stage embryos, confirming that it is not a member of the PTB hsp 30 mRNAs. This study indicates that differential gene expression and mRNA stability are involved in the regulation of hsp 30 gene expression during early Xenopus laevis development.
Collapse
Affiliation(s)
- N W Ohan
- Department of Biology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
46
|
Muller AW. Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 63:193-231. [PMID: 7542789 DOI: 10.1016/0079-6107(95)00004-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A W Muller
- E.C. Slater Institute, BioCentrum Amsterdam, Universiteit van Amsterdam, The Netherlands
| |
Collapse
|
47
|
Sanders B, Martin L. Copper inhibits the induction of stress protein synthesis by elevated temperatures in embryos of the sea urchin Strongylocentrus purpuratus. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0742-8413(94)00057-h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Coca MA, Almoguera C, Jordano J. Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. PLANT MOLECULAR BIOLOGY 1994; 25:479-492. [PMID: 8049372 DOI: 10.1007/bf00043876] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We isolated and sequenced Ha hsp17.9, a DNA complementary (cDNA) of dry-seed stored mRNA that encodes a low-molecular-weight heat-shock protein (LMW HSP). Sequence analysis identified Ha hsp17.9, and the previously reported Ha hsp17.6, as cDNAs encoding proteins (HSP17.6 and HSP17.9) which belong to different families of cytoplasmic LMW HSPs. Using specific antibodies we observed differential expression of both proteins during zygotic embryogenesis under controlled environment, and a remarkable persistence of these LMW HSPs during germination. Immuno-blot analysis of HSP17.9 proteins in two-dimensional gels revealed that the polypeptides expressed in embryos were indistinguishable from LMW HSPs expressed in vegetative tissues in response to water deficit; but they appeared different from homologous proteins expressed in response to thermal-stress. Tissue-print immunolocalization experiments showed that HSP17.9 and HSP17.6 were homogeneously distributed in every tissue of desiccation-tolerant dry seeds and young seedlings under non-stress conditions. These results demonstrate developmental regulation of specific, cytoplasmic, plant LMW HSPs, suggesting also their involvement in water-stress tolerance.
Collapse
Affiliation(s)
- M A Coca
- Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Sevilla, Spain
| | | | | |
Collapse
|