1
|
Gaestel M. The enigma of small heat shock protein phosphorylation. Front Pharmacol 2024; 15:1486245. [PMID: 39508045 PMCID: PMC11538052 DOI: 10.3389/fphar.2024.1486245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
|
2
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
3
|
Menjivar NG, Gad A, Thompson RE, Meyers MA, Hollinshead FK, Tesfaye D. Bovine oviductal organoids: a multi-omics approach to capture the cellular and extracellular molecular response of the oviduct to heat stress. BMC Genomics 2023; 24:646. [PMID: 37891479 PMCID: PMC10605953 DOI: 10.1186/s12864-023-09746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The mammalian oviduct is a complex, fibromuscular organ known for its role in orchestrating a series of timely and dynamic changes to suitably support early embryogenesis. Climate change-induced heat stress (HS) is one of the largest single stressors compromising reproductive function in humans and farm animals via systemic changes in the redox status of the maternal environment, adversely affecting fertilization and early embryonic development. Oviductal organoids represent a unique 3-dimensional, biomimetic model to study the physiology of the oviduct and its subsequent impact on embryo development under various environmental conditions. RESULTS Our study is the first to demonstrate an innovative approach to understanding the cascade of molecular changes sustained by bovine oviductal organoids under HS and the subsequent maternal signals harnessed within their secreted extracellular vesicles (EVs). Transcriptomic analysis of oviductal organoids exposed to HS revealed 2,570 differentially expressed genes (1,222 up- and 1,348 downregulated), while EV-coupled miRNome analysis disclosed 18 miRNAs with significant differential expression (12 up- and 6 downregulated) in EVs from thermally stressed organoids compared to EVs released from organoids cultured under thermoneutral conditions. Genes activated in oviductal organoids in response to thermal stress, include: COX1, ACTB, CST6, TPT1, and HSPB1, while miR-1246, miR-148a, miR21-5p, miR-451, and miR-92a represent the top highly abundant EV-coupled miRNAs released in response to HS. Pathway analysis of genes enriched in organoids exposed to thermal stress showed the enrichment of endocrine resistance, cellular senescence, and notch signaling pathways. Similarly, EV-coupled miRNAs released from thermally stressed organoids showed their potential regulation of genes involved in cellular senescence, p53 signaling, and TGF-beta signaling pathways. CONCLUSIONS In conclusion, the cellular and extracellular response of bovine oviductal organoids to in vitro HS conditions reveal the prospective impact of environmental HS on the physiology of the oviduct and the probable subsequent impacts on oocyte fertilization and early embryo development. Future studies elucidating the potential impact of HS-associated EVs from oviductal organoids on oocyte fertilization and preimplantation embryo development, would justify the use of an organoid model to optimally understand the oviduct-embryo communication under suboptimal environments.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Riley E Thompson
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mindy A Meyers
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Fiona K Hollinshead
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA.
| |
Collapse
|
4
|
Kim WS, Kim J. Exploring the impact of temporal heat stress on skeletal muscle hypertrophy in bovine myocytes. J Therm Biol 2023; 117:103684. [PMID: 37625343 DOI: 10.1016/j.jtherbio.2023.103684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The primary aim of this investigation was to explore the impact of different temporal stress conditions on the regulators associated with skeletal muscle hypertrophy in bovine myocytes. Bovine satellite cells (BSCs) were extracted from three-month-old Holstein bull calves and subjected to myogenic differentiation under three thermal treatments: 38 °C (control; CON), 39.5 °C (moderate heat stress; MHS), and 41 °C (extreme heat stress; EHS) for a duration of 3 or 48 h. Exposure to EHS resulted in elevated (P < 0.01) expression levels of heat shock protein (HSP)20, HSP27, HSP70, and HSP90, along with increased (P < 0.01) protein levels. Moreover, cells exposed to MHS and EHS exhibited enhanced (P < 0.01) gene expression of myoblast determination protein 1 (MyoD), while myogenin (MyoG) was overexpressed (P < 0.01) in cells exposed to EHS. These findings suggest that heat exposure can potentially induce myogenic differentiation through the modulation of myogenic regulatory factors. Furthermore, our investigations revealed that exposure to EHS upregulated (P < 0.01) myosin heavy chain (MHC) I expression, whereas MHC IIA (P < 0.01) and IIX (P < 0.01) expression were increased; P < 0.01) under MHS conditions. These observations suggest that the temperature of the muscle may alter the proportion of muscle fiber types. Additionally, our data indicated that EHS activated (P < 0.01) the expression of insulin-like growth factor 1 (IGF-1) and triggered the activation of the Akt/mTOR/S6KB1 pathway, a known anabolic pathway associated with cellular protein synthesis. Consequently, these altered signaling pathways contributed to enhanced protein synthesis and increased myotube size. Overall, the results obtained from our current study revealed that extreme heat exposure (41 °C) may promote skeletal muscle hypertrophy by regulating myogenic regulatory factors and IGF-1-mediated mTOR pathway in bovine myocytes.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jongkyoo Kim
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Kim WS, Daddam JR, Keng BH, Kim J, Kim J. Heat shock protein 27 regulates myogenic and self-renewal potential of bovine satellite cells under heat stress. J Anim Sci 2023; 101:skad303. [PMID: 37688555 PMCID: PMC10629447 DOI: 10.1093/jas/skad303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
While satellite cells play a key role in the hypertrophy, repair, and regeneration of skeletal muscles, their response to heat exposure remains poorly understood, particularly in beef cattle. This study aimed to investigate the changes in the transcriptome, proteome, and proliferation capability of bovine satellite cells in response to different levels of heat stress (HS) and exposure times. Satellite cells were isolated from 3-mo-old Holstein bulls (body weight: 77.10 ± 2.02 kg) and subjected to incubation under various temperature conditions: 1) control (38 °C; CON), 2) moderate (39.5 °C; MHS), and extreme (41 °C; EHS) for different durations ranging from 0 to 48 h. Following 3 h of exposure to extreme heat (EHS), satellite cells exhibited significantly increased gene expression and protein abundance of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7; P < 0.05). HSP27 expression peaked at 3 h of EHS and remained elevated until 24 h of exposure (P < 0.05). In contrast, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3) was decreased by EHS compared to the control at 3 h of exposure (P < 0.05). Notably, the introduction of HSP27 small interference RNA (siRNA) transfection restored Myf5 expression to control levels, suggesting an association between HSP27 and Myf5 in regulating the self-renewal properties of satellite cells upon heat exposure. Immunoprecipitation experiments further confirmed the direct binding of HSP27 to Myf5, supporting its role as a molecular chaperone for Myf5. Protein-protein docking algorithms predicted a high probability of HSP27-Myf5 interaction as well. These findings indicate that extreme heat exposure intrinsically promotes the accumulation of HSPs and modulates the early myogenic regulatory factors in satellite cells. Moreover, HSP27 acts as a molecular chaperone by binding to Myf5, thereby regulating the division or differentiation of satellite cells in response to HS. The results of this study provide a better understanding of muscle physiology in heat-stressed cells, while unraveling the intricate molecular mechanisms that underlie the HS response in satellite cells.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jayasimha R Daddam
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Boon Hong Keng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jaehwan Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Jin X, Moskophidis D, Mivechi NF. Targeted Replacement of HSF1 Phosphorylation Sites at S303/S307 with Alanine Residues in Mice Increases Cell Proliferation and Drug Resistance. Methods Mol Biol 2023; 2693:81-94. [PMID: 37540428 PMCID: PMC466964 DOI: 10.1007/978-1-0716-3342-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mammalian heat shock factor HSF1 transcriptional activity is controlled by a multitude of phosphorylations that occur under physiological conditions or following exposure of cells to a variety of stresses. One set of HSF1 phosphorylation is on serine 303 and serine 307 (S303/S307). These HSF1 phosphorylation sites are known to repress its transcriptional activity. Here, we describe a knock-in mouse model where these two serine residues were replaced by alanine residues and have determined the impact of these mutations on cellular proliferation and drug resistance. Our previous study using this mouse model indicated the susceptibility of the mutant mice to become obese with age due to an increase in basal levels of heat shock proteins (HSPs) and chronic inflammation. Since HSF1 transcriptional activity is increased in many tumor types, this mouse model may be a useful tool for studies related to cellular transformation and cancer.
Collapse
Affiliation(s)
- Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta, GA, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta, GA, USA
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta, GA, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.
- Department of Radiation Oncology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
7
|
Benndorf R, Velazquez R, Zehr JD, Pond SLK, Martin JL, Lucaci AG. Human HspB1, HspB3, HspB5 and HspB8: Shaping these disease factors during vertebrate evolution. Cell Stress Chaperones 2022; 27:309-323. [PMID: 35678958 PMCID: PMC9346038 DOI: 10.1007/s12192-022-01268-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Small heat shock proteins (sHSPs) emerged early in evolution and occur in all domains of life and nearly in all species, including humans. Mutations in four sHSPs (HspB1, HspB3, HspB5, HspB8) are associated with neuromuscular disorders. The aim of this study is to investigate the evolutionary forces shaping these sHSPs during vertebrate evolution. We performed comparative evolutionary analyses on a set of orthologous sHSP sequences, based on the ratio of non-synonymous: synonymous substitution rates for each codon. We found that these sHSPs had been historically exposed to different degrees of purifying selection, decreasing in this order: HspB8 > HspB1, HspB5 > HspB3. Within each sHSP, regions with different degrees of purifying selection can be discerned, resulting in characteristic selective pressure profiles. The conserved α-crystallin domains were exposed to the most stringent purifying selection compared to the flanking regions, supporting a 'dimorphic pattern' of evolution. Thus, during vertebrate evolution the different sequence partitions were exposed to different and measurable degrees of selective pressures. Among the disease-associated mutations, most are missense mutations primarily in HspB1 and to a lesser extent in the other sHSPs. Our data provide an explanation for this disparate incidence. Contrary to the expectation, most missense mutations cause dominant disease phenotypes. Theoretical considerations support a connection between the historic exposure of these sHSP genes to a high degree of purifying selection and the unusual prevalence of genetic dominance of the associated disease phenotypes. Our study puts the genetics of inheritable sHSP-borne diseases into the context of vertebrate evolution.
Collapse
Affiliation(s)
| | - Ryan Velazquez
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Jody L. Martin
- Cell and Molecular Core, Cardiovascular Research Institute, University of California at Davis, Davis, CA USA
| | - Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
8
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
9
|
Tse K, Beamer E, Simpson D, Beynon RJ, Sills GJ, Thippeswamy T. The Impacts of Surgery and Intracerebral Electrodes in C57BL/6J Mouse Kainate Model of Epileptogenesis: Seizure Threshold, Proteomics, and Cytokine Profiles. Front Neurol 2021; 12:625017. [PMID: 34322075 PMCID: PMC8312573 DOI: 10.3389/fneur.2021.625017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Intracranial electroencephalography (EEG) is commonly used to study epileptogenesis and epilepsy in experimental models. Chronic gliosis and neurodegeneration at the injury site are known to be associated with surgically implanted electrodes in both humans and experimental models. Currently, however, there are no reports on the impact of intracerebral electrodes on proteins in the hippocampus and proinflammatory cytokines in the cerebral cortex and plasma in experimental models. We used an unbiased, label-free proteomics approach to identify the altered proteins in the hippocampus, and multiplex assay for cytokines in the cerebral cortex and plasma of C57BL/6J mice following bilateral surgical implantation of electrodes into the cerebral hemispheres. Seven days following surgery, a repeated low dose kainate (KA) regimen was followed to induce status epilepticus (SE). Surgical implantation of electrodes reduced the amount of KA necessary to induce SE by 50%, compared with mice without surgery. Tissues were harvested 7 days post-SE (i.e., 14 days post-surgery) and compared with vehicle-treated mice. Proteomic profiling showed more proteins (103, 6.8% of all proteins identified) with significantly changed expression (p < 0.01) driven by surgery than by KA treatment itself without surgery (27, 1.8% of all proteins identified). Further, electrode implantation approximately doubled the number of KA-induced changes in protein expression (55, 3.6% of all identified proteins). Further analysis revealed that intracerebral electrodes and KA altered the expression of proteins associated with epileptogenesis such as inflammation (C1q system), neurodegeneration (cystatin-C, galectin-1, cathepsin B, heat-shock protein 25), blood–brain barrier dysfunction (fibrinogen-α, serum albumin, α2 macroglobulin), and gliosis (vimentin, GFAP, filamin-A). The multiplex assay revealed a significant increase in key cytokines such as TNFα, IL-1β, IL-4, IL-5, IL-6, IL-10, IL12p70, IFN-γ, and KC/GRO in the cerebral cortex and some in the plasma in the surgery group. Overall, these findings demonstrate that surgical implantation of depth electrodes alters some of the molecules that may have a role in epileptogenesis in experimental models.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Edward Beamer
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Comprehensive Transcriptome Analysis of mRNA Expression Patterns of Early Embryo Development in Goat under Hypoxic and Normoxic Conditions. BIOLOGY 2021; 10:biology10050381. [PMID: 33924908 PMCID: PMC8146044 DOI: 10.3390/biology10050381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Oxygen plays a vital role in the development of early embryos, no matter whether it is too high or low, it will adversely affect the early embryo development, but the mechanisms involved in these effects are still unclear. RNA-seq was performed to compare 8-cell-stage and blastocyst-stage goat embryos under hypoxic and normoxic conditions, the mRNA expression mechanisms of 8-cell- and blastocyst-stage embryos were systematically analyzed under hypoxic and normoxic conditions. Functional enrichment analysis indicated that these differentially expressed genes (DEGs) were mainly related to biological processes and function regulation. In conclusion, we can infer that oxidative stress regulates early embryo development by affecting the expression of zygotic genes and transcription factors, and those stress genes play a potential role in adaptation to normoxic environments in goat embryos. Abstract It has been reported that hypoxic environments were more suitable for the in vitro development of mammalian embryos, but the underlying mechanisms were still unclear. In the present study, RNA-seq was performed to compare 8-cell-stage and blastocyst-stage goat embryos under hypoxic and normoxic conditions; zygotes were checked at 72 and 168 h to 8-cell stage (L8C) and blastocyst stage (LM) in hypoxic conditions and 8-cell stage (H8C) and blastocyst stage (HM) in normoxic conditions. In the H8C and L8C groups, 399 DEGs were identified, including 348 up- and 51 down-regulated DEGs. In the HM and LM groups, 1710 DEGs were identified, including 1516 up- and 194 down-regulated DEGs. The expression levels of zygotic genes, transcription factors, and maternal genes, such as WEE2, GDF9, HSP70.1, BTG4, and UBE2S showed significant changes. Functional enrichment analysis indicated that these DEGs were mainly related to biological processes and function regulation. In addition, combined with the pathway–gene interaction network and protein–protein interaction network, twenty-two of the hub genes were identified and they are mainly involved in energy metabolism, immune stress response, cell cycle, receptor binding, and signal transduction pathways. The present study provides comprehensive insights into the effects of oxidative stress on early embryo development in goats.
Collapse
|
11
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
12
|
Scieglinska D, Krawczyk Z, Sojka DR, Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones 2019; 24:1027-1044. [PMID: 31734893 PMCID: PMC6882751 DOI: 10.1007/s12192-019-01044-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Heat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.
Collapse
Affiliation(s)
- Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
13
|
Heat shock proteins in infection. Clin Chim Acta 2019; 498:90-100. [PMID: 31437446 DOI: 10.1016/j.cca.2019.08.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (HSPs) are constitutively expressed under physiological conditions in most organisms but their expression can significantly enhance in response to four types of stimuli including physical (e.g., radiation or heat shock), chemical and microbial (e.g., pathogenic bacteria, viruses, parasites and fungi) stimuli, and also dietary. These proteins were identified for their role in protecting cells from high temperature and other forms of stress. HSPs control physiological activities or virulence through interaction with various regulators of cellular signaling pathways. Several roles were determined for HSPs in the immune system including intracellular roles (e.g., antigen presentation and expression of innate receptors) as well as extracellular roles (e.g., tumor immunosurveillance and autoimmunity). It was observed that exogenously administered HSPs induced various immune responses in immunotherapy of cancer, infectious diseases, and autoimmunity. Moreover, virus interaction with HSPs as molecular chaperones showed important roles in regulating viral infections including cell entry and nuclear import, viral replication and gene expression, folding/assembly of viral protein, apoptosis regulation, and host immunity. Viruses could regulate host HSPs at different levels such as transcription, translation, post-translational modification and cellular localization. In this review, we attempt to overview the roles of HSPs in a variety of infectious diseases.
Collapse
|
14
|
Charcot-Marie-Tooth 2F (Hsp27 mutations): A review. Neurobiol Dis 2019; 130:104505. [PMID: 31212070 DOI: 10.1016/j.nbd.2019.104505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease is a commonly inherited form of neuropathy. Although named over 100 years ago, identification of subtypes of Charcot-Marie-Tooth has rapidly expanded in the preceding decades with the advancement of genetic sequencing, including type 2F (CMT2F), due to mutations in heat shock protein 27 (Hsp27). However, despite CMT being one of the most common inherited neurological diseases, definitive mechanistic models of pathology and effective treatments for CMT2F are lacking. This review extensively profiles the published literature on CMT2F and distal hereditary motor neuropathy II (dHMN II), a similar neuropathy with exclusively motor symptoms that is also due to mutations in Hsp27. This includes a review of case reports and sequencing studies detailing disease course. Included are tables listing of all known published mutations of Hsp27 that cause symptoms of CMT2F and dHMN II. Furthermore, pathological mechanisms are assessed. While many groups have established pathologies relating to defective chaperone function, cellular neurofilament and microtubule structure and function, and mitochondrial and metabolic dysfunction, there are still discrepancies in results between different model systems. Moreover, initial mouse models have also produced promising results with similar phenotypes to humans, however discrepancies still exist. Both patient-focused and scientific studies have demonstrated variability in phenotypes even considering specific mutations. Given the clinical heterogeneity in presentation, CMT2F and dHMN II likely result from similar pathological mechanisms of the same general disease process that may present distinctly due to other genetic and environment influences. Determining how these influences exert their effects to produce pathology contributing to the disease phenotype will be a major future challenge ahead in the field.
Collapse
|
15
|
Almiñana C, Bauersachs S. Extracellular Vesicles in the Oviduct: Progress, Challenges and Implications for the Reproductive Success. Bioengineering (Basel) 2019; 6:bioengineering6020032. [PMID: 31013857 PMCID: PMC6632016 DOI: 10.3390/bioengineering6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
The oviduct is the anatomical part of the female reproductive tract where the early reproductive events take place, from gamete transport, fertilization and early embryo development to the delivery of a competent embryo to the uterus, which can implant and develop to term. The success of all these events rely upon a two-way dialogue between the oviduct (lining epithelium and secretions) and the gametes/embryo(s). Recently, extracellular vesicles (EVs) have been identified as major components of oviductal secretions and pointed to as mediators of the gamete/embryo-maternal interactions. EVs, comprising exosomes and microvesicles, have emerged as important agents of cell-to-cell communication by the transfer of biomolecules (i.e., mRNAs, miRNAs, proteins) that can modulate the activities of recipient cells. Here, we provide the current knowledge of EVs in the oviductal environment, from isolation to characterization, and a description of the EVs molecular content and associated functional aspects in different species. The potential role of oviductal EVs (oEVs) as modulators of gamete/embryo-oviduct interactions and their implications in the success of early reproductive events is addressed. Lastly, we discuss current challenges and future directions towards the potential application of oEVs as therapeutic vectors to improve pregnancy disorders, infertility problems and increase the success of assisted reproductive technologies.
Collapse
Affiliation(s)
- Carmen Almiñana
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France.
| | - Stefan Bauersachs
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Vitali M, Sirri R, Zappaterra M, Zambonelli P, Giannini G, Lo Fiego DP, Davoli R. Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations. PLoS One 2019; 14:e0212449. [PMID: 30785965 PMCID: PMC6382273 DOI: 10.1371/journal.pone.0212449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Supplementing pig diets with n-3 polyunsaturated fatty acids (n-3 PUFA) may produce meat products with an increased n-3 fatty acid content, and the combined antioxidants addition could prevent lipid oxidation in the feed. However, to date, the effects of these bioactive compounds at the molecular level in porcine skeletal muscle are mostly unknown. This study aimed to analyse changes in the Longissimus thoracis transcriptome of 35 pigs fed three diets supplemented with: linseed (L); linseed, vitamin E and Selenium (LES) or linseed and plant-derived polyphenols (LPE). Pigs were reared from 80.8 ± 5.6 kg to 151.8 ± 9.9 kg. After slaughter, RNA-Seq was performed and 1182 differentially expressed genes (DEGs) were submitted to functional analysis. The L vs LES comparison did not show differences, while L vs LPE showed 1102 DEGs and LES vs LPE 80 DEGs. LPE compared to the other groups showed the highest number of up-regulated genes involved in preserving muscle metabolism and structure. Results enlighten that the combined supplementation of bioactive lipids (n-3 PUFA from linseed) with plant extracts as a source of polyphenols increases, compared to the only addition of linseed, the expression of genes involved in mRNA metabolic processes and transcriptional regulation, glucose uptake and, finally, in supporting muscle development and physiology. These results improve the knowledge of the biological effect of bioactive compounds in Longissimus thoracis muscle, and sustain the growing interest over their use in pig production.
Collapse
Affiliation(s)
- Marika Vitali
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Rubina Sirri
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Paolo Zambonelli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Giulia Giannini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Davoli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Parida S, Mishra SR, Mishra C, Dalai N, Mohapatra S, Mahapatra APK, Kundu AK. Impact of heat stress on expression kinetics of HSP27 in cardiac cells of goats. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1564578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- S. Parida
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S. R. Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - C. Mishra
- Department of Animal Genetics & Breeding, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - N. Dalai
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S. Mohapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A. P. K. Mahapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A. K. Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| |
Collapse
|
18
|
Stachowski MJ, Holewinski RJ, Grote E, Venkatraman V, Van Eyk JE, Kirk JA. Phospho-Proteomic Analysis of Cardiac Dyssynchrony and Resynchronization Therapy. Proteomics 2018; 18:e1800079. [PMID: 30129105 DOI: 10.1002/pmic.201800079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Cardiac dyssynchrony arises from conduction abnormalities during heart failure and worsens morbidity and mortality. Cardiac resynchronization therapy (CRT) re-coordinates contraction using bi-ventricular pacing, but the cellular and molecular mechanisms involved remain largely unknown. The aim is to determine how dyssynchronous heart failure (HFdys ) alters the phospho-proteome and how CRT interacts with this unique phospho-proteome by analyzing Ser/Thr and Tyr phosphorylation. Phospho-enriched myocardium from dog models of Control, HFdys , and CRT is analyzed via MS. There were 209 regulated phospho-sites among 1761 identified sites. Compared to Con and CRT, HFdys is hyper-phosphorylated and tyrosine phosphorylation is more likely to be involved in signaling that increased with HFdys and was exacerbated by CRT. For each regulated site, the most-likely targeting-kinase is predicted, and CK2 is highly specific for sites that are "fixed" by CRT, suggesting activation of CK2 signaling occurs in HFdys that is reversed by CRT, which is supported by western blot analysis. These data elucidate signaling networks and kinases that may be involved and deserve further study. Importantly, a possible role for CK2 modulation in CRT has been identified. This may be harnessed in the future therapeutically to compliment CRT, improving its clinical effects.
Collapse
Affiliation(s)
- Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Eric Grote
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
19
|
Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics 2018; 19:622. [PMID: 30134841 PMCID: PMC6103977 DOI: 10.1186/s12864-018-4982-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background The success of early reproductive events depends on an appropriate communication between gametes/embryos and the oviduct. Extracellular vesicles (EVs) contained in oviductal secretions have been suggested as new players in mediating this crucial cross-talk by transferring their cargo (proteins, mRNA and small ncRNA) from cell to cell. However, little is known about the oviductal EVs (oEVS) composition and their implications in the reproductive success. The aim of the study was to determine the oEVs content at protein, mRNA and small RNA level and to examine whether the oEVs content is under the hormonal influence of the estrous cycle. Results We identified the presence of oEVs, exosomes and microvesicles, in the bovine oviductal fluid at different stages of the estrous cycle (postovulatory-stage, early luteal phase, late luteal phase and pre-ovulatory stage) and demonstrated that their composition is under hormonal regulation. RNA-sequencing identified 903 differentially expressed transcripts (FDR < 0.001) in oEVs across the estrous cycle. Moreover, small RNA-Seq identified the presence of different types of ncRNAs (miRNAs, rRNA fragments, tRNA fragments, snRNA, snoRNA, and other ncRNAs), which were partially also under hormonal influence. Major differences were found between post-ovulatory and the rest of the stages analyzed for mRNAs. Interesting miRNAs identified in oEVs and showing differential abundance among stages, miR-34c and miR-449a, have been associated with defective cilia in the oviduct and infertility. Furthermore, functional annotation of the differentially abundant mRNAs identified functions related to exosome/vesicles, cilia expression, embryo development and many transcripts encoding ribosomal proteins. Moreover, the analysis of oEVs protein content also revealed changes across the estrous cycle. Mass spectrometry identified 336 clusters of proteins in oEVs, of which 170 were differentially abundant across the estrous cycle (p-value< 0.05, ratio < 0.5 or ratio > 2). Our data revealed proteins related to early embryo development and gamete-oviduct interactions as well as numerous ribosomal proteins. Conclusions Our study provides with the first molecular signature of oEVs across the bovine estrous cycle, revealing marked differences between post- and pre-ovulatory stages. Our findings contribute to a better understanding of the potential role of oEVs as modulators of gamete/embryo-maternal interactions and their implications for the reproductive success. Electronic supplementary material The online version of this article (10.1186/s12864-018-4982-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Almiñana
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland. .,UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.
| | - G Tsikis
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| | - V Labas
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.,Plate-forme CIRE, Pôle d'Analyse et d'Imagerie des Biomolécules, INRA, CHRU de Tours, Université de Tours, 37380, Nouzilly, France
| | - R Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 10 boulevard Tonnellé, 37032, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992, Moscow, Russia
| | - J C da Silveira
- Department of Veterinary Medicine, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - S Bauersachs
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland
| | - P Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| |
Collapse
|
20
|
Breed ER, Hilliard CA, Yoseph B, Mittal R, Liang Z, Chen CW, Burd EM, Brewster LP, Hansen LM, Gleason RL, Pandita TK, Ford ML, Hunt CR, Coopersmith CM. The small heat shock protein HSPB1 protects mice from sepsis. Sci Rep 2018; 8:12493. [PMID: 30131526 PMCID: PMC6104051 DOI: 10.1038/s41598-018-30752-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
In vitro studies have implicated the small heat shock protein HSPB1 in a range of physiological functions. However, its in vivo relevance is unclear as the phenotype of unstressed HSPB1−/− mice is unremarkable. To determine the impact of HSPB1 in injury, HSPB1−/− and wild type (WT) mice were subjected to cecal ligation and puncture, a model of polymicrobial sepsis. Ten-day mortality was significantly higher in HSPB1−/− mice following the onset of sepsis (65% vs. 35%). Ex vivo mechanical testing revealed that common carotid arteries from HSPB1−/− mice were more compliant than those in WT mice over pressures of 50–120 mm Hg. Septic HSPB1−/− mice also had increased peritoneal levels of IFN-γ and decreased systemic levels of IL-6 and KC. There were no differences in frequency of either splenic CD4+ or CD8+ T cells, nor were there differences in apoptosis in either cell type. However, splenic CD4+ T cells and CD8+ T cells from HSPB1−/− mice produced significantly less TNF and IL-2 following ex vivo stimulation. Systemic and local bacterial burden was similar in HSPB1−/− and WT mice. Thus while HSPB1−/− mice are uncompromised under basal conditions, HSPB1 has a critical function in vivo in sepsis, potentially mediated through alterations in arterial compliance and the immune response.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Carolyn A Hilliard
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benyam Yoseph
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Rohit Mittal
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Ching-Wen Chen
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Luke P Brewster
- Department of Surgery, Division of Vascular Surgery, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Laura M Hansen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, Georgia
| | - Rudolph L Gleason
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, Georgia
| | - Tej K Pandita
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, Georgia
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, Georgia.
| |
Collapse
|
21
|
Tangwancharoen S, Moy GW, Burton RS. Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene. Mol Biol Evol 2018; 35:2110-2119. [DOI: 10.1093/molbev/msy138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sumaetee Tangwancharoen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| |
Collapse
|
22
|
Zhang C, Jones JT, Chand HS, Wathelet MG, Evans CM, Dickey B, Xiang J, Mebratu YA, Tesfaigzi Y. Noxa/HSP27 complex delays degradation of ubiquitylated IkBα in airway epithelial cells to reduce pulmonary inflammation. Mucosal Immunol 2018; 11:741-751. [PMID: 29363670 PMCID: PMC5976511 DOI: 10.1038/mi.2017.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 12/03/2017] [Indexed: 02/04/2023]
Abstract
IFN-γ is known as a pro-inflammatory cytokine, but can also block inflammation in certain chronic diseases although the underlying mechanisms are poorly understood. We found that IFN-γ rapidly induced Noxa expression and that extent of inflammation by repeated house dust mite exposure was enhanced in noxa-/- compared with noxa+/+ mice. Noxa expression blocked transforming necrosis factor alpha (TNF-α)-induced nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of pro-inflammatory cytokines. Noxa did not affect TNF-α-induced IκBα phosphorylation but the degradation of 48-chain-ubiquitylated IκBα. The Cys25 of Noxa was cross-linked with Cys137 of phospho-HSP27 and both proteins were required for blocking the degradation of ubiquitylated IκBα. Because phospho-HSP27 is present in airway epithelial cells and not in fibroblasts or thymocytes, we generated transgenic mice that inducibly expressed Noxa in airway epithelia. These mice showed protection from allergen-induced inflammation and mucous cell metaplasia by blocking nuclear translocation of NF-κB. Further, we identified a Noxa-derived peptide that prolonged degradation of 48-chain-ubiquitylated IκBα, blocked nuclear translocation of NF-κB, and reduced allergen-induced inflammation in mice. These results suggest that the anti-inflammatory role of the Noxa protein may be restricted to airway epithelial cells and the use of Noxa for therapy of chronic lung diseases may be associated with reduced side effects.
Collapse
Affiliation(s)
- Chunyu Zhang
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Jane T. Jones
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Hitendra S. Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Marc G. Wathelet
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Christopher M. Evans
- Pulmonary Sciences and Critical Care Medicine, University of Colorado, CO 80045, USA
| | - Burton Dickey
- Division of Internal Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jialing Xiang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Yohannes A. Mebratu
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| |
Collapse
|
23
|
Abstract
Heat shock transcription factors (Hsfs) regulate transcription of heat shock proteins as well as other genes whose promoters contain heat shock elements (HSEs). There are at least five Hsfs in mammalian cells, Hsf1, Hsf2, Hsf3, Hsf4, and Hsfy (Wu, Annu Rev Cell Dev Biol 11:441-469, 1995; Morimoto, Genes Dev 12:3788-3796, 1998; Tessari et al., Mol Hum Repord 4:253-258, 2004; Fujimoto et al., Mol Biol Cell 21:106-116, 2010; Nakai et al., Mol Cell Biol 17:469-481, 1997; Sarge et al., Genes Dev 5:1902-1911, 1991). To understand the physiological roles of Hsf1, Hsf2, and Hsf4 in vivo, we generated knockout mouse lines for these factors (Zhang et al., J Cell Biochem 86:376-393, 2002; Wang et al., Genesis 36:48-61, 2003; Min et al., Genesis 40:205-217, 2004). Numbers of other laboratories have also generated Hsf1 (Xiao et al., EMBO J 18:5943-5952, 1999; Sugahara et al., Hear Res 182:88-96, 2003), Hsf2 (McMillan et al., Mol Cell Biol 22:8005-8014, 2002; Kallio et al., EMBO J 21:2591-2601, 2002), and Hsf4 (Fujimoto et al., EMBO J 23:4297-4306, 2004) knockout mouse models. In this chapter, we describe the design of the targeting vectors, the plasmids used, and the successful generation of mice lacking the individual genes. We also briefly describe what we have learned about the physiological functions of these genes in vivo.
Collapse
Affiliation(s)
- Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Binnur Eroglu
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd., CN3141, Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
Itkonen HM, Brown M, Urbanucci A, Tredwell G, Lau CH, Barfeld S, Hart C, Guldvik IJ, Takhar M, Heemers HV, Erho N, Bloch K, Davicioni E, Derua R, Waelkens E, Mohler JL, Clarke N, Swinnen JV, Keun HC, Rekvig OP, Mills IG. Lipid degradation promotes prostate cancer cell survival. Oncotarget 2017; 8:38264-38275. [PMID: 28415728 PMCID: PMC5503531 DOI: 10.18632/oncotarget.16123] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/01/2017] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.
Collapse
Affiliation(s)
- Harri M Itkonen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Michael Brown
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Alfonso Urbanucci
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research and Oslo University Hospital, Oslo, Norway
| | - Gregory Tredwell
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Chung Ho Lau
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Stefan Barfeld
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Claire Hart
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Ingrid J. Guldvik
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Mandeep Takhar
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Hannelore V. Heemers
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Erho
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Katarzyna Bloch
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - James L. Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Noel Clarke
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, CRUK Manchester Institute for Cancer Research, University of Manchester, Manchester, UK
- Department of Urology, The Christie NHS Foundation Trust, Manchester, UK
| | - Johan V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Hector C. Keun
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ole P. Rekvig
- Department of Medical Biology, University of Tromso, Tromso, Norway
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research and Oslo University Hospital, Oslo, Norway
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| |
Collapse
|
25
|
Fan Y, Zhang Q, Li H, Cheng Z, Li X, Chen Y, Shen Y, Wang L, Song G, Qian L. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart. J Cell Biochem 2017; 118:2828-2840. [PMID: 28198139 DOI: 10.1002/jcb.25933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/10/2017] [Indexed: 12/30/2022]
Abstract
Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Fan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qijun Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hua Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zijie Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xing Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yumei Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yahui Shen
- Departments of Cardiology, Taizhou People's Hospital, Taizhou 225300, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guixian Song
- Departments of Cardiology, Taizhou People's Hospital, Taizhou 225300, China
| | - Lingmei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
26
|
Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus salmoides). Genetica 2017; 145:175-187. [PMID: 28204905 DOI: 10.1007/s10709-017-9956-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
Growth is one of the most crucial economic traits of all aquaculture species, but the molecular mechanisms involved in growth of largemouth bass (Micropterus salmoides) are poorly understood. The objective of this study was to screen growth-related genes of M. salmoides by RNA sequencing and identify growth-related single-nucleotide polymorphism (SNP) markers through a growth association study. The muscle transcriptomes of fast- and slow-growing largemouth bass were obtained using the RNA-Seq technique. A total of 54,058,178 and 54,742,444 qualified Illumina read pairs were obtained for the fast-growing and slow-growing groups, respectively, giving rise to 4,865,236,020 and 4,926,819,960 total clean bases, respectively. Gene expression profiling showed that 3,530 unigenes were differentially expressed between the fast-growing and slow-growing phenotypes (false discovery rate ≤0.001, the absolute value of log2 (fold change) ≥1), including 1,441 up-regulated and 2,889 down-regulated unigenes in the fast-growing largemouth bass. Analysis of these genes revealed that several signalling pathways, including the growth hormone-insulin-like growth factor 1 axis and signalling pathway, the glycolysis pathway, and the myostatin/transforming growth factor beta signalling pathway, as well as heat shock protein, cytoskeleton, and myofibril component genes might be associated with muscle growth. From these genes, 10 genes with putative SNPs were selected, and 17 SNPs were genotyped successfully. Marker-trait analysis in 340 individuals of Youlu No. 1 largemouth bass revealed three SNPs associated with growth in key genes (phosphoenolpyruvate carboxykinase 1, FOXO3b, and heat shock protein beta-1). This research provides information about key genes and SNPs related to growth, providing new clues to understanding the molecular basis of largemouth bass growth.
Collapse
|
27
|
Cui X, Liu H, Li J, Guo K, Han W, Dong Y, Wan S, Wang X, Jia P, Li S, Ma Y, Zhang J, Mu H, Hu Y. Heat shock factor 4 regulates lens epithelial cell homeostasis by working with lysosome and anti-apoptosis pathways. Int J Biochem Cell Biol 2016; 79:118-127. [DOI: 10.1016/j.biocel.2016.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/08/2016] [Accepted: 08/27/2016] [Indexed: 01/06/2023]
|
28
|
La Padula V, Staszewski O, Nestel S, Busch H, Boerries M, Roussa E, Prinz M, Krieglstein K. HSPB3 protein is expressed in motoneurons and induces their survival after lesion-induced degeneration. Exp Neurol 2016; 286:40-49. [PMID: 27567740 DOI: 10.1016/j.expneurol.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/08/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
The human small heat shock proteins (HSPBs) form a family of molecular chaperones comprising ten members (HSPB1-HSPB10), whose functions span from protein quality control to cytoskeletal dynamics and cell death control. Mutations in HSPBs can lead to human disease and particularly point mutations in HSPB1 and HSPB8 are known to lead to peripheral neuropathies. Recently, a missense mutation (R7S) in yet another member of this family, HSPB3, was found to cause an axonal motor neuropathy (distal hereditary motor neuropathy type 2C, dHMN2C). Until now, HSPB3 protein localization and function in motoneurons (MNs) have not yet been characterized. Therefore, we studied the endogenous HSPB3 protein distribution in the spinal cords of chicken and mouse embryos and in the postnatal nervous system (central and peripheral) of chicken, mouse and human. We further investigated the impact of wild-type and mutated HSPB3 on MN cell death via overexpressing these genes in ovo in an avian model of MN degeneration, the limb-bud removal. Altogether, our findings represent a first step for a better understanding of the cellular and molecular mechanisms leading to dHMN2C.
Collapse
Affiliation(s)
- Veronica La Padula
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany.
| | - Ori Staszewski
- Institute of Neuropathology, Neurozentrum, Breisacherstraße 64, 79106 Freiburg, Germany.
| | - Sigrun Nestel
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Albertstraße 17, 79104 Freiburg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany; Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Albertstraße 17, 79104 Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Neurozentrum, Breisacherstraße 64, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Kammoun M, Picard B, Astruc T, Gagaoua M, Aubert D, Bonnet M, Blanquet V, Cassar-Malek I. The Invalidation of HspB1 Gene in Mouse Alters the Ultrastructural Phenotype of Muscles. PLoS One 2016; 11:e0158644. [PMID: 27512988 PMCID: PMC4981447 DOI: 10.1371/journal.pone.0158644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
Even though abundance of Hsp27 is the highest in skeletal muscle, the relationships between the expression of HspB1 (encoding Hsp27) and muscle characteristics are not fully understood. In this study, we have analysed the effect of Hsp27 inactivation on mouse development and phenotype. We generated a mouse strain devoid of Hsp27 protein by homologous recombination of the HspB1 gene. The HspB1-/- mouse was viable and fertile, showing neither apparent morphological nor anatomical alterations. We detected a gender dimorphism with marked effects in males, a lower body weight (P < 0.05) with no obvious changes in the growth rate, and a lower plasma lipids profile (cholesterol, HDL and triglycerides, 0.001 < P< 0.05). The muscle structure of the animals was examined by optical microscopy and transmission electron microscopy. Not any differences in the characteristics of muscle fibres (contractile and metabolic type, shape, perimeter, cross-sectional area) were detected except a trend for a higher proportion of small fibres. Different myosin heavy chains electrophoretic profiles were observed in the HspB1-/- mouse especially the presence of an additional isoform. Electron microscopy revealed ultrastructural abnormalities in the myofibrillar structure of the HspB1-/- mouse mutant mice (e.g. destructured myofibrils and higher gaps between myofibrils) especially in the m. Soleus. Combined with our previous data, these findings suggest that Hsp27 could directly impact the organization of muscle cytoskeleton at the molecular and ultrastructural levels.
Collapse
Affiliation(s)
- Malek Kammoun
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - Brigitte Picard
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - Thierry Astruc
- INRA, UR0370 Qualité des Produits Animaux, F-63122, Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Equipe Maquav, INATAA, Université Frères Mentouri Constantine, Constantine, Algeria
| | - Denise Aubert
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, F-69364, Lyon, France
| | - Muriel Bonnet
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | | | - Isabelle Cassar-Malek
- INRA, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
30
|
Chung C, Elrick MJ, Dell’Orco JM, Qin ZS, Kalyana-Sundaram S, Chinnaiyan AM, Shakkottai VG, Lieberman AP. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease. PLoS Genet 2016; 12:e1006042. [PMID: 27152617 PMCID: PMC4859571 DOI: 10.1371/journal.pgen.1006042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 04/19/2016] [Indexed: 11/30/2022] Open
Abstract
Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders. Niemann-Pick type C1 (NPC) disease is an autosomal recessive lipid storage disorder for which there is no effective treatment. Patients develop a clinically heterogeneous phenotype that typically includes childhood onset neurodegeneration and early death. Mice with loss of function mutations in the Npc1 gene model many aspects of the human disease, including cerebellar degeneration that results in marked ataxia. Cerebellar Purkinje cells in mutant mice exhibit striking selective vulnerability, with neuron loss in anterior lobules and preservation in posterior lobules. As this anterior to posterior gradient is reproduced following cell autonomous deletion of Npc1 and is also observed in other forms of cerebellar degeneration, we hypothesized that it is mediated by differential gene expression. To test this notion, we probed the Allen Brain Atlas to identify 16 candidate neuroprotective or susceptibility genes. We confirmed that one of these genes, encoding the small heat shock protein Hspb1, promotes survival in cell culture models of NPC disease. Moreover, we found that modulating Hspb1 expression in NPC mice promoted (following over-expression) or diminished (following knock-down) Purkinje cell survival, confirming its neuroprotective activity. We suggest that this approach may be similarly used in other diseases to uncover pathways that modify selective neuronal vulnerability.
Collapse
Affiliation(s)
- Chan Chung
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Matthew J. Elrick
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - James M. Dell’Orco
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, United States of America
| | - Shanker Kalyana-Sundaram
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vikram G. Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "Quality of life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
Affiliation(s)
- Robert W Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
32
|
Schmidt T, Fischer D, Andreadaki A, Bartelt-Kirbach B, Golenhofen N. Induction and phosphorylation of the small heat shock proteins HspB1/Hsp25 and HspB5/αB-crystallin in the rat retina upon optic nerve injury. Cell Stress Chaperones 2016; 21:167-178. [PMID: 26475352 PMCID: PMC4679741 DOI: 10.1007/s12192-015-0650-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022] Open
Abstract
Several eye diseases are associated with axonal injury in the optic nerve, which normally leads to degeneration of retinal ganglion cells (RGCs) and subsequently to loss of vision. There is experimental evidence that some members of the small heat shock protein family (HspBs) are upregulated upon optic nerve injury (ONI) in the retina and sufficient to promote RGC survival. These data raise the question as to whether other family members may play a similar role in this context. Here, we performed a comprehensive comparative study comprising all HspBs in an experimental model of ONI. We found that five HspBs were expressed in the adult rat retina at control conditions but only HspB1 and HspB5 were upregulated in response to ONI. Furthermore, HspB1 and HspB5 were constitutively phosphorylated in Müller cells at serine 15 and serine 59, respectively. In RGCs, phosphorylation was stimulated by ONI and occurred at serine 86 of HspB1 and at serine 19 and 45 of HspB5. These data suggest that of all small heat shock proteins, only HspB1 and HspB5 might be of protective value for RGCs after ONI and that this process might be regulated by phosphorylation at serine 86 of HspB1 and serine 19 and serine 45 of HspB5. The molecular targets of phosphoHspB1 and phosphoHspB5 remain to be identified.
Collapse
Affiliation(s)
- Thomas Schmidt
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dietmar Fischer
- Department of Experimental Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anastasia Andreadaki
- Department of Experimental Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
33
|
Shekhawat SD, Purohit HJ, Taori GM, Daginawala HF, Kashyap RS. Evaluation of heat shock proteins for discriminating between latent tuberculosis infection and active tuberculosis: A preliminary report. J Infect Public Health 2015; 9:143-52. [PMID: 26300163 DOI: 10.1016/j.jiph.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022] Open
Abstract
The diagnosis of a latent tuberculosis infection (LTBI) is of the utmost concern. The available tests, the tuberculin skin test (TST) and the Quantiferon-TB Gold test (QFT-G) cannot discriminate between active TB and LTBI. Therefore, the aim of the study is to identify new biomarkers that can discriminate between active TB and LTBI and can also assess the risk of the individual developing active TB. In total, 55 blood samples were collected, of which 10 samples were from the active TB infection group, 10 were from the high-risk exposure group, 23 were from the low-risk exposure group, and 12 were from healthy controls living in a non-TB endemic area. A panel of heat shock proteins (Hsps), including host Hsp25, Hsp60, Hsp70, and Hsp90 and Mycobacterium tuberculosis (MTB) Hsp16, were evaluated in all of the collected samples using ELISA. The levels of the host Hsp(s) (Hsp25, Hsp60, Hsp70 and Hsp90) and MTB Hsp16 were significantly (p<0.05) elevated in the active TB group compared to the high-risk exposure group, the low-risk exposure group and the control group. Notably, the levels of the same panel of Hsp(s) were elevated in the high-risk exposure group compared to the low-risk exposure group. On follow-up, out of the 10 high-risk exposure participants, 3 converted into active TB, indicating that this group has the highest risk of developing TB. Thus, the evaluated panel of Hsp(s) can discriminate between LTBI and active TB. They can also identify individuals who are at the highest risk of developing active TB. Because they can be rapidly detected, Hsp(s) have an edge over the existing diagnostic tools for LTBI. The evaluation of these proteins will be useful in designing better diagnostic methods for LTBI.
Collapse
Affiliation(s)
- Seema D Shekhawat
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Hemant J Purohit
- Environmental Genomics Unit, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India
| | - Girdhar M Taori
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Hatim F Daginawala
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Rajpal S Kashyap
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India.
| |
Collapse
|
34
|
Arrigo AP, Ducarouge B, Lavial F, Gibert B. Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO. Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 761:15-30. [PMID: 24607769 PMCID: PMC4157968 DOI: 10.1016/j.mrrev.2014.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
Collapse
Affiliation(s)
- Rainer Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA.
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
36
|
Bahr B, Galan H, Arroyo J. Decreased expression of phosphorylated placental heat shock protein 27 in human and ovine intrauterine growth restriction (IUGR). Placenta 2014; 35:404-10. [DOI: 10.1016/j.placenta.2014.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/09/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
37
|
Zhang Q, Lee HG, Kang SK, Baik M, Choi YJ. Heat-shock protein beta 1 regulates androgen-mediated bovine myogenesis. Biotechnol Lett 2014; 36:1225-31. [PMID: 24563320 DOI: 10.1007/s10529-014-1489-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/03/2014] [Indexed: 01/29/2023]
Abstract
To elucidate the functional significance of heat-shock protein beta 1 (HSPB1) in androgen-mediated myogenesis of bovine cells, we conducted 'loss and gain of function of HSPB1' assays by siRNA inhibition and gene overexpression. siRNA inhibition of HSPB1 expression reduced the expression of desmin (a myogenic marker) and repressed the formation of myotubes in cells induced for myogenic differentiation. In contrast, overexpression of HSPB1 enhanced the expression of desmin and accelerated formation of myotubes. The loss and gain of HSPB1 function was closely associated with the expression level of androgen receptor (AR). Our findings suggest that HSPB1 mediates androgen signaling by binding directly to AR and then enhancing androgen-mediated myogenesis in myogenic cells.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea,
| | | | | | | | | |
Collapse
|
38
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|
39
|
Gurgis FMS, Ziaziaris W, Munoz L. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Neuroinflammation, Heat Shock Protein 27 Phosphorylation, and Cell Cycle: Role and Targeting. Mol Pharmacol 2013; 85:345-56. [DOI: 10.1124/mol.113.090365] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
40
|
Shekhawat SD, Jain RK, Gaherwar HM, Purohit HJ, Taori GM, Daginawala HF, Kashyap RS. Heat shock proteins: possible biomarkers in pulmonary and extrapulmonary tuberculosis. Hum Immunol 2013; 75:151-8. [PMID: 24269695 DOI: 10.1016/j.humimm.2013.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 10/08/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB) and Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis (MTB) continue to be a major cause of morbidity and mortality. Therefore there is a need to explore potential biomarkers and heat shock proteins [Hsp(s)] could be one such candidate. We found that host (Hsp 25, Hsp 60, Hsp 70 and Hsp 90) and MTB Hsp(s) (Hsp 16, Hsp 65 and Hsp 71) to be an important feature of the immune response in human clinical samples of pulmonary and extrapulmonary TB patients and in MTB infected monocytes. Notably, the host (Hsp 25, Hsp 70 and Hsp 90) and MTB (Hsp 16, Hsp 65 and Hsp 71) Hsp(s) increases significantly in the clinical samples as well as in cell line model after TB infection. Collectively, results revealed that alteration in immune response leads to a change in the both host and MTB Hsp profile, highlighting them as possible biomarkers for the disease.
Collapse
Affiliation(s)
- Seema D Shekhawat
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Ruchika K Jain
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Hari M Gaherwar
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Hemant J Purohit
- Environmental Genomics Unit, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India
| | - Girdhar M Taori
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Hatim F Daginawala
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India
| | - Rajpal S Kashyap
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur 440 010, India.
| |
Collapse
|
41
|
Crowe J, Aubareda A, McNamee K, Przybycien PM, Lu X, Williams RO, Bou-Gharios G, Saklatvala J, Dean JLE. Heat shock protein B1-deficient mice display impaired wound healing. PLoS One 2013; 8:e77383. [PMID: 24143227 PMCID: PMC3797036 DOI: 10.1371/journal.pone.0077383] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/05/2013] [Indexed: 01/27/2023] Open
Abstract
There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27(kip1) and p21(waf1). The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation.
Collapse
Affiliation(s)
- Jonathan Crowe
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Anna Aubareda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kay McNamee
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Paulina M. Przybycien
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Xin Lu
- The Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard O. Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - George Bou-Gharios
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jeremy Saklatvala
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jonathan L. E. Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Middleton RC, Shelden EA. Small heat shock protein HSPB1 regulates growth of embryonic zebrafish craniofacial muscles. Exp Cell Res 2013; 319:860-74. [PMID: 23313812 DOI: 10.1016/j.yexcr.2013.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/25/2022]
Abstract
The small heat shock protein HspB1 (Hsp27) is abundantly expressed in embryonic muscle tissues of a wide variety of vertebrate species. However, the functional significance of this expression pattern is not well established. In the present study, we observed specific, high level expression of HspB1 protein and an HspB1 gene reporter in developing craniofacial muscles of the zebrafish, Danio rerio, and examined the consequences of reducing HspB1 expression to the development and growth of these muscles. Quantitative morphometric analyses revealed a reduction in the cross-sectional area of myofibers in embryos expressing reduced HspB1 levels by as much as 47% compared to controls. In contrast, we detected no differences in the number of myofibrils or associated nuclei, nor the number, size or development of chondrocytes in surrounding tissues. We also did not detect changes to the overall organization of sarcomeres or myofibrils in embryos expressing reduced levels of HspB1. Together our results reveal a critical role for HspB1 in the growth of myofibrils and provide new insight into the mechanism underlying its developmental function.
Collapse
Affiliation(s)
- Ryan C Middleton
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
43
|
Kammoun M, Picard B, Henry-Berger J, Cassar-Malek I. A network-based approach for predicting Hsp27 knock-out targets in mouse skeletal muscles. Comput Struct Biotechnol J 2013; 6:e201303008. [PMID: 24688716 PMCID: PMC3962151 DOI: 10.5936/csbj.201303008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/16/2022] Open
Abstract
Thanks to genomics, we have previously identified markers of beef tenderness, and computed a bioinformatic analysis that enabled us to build an interactome in which we found Hsp27 at a crucial node. Here, we have used a network-based approach for understanding the contribution of Hsp27 to tenderness through the prediction of its interactors related to tenderness. We have revealed the direct interactors of Hsp27. The predicted partners of Hsp27 included proteins involved in different functions, e.g. members of Hsp families (Hsp20, Cryab, Hsp70a1a, and Hsp90aa1), regulators of apoptosis (Fas, Chuk, and caspase-3), translation factors (Eif4E, and Eif4G1), cytoskeletal proteins (Desmin) and antioxidants (Sod1). The abundances of 15 proteins were quantified by Western blotting in two muscles of HspB1-null mice and their controls. We observed changes in the amount of most of the Hsp27 predicted targets in mice devoid of Hsp27 mainly in the most oxidative muscle. Our study demonstrates the functional links between Hsp27 and its predicted targets. It suggests that Hsp status, apoptotic processes and protection against oxidative stress are crucial for post-mortem muscle metabolism, subsequent proteolysis, and therefore for beef tenderness.
Collapse
Affiliation(s)
- Malek Kammoun
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - Brigitte Picard
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | | | - Isabelle Cassar-Malek
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
- Corresponding author: E-mail address: (Isabelle Cassar-Malek)
| |
Collapse
|
44
|
Poussard S, Pires-Alves A, Diallo R, Dupuy JW, Dargelos E. A natural antioxidant pine bark extract, Oligopin®, regulates the stress chaperone HSPB1 in human skeletal muscle cells: a proteomics approach. Phytother Res 2012. [PMID: 23192879 DOI: 10.1002/ptr.4895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gradual loss of muscle mass affecting all the elderly (sarcopenia) is most likely due to a decreased number and/or function of satellite cells. Accumulation of reactive oxygen species (ROS) has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this study, we analyzed the protective mechanism of action of a natural pine bark extract (Oligopin®) in human muscle satellite cells exposed to oxidative stress (H2O2). This polyphenol belongs to the flavonoid family and was able to abolish the H2 O2-induced apoptotic cell death. A large-scale proteomic strategy allowed us to identify several proteins that may function as early regulators of ROS-mediated events in muscle cells. Interestingly, we identified the stress chaperone heat shock protein beta-1, a main protector of muscle necrosis, as a target of Oligopin® and showed that this polyphenol was able to modulate its stress induced phosphorylation.
Collapse
Affiliation(s)
- Sylvie Poussard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, F-33600, Pessac, France
| | | | | | | | | |
Collapse
|
45
|
Arrigo AP. Pathology-dependent effects linked to small heat shock proteins expression: an update. SCIENTIFICA 2012; 2012:185641. [PMID: 24278676 PMCID: PMC3820616 DOI: 10.6064/2012/185641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/17/2012] [Indexed: 06/02/2023]
Abstract
Small heat shock proteins (small Hsps) are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.
Collapse
Affiliation(s)
- A.-P. Arrigo
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon1, 28 Rue Laennec, 69008 Lyon, France
| |
Collapse
|
46
|
Ishiwata T, Orosz A, Wang X, Mustafi SB, Pratt GW, Christians ES, Boudina S, Abel ED, Benjamin IJ. HSPB2 is dispensable for the cardiac hypertrophic response but reduces mitochondrial energetics following pressure overload in mice. PLoS One 2012; 7:e42118. [PMID: 22870288 PMCID: PMC3411653 DOI: 10.1371/journal.pone.0042118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background CryAB (HspB5) and HspB2, two small heat shock genes located adjacently in the vertebrate genome, are hypothesized to play distinct roles. Mice lacking both cryab and hspb2 (DKO) are viable and exhibit adult-onset degeneration of skeletal muscle but confounding results from independent groups were reported for cardiac responses to different stressful conditions (i.e., ischemia/reperfusion or pressure overload). To determine the specific requirements of HSPB2 in heart, we generated cardiac-specific HSPB2 deficient (HSPB2cKO) mice and examined their cardiac function under basal conditions and following cardiac pressure overload. Methodology/Principal Findings Transverse aortic constriction (TAC) or sham surgery was performed in HSPB2cKO mice and their littermates (HSPB2wt mice). Eight weeks after TAC, we found that expression of several small HSPs (HSPB2, 5, 6) was not markedly modified in HSPB2wt mice. Both cardiac function and the hypertrophic response remained similar in HSPB2cKO and HSPB2wt hearts. In addition, mitochondrial respiration and ATP production assays demonstrated that the absence of HSPB2 did not change mitochondrial metabolism in basal conditions. However, fatty acid supported state 3 respiration rate (ADP stimulated) in TAC operated HSPB2cKO hearts was significantly reduced in compared with TAC operated HSPB2wt mice (10.5±2.2 vs. 12.8±2.5 nmol O2/min/mg dry fiber weight, P<0.05), and ATP production in HSPB2cKO hearts was significantly reduced in TAC compared with sham operated mice (29.8±0.2 vs. 21.1±1.8 nmol ATP/min/mg dry fiber weight, P<0.05). Although HSPB2 was not associated with mitochondria under cardiac stress, absence of HSPB2 led to changes in transcript levels of several metabolic and mitochondrial regulator genes. Conclusions/Significance The present study indicates that HSPB2 can be replaced by other members of the multigene small HSP family under basal conditions while HSPB2 is implicated in the regulation of metabolic/mitochondrial function under cardiac stress such pressure overload.
Collapse
Affiliation(s)
- Takahiro Ishiwata
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - András Orosz
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Xiaohui Wang
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Soumyajit Banerjee Mustafi
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Gregory W. Pratt
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Elisabeth S. Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - E. Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ivor J. Benjamin
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
47
|
de Thonel A, Le Mouël A, Mezger V. Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 2012; 44:1593-612. [PMID: 22750029 DOI: 10.1016/j.biocel.2012.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/16/2022]
Abstract
The members of the small heat shock protein (sHSP) family are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy, particularly in cancer. The molecular mechanisms that regulate their transcription, in normal, stress, or pathological conditions, are characterized by extreme complexity and subtlety. Although historically linked to the heat shock transcription factors (HSFs), the stress-induced or developmental expression of the diverse members, including HSPB1/Hsp27/Hsp25, αA-crystallin/HSPB4, and αB-crystallin/HSPB5, relies on the combinatory effects of many transcription factors. Coupled with remarkably different cis-element architectures in the sHsp regulatory regions, they confer to each member its developmental expression or stress-inducibility. For example, multiple regulatory pathways coordinate the spatio-temporal expression of mouse αA-, αB-crystallin, and Hsp25 genes during lens development, through the action of master genes, like the large Maf family proteins and Pax6, but also HSF4. The inducibility of Hsp27 and αB-crystallin transcription by various stresses is exerted by HSF-dependent mechanisms, by which concomitant induction of Hsp27 and αB-crystallin expression is observed. In contrast, HSF-independent pathways can lead to αB-crystallin expression, but not to Hsp27 induction. Not surprisingly, deregulation of the expression of sHSP is associated with various pathologies, including cancer, neurodegenerative, or cardiac diseases. However, many questions remain to be addressed, and further elucidation of the developmental mechanisms of sHsp gene transcription might help to unravel the tissue- and stage-specific functions of this fascinating class of proteins, which might prove to be crucial for future therapeutic strategies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
48
|
Mycko MP, Brosnan CF, Raine CS, Fendler W, Selmaj KW. Transcriptional profiling of microdissected areas of active multiple sclerosis lesions reveals activation of heat shock protein genes. J Neurosci Res 2012; 90:1941-8. [DOI: 10.1002/jnr.23079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 11/11/2022]
|
49
|
Christians ES, Ishiwata T, Benjamin IJ. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 2012; 44:1632-45. [PMID: 22710345 DOI: 10.1016/j.biocel.2012.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Elisabeth S Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
50
|
Srivastava AK, Renusch SR, Naiman NE, Gu S, Sneh A, Arnold WD, Sahenk Z, Kolb SJ. Mutant HSPB1 overexpression in neurons is sufficient to cause age-related motor neuronopathy in mice. Neurobiol Dis 2012; 47:163-73. [PMID: 22521462 DOI: 10.1016/j.nbd.2012.03.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/20/2012] [Accepted: 03/31/2012] [Indexed: 11/26/2022] Open
Abstract
The small heat shock protein HSPB1 is a multifunctional, α-crystallin-based protein that has been shown to be neuroprotective in animal models of motor neuron disease and peripheral nerve injury. Missense mutations in HSPB1 result in axonal Charcot-Marie-Tooth disease with minimal sensory involvement (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN-II). These disorders are characterized by a selective loss of motor axons in peripheral nerve resulting in distal muscle weakness and often severe disability. To investigate the pathogenic mechanisms of HSPB1 mutations in motor neurons in vivo, we have developed and characterized transgenic PrP-HSPB1 and PrP-HSPB1(R136W) mice. These mice express the human HSPB1 protein throughout the nervous system including in axons of peripheral nerve. Although both mouse strains lacked obvious motor deficits, the PrP-HSPB1(R136W) mice developed an age-dependent motor axonopathy. Mutant mice showed axonal pathology in spinal cord and peripheral nerve with evidence of impaired neurofilament cytoskeleton, associated with organelle accumulation. Accompanying these findings, increases in the number of Schmidt-Lanterman incisures, as evidence of impaired axon-Schwann cell interactions, were present. These observations suggest that overexpression of HSPB1(R136W) in neurons is sufficient to cause pathological and electrophysiological changes in mice that are seen in patients with hereditary motor neuropathy.
Collapse
Affiliation(s)
- Amit K Srivastava
- Center for RNA Biology and Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, OH 43210-1228, USA
| | | | | | | | | | | | | | | |
Collapse
|