1
|
Krüger DM, Pena-Centeno T, Liu S, Park T, Kaurani L, Pradhan R, Huang YN, Risacher SL, Burkhardt S, Schütz AL, Wan Y, Shaw LM, Brodsky AS, DeStefano AL, Lin H, Schroeder R, Krunic A, Hempel N, Sananbenesi F, Blusztajn JK, Saykin AJ, Delalle I, Nho K, Fischer A. The plasma miRNAome in ADNI: Signatures to aid the detection of at-risk individuals. Alzheimers Dement 2024. [PMID: 39291752 DOI: 10.1002/alz.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION MicroRNAs are short non-coding RNAs that control proteostasis at the systems level and are emerging as potential prognostic and diagnostic biomarkers for Alzheimer's disease (AD). METHODS We performed small RNA sequencing on plasma samples from 847 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. RESULTS We identified microRNA signatures that correlate with AD diagnoses and help predict the conversion from mild cognitive impairment (MCI) to AD. DISCUSSION Our data demonstrate that plasma microRNA signatures can be used to not only diagnose MCI, but also, critically, predict the conversion from MCI to AD. Moreover, combined with neuropsychological testing, plasma microRNAome evaluation helps predict MCI to AD conversion. These findings are of considerable public interest because they provide a path toward reducing indiscriminate utilization of costly and invasive testing by defining the at-risk segment of the aging population. HIGHLIGHTS We provide the first analysis of the plasma microRNAome for the ADNI study. The levels of several microRNAs can be used as biomarkers for the prediction of conversion from MCI to AD. Adding the evaluation of plasma microRNA levels to neuropsychological testing in a clinical setting increases the accuracy of MCI to AD conversion prediction.
Collapse
Affiliation(s)
- Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena-Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Shiwei Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tamina Park
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Yen-Ning Huang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L Risacher
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna-Lena Schütz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Yang Wan
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Honghuang Lin
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Robert Schroeder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Andre Krunic
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Nina Hempel
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Jan Krzysztof Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ivana Delalle
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for Psychiatry and Psychotherapy, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Diseases (DZKH) Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Biase FH, Moorey SE, Schnuelle JG, Rodning S, Ortega MS, Spencer TE. Altered microRNA composition in the uterine lumen fluid in cattle (Bos taurus) pregnancies initiated by artificial insemination or transfer of an in vitro produced embryo. J Anim Sci Biotechnol 2024; 15:130. [PMID: 39267128 PMCID: PMC11397056 DOI: 10.1186/s40104-024-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are presented in the uterine lumen of many mammals, and in vitro experiments have determined that several miRNAs are important for the regulation of endometrial and trophoblast functions. Our aim was to identify and contrast the miRNAs present in extracellular vesicles (EVs) in the uterine lumen fluid (ULF) at the onset of attachment in cattle pregnancies (gestation d 18) initiated by artificial insemination (AI) or by the transfer of an in vitro-produced blastocyst (IVP-ET). A third group had no conceptus after the transfer of an IVP embryo. RESULTS The abundance of 263 annotated miRNAs was quantified in the EVs collected from ULF. There was an increase in the transcript abundance of 20 miRNAs in the ULF EVs from the AI pregnant group, while 4 miRNAs had a lower abundance relative to the group not containing a conceptus. Additionally, 4 miRNAs were more abundant in ULF EVs in the AI pregnant group relative to IVP-ET group (bta-mir-17, bta-mir-7-3, MIR7-1, MIR18A). Specific miRNAs in the ULF EVs were co-expressed with messenger RNAs expressed in extra-embryonic tissues and endometrium, including genes that are known to be their targets. CONCLUSIONS The results provide biological insights into the participation of miRNAs in the regulation of trophoblast proliferation and differentiation, as well as in endometrium receptivity. The knowledge that in vitro cultured embryos can contribute to the altered abundance of specific miRNAs in the uterine lumen can lead to the development of corrective approaches to reduce conceptus losses during the first month of pregnancy in cattle.
Collapse
Affiliation(s)
- Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr, Blacksburg, VA, 24061, USA.
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julie G Schnuelle
- Department of Clinical Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Soren Rodning
- Department of Animal Science, Auburn University, Auburn, AL, 36849, USA
| | - Martha Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Han Z, Zhang L, Ma M, Keshavarzi M. Effects of MicroRNAs and Long Non-coding RNAs on Beneficial Action of Exercise on Cognition in Degenerative Diseases: A Review. Mol Neurobiol 2024:10.1007/s12035-024-04292-4. [PMID: 38869810 DOI: 10.1007/s12035-024-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Recent research has exposed a growing body of proof underscoring the importance of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in maintaining the physical composition of neurons and influencing cognitive functioning in both standard and atypical circumstances. Extensive research has been conducted on the possible application of miRNAs and lncRNAs as biomarkers for various diseases, with a particular focus on brain disorders, as they possess remarkable durability in cell-free surroundings and can endure repeated freezing and thawing processes. It is intriguing to note that miRNAs and lncRNAs have the ability to function through paracrine mechanisms, thereby playing a role in communication between different organs. Recent research has proposed that the improvement of cognitive abilities through physical exercise in mentally healthy individuals is a valuable method for uncovering potential connections between miRNAs, or microRNAs, and lncRNAs, and human cognitive function. The process of cross-correlating data from disease models and patients with existing data will be crucial in identifying essential miRNAs and lncRNAs, which can potentially act as biomarkers or drug targets in the treatment of cognitive disorders. By combining this method with additional research in animal models, we can determine the function of these molecules and their potential impact on therapy. This article discusses the latest research about the primary miRNAs, lncRNAs, and their exosomes that are affected by physical activity in terms of human cognitive function.
Collapse
Affiliation(s)
- Zhen Han
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Lei Zhang
- Institute of Physical Education and Sports, Capital University Of Physical Education And Sports, Beijing, 100191, China.
| | - Minhang Ma
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kaurani L, Islam MR, Heilbronner U, Krüger DM, Zhou J, Methi A, Strauss J, Pradhan R, Schröder S, Burkhardt S, Schuetz AL, Pena T, Erlebach L, Bühler A, Budde M, Senner F, Kohshour MO, Schulte EC, Schmauß M, Reininghaus EZ, Juckel G, Kronenberg-Versteeg D, Delalle I, Odoardi F, Flügel A, Schulze TG, Falkai P, Sananbenesi F, Fischer A. Regulation of Zbp1 by miR-99b-5p in microglia controls the development of schizophrenia-like symptoms in mice. EMBO J 2024; 43:1420-1444. [PMID: 38528182 PMCID: PMC11021462 DOI: 10.1038/s44318-024-00067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany.
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Jiayin Zhou
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Judith Strauss
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Anna-Lena Schuetz
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Lena Erlebach
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anika Bühler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, 86156, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, 8036, Austria
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, 44791, Germany
| | - Deborah Kronenberg-Versteeg
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ivana Delalle
- Department of Pathology, Lifespan Academic Medical Center, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, 37077, Göttingen, Germany.
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Yoshida K, Suehiro Y, Dejima K, Yoshina S, Mitani S. Distinct pathways for export of silencing RNA in Caenorhabditis elegans systemic RNAi. iScience 2023; 26:108067. [PMID: 37854694 PMCID: PMC10579535 DOI: 10.1016/j.isci.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Dietary supplied double-stranded RNA (dsRNA) can trigger RNA interference (RNAi) systemically in some animals, including the nematode Caenorhabditis elegans. Although this phenomenon has been utilized as a major tool for gene silencing in C. elegans, how cells spread the silencing RNA throughout the organism is largely unknown. Here, we identify two novel systemic RNAi-related factors, REXD-1 and TBC-3, and show that these two factors together with SID-5 act redundantly to promote systemic spreading of dsRNA. Animals that are defective in all REXD-1, TBC-3, and SID-5 functions show strong deficiency in export of dsRNA from intestinal cells, whereas cellular uptake and processing of dsRNA and general secretion events other than dsRNA secretion are still functional in the triple mutant animals. Our findings reveal pathways that specifically regulate the export of dsRNA in parallel, implying the importance of spreading RNA molecules for intercellular communication in organisms.
Collapse
Affiliation(s)
- Keita Yoshida
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
6
|
Kaurani L, Besse M, Methfessel I, Methi A, Zhou J, Pradhan R, Burkhardt S, Kranaster L, Sartorius A, Habel U, Grözinger M, Fischer A, Wiltfang J, Zilles-Wegner D. Baseline levels of miR-223-3p correlate with the effectiveness of electroconvulsive therapy in patients with major depression. Transl Psychiatry 2023; 13:294. [PMID: 37699900 PMCID: PMC10497550 DOI: 10.1038/s41398-023-02582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
There is a strong medical need to develop suitable biomarkers to improve the diagnosis and treatment of depression, particularly in predicting response to certain therapeutic approaches such as electroconvulsive therapy (ECT). MicroRNAs are small non-coding RNAs that have the ability to influence the transcriptome as well as proteostasis at the systems level. Here, we investigate the role of circulating microRNAs in depression and response prediction towards ECT. Of the 64 patients with treatment-resistant major depression (MDD) who received ECT treatment, 62.5% showed a response, defined as a reduction of ≥50% in the MADRS total score from baseline. We performed smallRNA sequencing in blood samples that were taken before the first ECT, after the first and the last ECT. The microRNAome was compared between responders and non-responders. Co-expression network analysis identified three significant microRNA modules with reverse correlation between ECT- responders and non-responders, that were amongst other biological processes linked to inflammation. A candidate microRNA, namely miR-223-3p was down-regulated in ECT responders when compared to non-responders at baseline. In line with data suggesting a role of miR-223-3p in inflammatory processes we observed higher expression levels of proinflammatory factors Il-6, Il-1b, Nlrp3 and Tnf-α in ECT responders at baseline when compared to non-responders. ROC analysis of confirmed the diagnostic power of miR-223-3p demarcating ECT-responders from non-responder subjects (AUC = 0.76, p = 0.0031). Our data suggest that miR-223-3p expression and related cytokine levels could serve as predictors of response to ECT in individuals with treatment-resistant depressive disorders.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Isabel Methfessel
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Jiayin Zhou
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany
| | - Laura Kranaster
- Department of Psychiatry, Vitos Klinikum Heppenheim, 64646, Heppenheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim and University of Heidelberg, 68159, Mannheim, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases Goettingen, 37075, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
- Cluster of Excellence MBExC, University of Göttingen & University Medical Center Goettingen, 37075, Göttingen, Germany.
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
- Clincal Science Group, German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany.
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37075, Goettingen, Germany.
| |
Collapse
|
7
|
Dejima K, Imae R, Suehiro Y, Yoshida K, Mitani S. An endomembrane zinc transporter negatively regulates systemic RNAi in Caenorhabditis elegans. iScience 2023; 26:106930. [PMID: 37305693 PMCID: PMC10250833 DOI: 10.1016/j.isci.2023.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Double-stranded RNA (dsRNA) regulates gene expression in a sequence-dependent manner. In Caenorhabditis elegans, dsRNA spreads through the body and leads to systemic RNA silencing. Although several genes involved in systemic RNAi have been genetically identified, molecules that mediate systemic RNAi remain largely unknown. Here, we identified ZIPT-9, a C. elegans homolog of ZIP9/SLC39A9, as a broad-spectrum negative regulator of systemic RNAi. We showed that RSD-3, SID-3, and SID-5 genetically act in parallel for efficient RNAi, and that zipt-9 mutants suppress the RNAi defects of all the mutants. Analysis of a complete set of deletion mutants for SLC30 and SLC39 family genes revealed that only zipt-9 mutants showed altered RNAi activity. Based on these results and our analysis using transgenic Zn2+ reporters, we propose that ZIPT-9-dependent Zn2+ homeostasis, rather than overall cytosolic Zn2+, modulates systemic RNAi activity. Our findings reveal a previously unknown function of zinc transporters in negative RNAi regulation.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rieko Imae
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Keita Yoshida
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
8
|
Legüe M, Caneo M, Aguila B, Pollak B, Calixto A. Interspecies effectors of a transgenerational memory of bacterial infection in Caenorhabditis elegans. iScience 2022; 25:104627. [PMID: 35800768 PMCID: PMC9254006 DOI: 10.1016/j.isci.2022.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
The inheritance of memory is an adaptive trait. Microbes challenge the immunity of organisms and trigger behavioral adaptations that can be inherited, but how bacteria produce inheritance of a trait is unknown. We use Caenorhabditis elegans and its bacteria to study the transgenerational RNA dynamics of interspecies crosstalk leading to a heritable behavior. A heritable response of C. elegans to microbes is the pathogen-induced diapause (PIDF), a state of suspended animation to evade infection. We identify RsmY, a small RNA involved in quorum sensing in Pseudomonas aeruginosa as a trigger of PIDF. The histone methyltransferase (HMT) SET-18/SMYD3 and the argonaute HRDE-1, which promotes multi-generational silencing in the germline, are also needed for PIDF initiation. The HMT SET-25/EHMT2 is necessary for memory maintenance in the transgenerational lineage. Our work is a starting point to understanding microbiome-induced inheritance of acquired traits, and the transgenerational influence of microbes in health and disease.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Mauricio Caneo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
- Programa de Doctorado en Microbiología, Universidad de Chile, Santiago de Chile, Chile
| | | | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| |
Collapse
|
9
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Kejnovsky E, Jedlicka P. Nucleic acids movement and its relation to genome dynamics of repetitive DNA: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components?: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components? Bioessays 2022; 44:e2100242. [PMID: 35112737 DOI: 10.1002/bies.202100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Abstract
There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute to changes of genome structure and function. Such migration of DNA and RNA molecules often results in horizontal gene transfer, thus shaping the whole genomic network of interconnected species. Here, we propose that a high evolutionary dynamism of repetitive genome components is often related to the migration/movement of DNA or RNA molecules. We speculate that the cytoplasm is probably an ideal compartment for such evolutionary experiments.
Collapse
Affiliation(s)
- Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
11
|
Shen X, Peng Y, Song H, Wang J, Zhao J, Tang P, Han Z, Wang K. Key factors determining competitions between double-stranded RNAs in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105009. [PMID: 35082032 DOI: 10.1016/j.pestbp.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Combinatorial delivery of different double-stranded RNAs (dsRNAs) can result in competitive inhibition in insect pests and remains one of the obstacles in the way of future applications of the RNA interference (RNAi)-based pest control. In this study, we attempted to discover the basic competition characteristics between dsRNAs and provided insight into the solutions of competitive inhibition. RNAi sensitive insect species Tribolium castaneum were treated, and competitions between dsRNA fragments influencing the effectiveness of RNAi response could be measured. A chimeric dsRNA strategy for conjugating different dsRNA fragments into a single molecule and a nanoparticle carbon quantum dots-mediated dsRNA delivery were confirmed as efficient methods to knock down multiple target genes simultaneously. Furthermore, in vitro assays were conducted for determining the accumulation speed of serially diluted and incubated dsRNA in the midgut tissues. Our data showed that the accumulation of dsRNAs of different treated amounts was 0.25 μg ≈ 0.5 μg > 1 μg ≥ 2 μg > 4 μg, indicating that accumulation speed would be affected by treated dsRNA. Overall, our results strongly suggest that endocytic components influencing cellular uptake might be oversaturated when an excess amount of dsRNAs were treated, thereby causing competitive inhibition of target genes.
Collapse
Affiliation(s)
- Xu Shen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Joint Laboratory for International Cooperation in Grain Circulation and security, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yingchuan Peng
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huifang Song
- Faculty of Biological Science & Technology, Changzhi University, Changzhi 046011, China
| | - Jinda Wang
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhao
- State Tobacco Monopoly Administration Key Laboratory for Green Prevention and Control of Tobacco Diseases and Pests in Huanghuai Tobacco Area, Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Joint Laboratory for International Cooperation in Grain Circulation and security, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Zhaojun Han
- The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Joint Laboratory for International Cooperation in Grain Circulation and security, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China; The Agricultural Ministry Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Goldberg M, Islam MR, Kerimoglu C, Lancelin C, Gisa V, Burkhardt S, Krüger DM, Marquardt T, Malchow B, Schmitt A, Falkai P, Sananbenesi F, Fischer A. Exercise as a model to identify microRNAs linked to human cognition: a role for microRNA-409 and microRNA-501. Transl Psychiatry 2021; 11:514. [PMID: 34625536 PMCID: PMC8501071 DOI: 10.1038/s41398-021-01627-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs have been linked to synaptic plasticity and memory function and are emerging as potential biomarkers and therapeutic targets for cognitive diseases. Most of these data stem from the analysis of model systems or postmortem tissue from patients which mainly represents an advanced stage of pathology. Due to the in-accessibility of human brain tissue upon experimental manipulation, it is still challenging to identify microRNAs relevant to human cognition, which is however a key step for future translational studies. Here, we employ exercise as an experimental model for memory enhancement in healthy humans with the aim to identify microRNAs linked to memory function. By analyzing the circulating smallRNAome we find a cluster of 18 microRNAs that are highly correlated to cognition. MicroRNA-409-5p and microRNA-501-3p were the most significantly regulated candidates. Functional analysis revealed that the two microRNAs are important for neuronal integrity, synaptic plasticity, and morphology. In conclusion, we provide a novel approach to identify microRNAs linked to human memory function.
Collapse
Affiliation(s)
- Maria Goldberg
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Md Rezaul Islam
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany.
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Camille Lancelin
- Developmental Neurobiology Laboratory, European Neuroscience Institute, Grisebachstrasse 5, 37077, Goettingen, Germany
| | - Verena Gisa
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Susanne Burkhardt
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Dennis M Krüger
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany
| | - Till Marquardt
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty, Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Worringer Weg 3, 52074, Aachen, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, München, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, München, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, 05403-010, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, München, Germany
| | - Farahnaz Sananbenesi
- German Center for Neurodegenerative Diseases, Research Group for Genome Dynamics in Brain Diseases, Von Siebold Str. 3A, 37075, Göttingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Von Siebold Str 3A, 37075, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Cai Q, He B, Wang S, Fletcher S, Niu D, Mitter N, Birch PRJ, Jin H. Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:497-524. [PMID: 34143650 PMCID: PMC8369896 DOI: 10.1146/annurev-arplant-081720-010616] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Communication between plant cells and interacting microorganisms requires the secretion and uptake of functional molecules to and from the extracellular environment and is essential for the survival of both plants and their pathogens. Extracellular vesicles (EVs) are lipid bilayer-enclosed spheres that deliver RNA, protein, and metabolite cargos from donor to recipient cells and participate in many cellular processes. Emerging evidencehas shown that both plant and microbial EVs play important roles in cross-kingdom molecular exchange between hosts and interacting microbes to modulate host immunity and pathogen virulence. Recent studies revealed that plant EVs function as a defense system by encasing and delivering small RNAs (sRNAs) into pathogens, thereby mediating cross-species and cross-kingdom RNA interference to silence virulence-related genes. This review focuses on the latest advances in our understanding of plant and microbial EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens. EV biogenesis and secretion are also discussed, as EV function relies on these important processes.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Baoye He
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Shumei Wang
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Stephen Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| |
Collapse
|
14
|
Epple R, Krüger D, Berulava T, Brehm G, Ninov M, Islam R, Köster S, Fischer A. The Coding and Small Non-coding Hippocampal Synaptic RNAome. Mol Neurobiol 2021; 58:2940-2953. [PMID: 33569760 PMCID: PMC8128755 DOI: 10.1007/s12035-021-02296-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Neurons are highly compartmentalized cells that depend on local protein synthesis. Messenger RNAs (mRNAs) have thus been detected in neuronal dendrites, and more recently in the pre- and postsynaptic compartments as well. Other RNA species such as microRNAs have also been described at synapses where they are believed to control mRNA availability for local translation. A combined dataset analyzing the synaptic coding and non-coding RNAome via next-generation sequencing approaches is, however, still lacking. Here, we isolate synaptosomes from the hippocampus of young wild-type mice and provide the coding and non-coding synaptic RNAome. These data are complemented by a novel approach for analyzing the synaptic RNAome from primary hippocampal neurons grown in microfluidic chambers. Our data show that synaptic microRNAs control almost the entire synaptic mRNAome, and we identified several hub microRNAs. By combining the in vivo synaptosomal data with our novel microfluidic chamber system, our findings also support the hypothesis that part of the synaptic microRNAome may be supplied to neurons via astrocytes. Moreover, the microfluidic system is suitable for studying the dynamics of the synaptic RNAome in response to stimulation. In conclusion, our data provide a valuable resource and point to several important targets for further research.
Collapse
Affiliation(s)
- Robert Epple
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Dennis Krüger
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Tea Berulava
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Gerrit Brehm
- Institute for X-Ray Physics, University of Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Momchil Ninov
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rezaul Islam
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Andre Fischer
- Department of Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Von Siebold Str. 3a, 37075, Goettingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
15
|
Abstract
Memories encoded in the parent's brain should not be able to transfer to the progeny. This assumption, which is compatible with the tenets of modern neuroscience and genetics, is challenged by new insights regarding inheritance of transgenerational epigenetic responses. Here we reflect on new discoveries regarding "molecular memories" in light of older and scandalous work on "Memory transfer" spearheaded by James V. McConnell and Georges Ungar. While the history of this field is filled with controversies, mechanisms for transmission of information across generations are being elucidated in different organisms. Most strikingly, it is now clear that in Caenorhabditis elegans nematodes, somatic responses can control gene activity in descendants via heritable small RNA molecules, and that this type of inheritance is tightly regulated by dedicated machinery. In this perspective we will focus mostly on studies conducted using C. elegans, and examine recent work on the connection between small RNAs in the nervous system and germline. We will discuss the evidence for the inheritance of brain-orchestrated behavior, and its possible significance.
Collapse
Affiliation(s)
- Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Islam MR, Lbik D, Sakib MS, Maximilian Hofmann R, Berulava T, Jiménez Mausbach M, Cha J, Goldberg M, Vakhtang E, Schiffmann C, Zieseniss A, Katschinski DM, Sananbenesi F, Toischer K, Fischer A. Epigenetic gene expression links heart failure to memory impairment. EMBO Mol Med 2021; 13:e11900. [PMID: 33471428 PMCID: PMC7933944 DOI: 10.15252/emmm.201911900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
In current clinical practice, care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown, and thus, corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms, we show that heart failure leads to specific changes in hippocampal gene expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dawid Lbik
- Clinic of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - M Sadman Sakib
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Tea Berulava
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Martí Jiménez Mausbach
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Julia Cha
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Maria Goldberg
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Elerdashvili Vakhtang
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Christian Schiffmann
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anke Zieseniss
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Dörthe Magdalena Katschinski
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Genome Dynamics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Karl Toischer
- Clinic of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Barreñada O, Fernández-Pérez D, Larriba E, Brieño-Enriquez M, Del Mazo J. Diversification of piRNAs expressed in PGCs and somatic cells during embryonic gonadal development. RNA Biol 2020; 17:1309-1323. [PMID: 32375541 DOI: 10.1080/15476286.2020.1757908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
piRNAs are small non-coding RNAs known to play a main role in defence against transposable elements in germ cells. However, other potential functions, such as biogenesis and differences in somatic and germline expression of these regulatory elements, are not yet fully unravelled. Here, we analysed a variety of piRNA sequences detected in mouse male and female primordial germ cells (PGCs) and gonadal somatic cells at crucial stages during embryonic differentiation of germ cells (11.5-13.5 days post-coitum). NGS of sncRNA and bioinformatic characterization of piRNAs from PGCs and somatic cells, in addition to piRNAs associated with TEs, indicated functional diversification in both cell types. Differences in the proportion of the diverse types of piRNAs are detected between somatic and germline during development. However, the global diversified patterns of piRNA expression are mainly shared between germ and somatic cells, we identified piRNAs related with molecules involved in ribosome components and translation pathway, including piRNAs derived from rRNA (34%), tRNA (10%) and snoRNA (8%). piRNAs from both tRNA and snoRNA are mainly derived from 3' and 5' end regions. These connections between piRNAs and rRNAs, tRNAs or snoRNAs suggest important functions of specialized piRNAs in translation regulation during this window of gonadal development.
Collapse
Affiliation(s)
- Odei Barreñada
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Daniel Fernández-Pérez
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Eduardo Larriba
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Miguel Brieño-Enriquez
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| |
Collapse
|
18
|
Cai Q, He B, Jin H. A safe ride in extracellular vesicles - small RNA trafficking between plant hosts and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:140-148. [PMID: 31654843 DOI: 10.1016/j.pbi.2019.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Communication between plants and pathogens requires the transport of regulatory molecules across cellular boundaries, which is essential for host defense and pathogen virulence. Previous research has largely focused on protein transport, but, which other molecules function in communication, and how they are transported remains under explored. Recent studies discovered that small RNAs (sRNAs) are transported between plants and pathogens, which can silence target genes in the interacting organisms and regulate host immunity and pathogen infection, a mechanism called 'cross-kingdom RNA interference (RNAi)'. Further studies indicate that plant extracellular vesicles (EVs) are essential for sRNA trafficking and host-pathogen communication. This review will focus on the latest advances in our understanding of plant EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
19
|
Ravikumar S, Devanapally S, Jose AM. Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Res 2019; 47:10059-10071. [PMID: 31501873 PMCID: PMC6821342 DOI: 10.1093/nar/gkz748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Delivery of double-stranded RNA (dsRNA) into animals can silence genes of matching sequence in diverse cell types through mechanisms that have been collectively called RNA interference. In the nematode Caenorhabditis elegans, dsRNA from multiple sources can trigger the amplification of silencing signals. Amplification occurs through the production of small RNAs by two RNA-dependent RNA polymerases (RdRPs) that are thought to be tissue-specific - EGO-1 in the germline and RRF-1 in somatic cells. Here we demonstrate that EGO-1 can compensate for the lack of RRF-1 when dsRNA from neurons is used to silence genes in intestinal cells. However, the lineal origins of cells that can use EGO-1 varies. This variability could be because random sets of cells can either receive different amounts of dsRNA from the same source or use different RdRPs to perform the same function. Variability is masked in wild-type animals, which show extensive silencing by neuronal dsRNA. As a result, cells appear similarly functional despite underlying differences that vary from animal to animal. This functional mosaicism cautions against inferring uniformity of mechanism based on uniformity of outcome. We speculate that functional mosaicism could contribute to escape from targeted therapies and could allow developmental systems to drift over evolutionary time.
Collapse
Affiliation(s)
- Snusha Ravikumar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sindhuja Devanapally
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Ray M, Singh G, Lakhotia SC. Altered levels of hsromega lncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila. Gene Expr Patterns 2019; 33:20-36. [DOI: 10.1016/j.gep.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
21
|
Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S, Gingold H, Rechavi O. Neuronal Small RNAs Control Behavior Transgenerationally. Cell 2019; 177:1814-1826.e15. [PMID: 31178120 PMCID: PMC6579485 DOI: 10.1016/j.cell.2019.04.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally. C. elegans neuronal small RNAs are characterized by RNA sequencing RDE-4-dependent neuronal endogenous small RNAs communicate with the germline Germline HRDE-1 mediates transgenerational regulation by neuronal small RNAs Neuronal small RNAs regulate germline genes to control behavior transgenerationally
Collapse
Affiliation(s)
- Rachel Posner
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itai Antoine Toker
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ekaterina Star
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Azmon
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Hendricks
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shahar Bracha
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
22
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
24
|
Raman P, Zaghab SM, Traver EC, Jose AM. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans. Nucleic Acids Res 2017; 45:8463-8473. [PMID: 28541563 PMCID: PMC5737277 DOI: 10.1093/nar/gkx484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates.
Collapse
Affiliation(s)
- Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Soriayah M Zaghab
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Edward C Traver
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
25
|
Abstract
Epithelial-mesenchymal interactions are required to coordinate cell proliferation, patterning, and functional differentiation of multiple cell types in a developing organ. This exquisite coordination is dependent on various secreted molecules that provide developmental signals to mediate these tissue interactions. Recently, it was reported that mature mesenchymal-derived microRNAs (miRNAs) in the fetal mouse salivary gland are loaded into exosomes, and transported to the epithelium where they influence progenitor cell proliferation. The exosomal miRNAs regulated epithelial expression of genes involved in DNA methylation in progenitor cells to influence morphogenesis. Thus, exosomal miRNAs are mobile genetic signals that cross tissue boundaries within an organ. These findings raise many questions about how miRNA signals are initiated to coordinate organogenesis and whether they are master regulators of epithelial-mesenchymal interactions. The development of therapeutic applications using exosomal miRNAs for the regeneration of damaged adult organs is a promising area of research.
Collapse
Affiliation(s)
- Toru Hayashi
- a Department of Anatomical Science , Kitasato University School of Allied Health Sciences , Sagamihara , Kanagawa , Japan
| | - Matthew P Hoffman
- b Matrix and Morphogenesis Section , National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS , Bethesda , Maryland , USA
| |
Collapse
|
26
|
Yu Q, Dai J, Zhu Z, Shen H. Downregulation of RIKP by miR-200a promotes the invasive ability of esophageal cancer cells by upregulating the expression of LIN28 and MMP-14. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8452-8460. [PMID: 31966697 PMCID: PMC6965412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 06/10/2023]
Abstract
Esophageal cancer (EC) is one of common digestive tract malignant tumors which morbidity and mortality were increased year by year. This study was aimed to investigate the role of microRNA (miR)-200a in EC. Human esophageal squamous cell carcinoma (ESCC) cells TE3 was transfected with miR-200a mimic or scramble control. Cell viability and invasion were assessed by MTT and Transwell assay, respectively. Binding effect of miR-200a on 3'UTR of RKIP was verified by luciferase activity assay. RKIP expression in miR-200a mimic transfected cells was measured. RKIP was overexpressed in miR-200a transfected cells and cell viability and invasion were measured. The expressions of Raf1, ERK, MMP-14, LIN28 and GRK-2 were also measured by qRT-PCR and Western blot analysis, respectively. Results showed that miR-200a mimic transfection increased cell viability and invasion of TE3 cells in vitro. miR-200a binding with 3'UTR of RKIP negatively regulated RKIP expression. RKIP overexpression inhibited effects of miR-200a on cell viability and invasion, as well as the increased phosphorylation levels of Raf1 and ERK. miR-200a increased expressions of MMP-14, LIN28 and GRK-2 in TE3 cells, and the up-regulations were inhibited by RKIP overexpression. In conclusion, the up-regulation of miR-200a in TE3 cells promoted cell viability and invasion via negatively regulating RKIP expression. RKIP was a direct target of miR-200a. miR-200a might be involved in activation of MAPK/ERK signaling pathway and expression of MMP-14, LIN28 and GRK-2 which were important factors of intracellular information transduction. Our findings demonstrated that miR-200a regulated ESCC cells via regulating RKIP expression.
Collapse
Affiliation(s)
- Qiuyun Yu
- Department of Laboratory, Ningbo No. 2 HospitalNingbo, P. R. China
| | - Jinhua Dai
- Department of Laboratory, Ningbo No. 2 HospitalNingbo, P. R. China
| | - Zhankun Zhu
- Department of Laboratory, Ningbo No. 2 HospitalNingbo, P. R. China
| | - Haibo Shen
- Department of Thoracic Surgery, Ningbo No. 2 HospitalNingbo, P. R. China
| |
Collapse
|
27
|
Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. GENES AND NUTRITION 2017; 12:13. [PMID: 29308096 PMCID: PMC5753850 DOI: 10.1186/s12263-017-0561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
The notion of uptake of active diet-derived small RNAs (sRNAs) in recipient organisms could have significant implications for our understanding of oral therapeutics and nutrition, for the safe use of RNA interference (RNAi) in agricultural biotechnology, and for ecological relationships. Yet, the transfer and subsequent regulation of gene activity by diet-derived sRNAs in ingesting mammals are still heavily debated. Here, we synthesize current information based on multiple independent studies of mammals, invertebrates, and plants. Rigorous assessment of these data emphasize that uptake of active dietary sRNAs is neither a robust nor a prevalent mechanism to maintain steady-state levels in higher organisms. While disagreement still continues regarding whether such transfer may occur in specialized contexts, concerns about technical difficulties and a lack of consensus on appropriate methods have led to questions regarding the reproducibility and biologic significance of some seemingly positive results. For any continuing investigations, concerted efforts should be made to establish a strong mechanistic basis for potential effects of dietary sRNAs and to agree on methodological guidelines for realizing such proof. Such processes would ensure proper interpretation of studies aiming to prove dietary sRNA activity in mammals and inform potential for application in therapeutics and agriculture.
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, BST 1704.2, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Jonathan W Snow
- Department of Biology, Barnard College, New York, NY 10027 USA
| |
Collapse
|
28
|
Abstract
The importance of noncoding genome has become more evident in recent years. Before genome sequencing, the most well studied portion of our genome was protein coding genes. Interestingly, this coding portion accounted only for 1.5% of the genome, the rest being the noncoding sequences. Noncoding RNAs (ncRNAs) are involved in normal cell physiology, stress, and disease states. A class of small ncRNAs and miRNAs has gained much importance because of its involvement in human diseases such as cancer. Involvement of long ncRNAs have also been acknowledged in other human diseases, especially in neurodegenerative diseases. Neurodegenerative diseases are characterized by the presence of abnormally folded proteins that are toxic to the cell. Several studies from model organisms suggest upregulation of pathways that clear this toxic protein may provide protection against neurodegeneration. In this review, I summarize the importance of ncRNAs in protein quality control system of cell that is implicated in this fatal group of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sonali Sengupta
- Division of Biomolecules and Genetics, School of Biosciences and Technology, VIT University, Vellore 632 014, India.
| |
Collapse
|
29
|
Chan SY, Snow JW. Uptake and impact of natural diet-derived small RNA in invertebrates: Implications for ecology and agriculture. RNA Biol 2017; 14:402-414. [PMID: 27763816 PMCID: PMC5411125 DOI: 10.1080/15476286.2016.1248329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
The putative transfer and gene regulatory activities of diet-derived small RNAs (sRNAs) in ingesting animals are still debated. The existence of natural uptake of diet-derived sRNA by invertebrate species could have significant implication for our understanding of ecological relationships and could synergize with efforts to use RNA interference (RNAi) technology in agriculture. Here, we synthesize information gathered from studies in invertebrates using natural or artificial dietary delivery of sRNA and from studies of sRNA in vertebrate animals and plants to review our current understanding of uptake and impact of natural diet-derived sRNA on invertebrates. Our understanding has been influenced and sometimes confounded by the diversity of invertebrates and ingested plants studied, our limited insights into how gene expression may be modulated by dietary sRNAs at the mechanistic level, and the paucity of studies focusing directly on natural uptake of sRNA. As such, we suggest 2 strategies to investigate this phenomenon more comprehensively and thus facilitate the realization of its potentially broad impact on ecology and agriculture in the future.
Collapse
Affiliation(s)
- Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
30
|
Braukmann F, Jordan D, Miska E. Artificial and natural RNA interactions between bacteria and C. elegans. RNA Biol 2017; 14:415-420. [PMID: 28332918 DOI: 10.1080/15476286.2017.1297912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nineteen years after Lisa Timmons and Andy Fire first described RNA transfer from bacteria to C. elegans in an experimental setting 48 the biologic role of this trans-kingdom RNA-based communication remains unknown. Here we summarize our current understanding on the mechanism and potential role of such social RNA.
Collapse
Affiliation(s)
- Fabian Braukmann
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK
| | - David Jordan
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK
| | - Eric Miska
- a Gurdon Institute, University of Cambridge , Cambridge , UK.,b Department of Genetics , University of Cambridge , Cambridge , UK.,c Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus, Cambridge , UK
| |
Collapse
|
31
|
Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017; 163:15-22. [PMID: 28093237 DOI: 10.1016/j.mad.2016.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Evidence supporting germline mediated epigenetic inheritance of environmentally induced traits has increasingly emerged over the past several years. Although the mechanisms underlying this inheritance remain unclear, recent findings suggest that parental gamete-borne epigenetic factors, particularly RNAs, affect post-fertilization and developmental gene regulation, ultimately leading to phenotypic appearance in the offspring. Complex processes involving gene expression and epigenetic regulation are considered to perpetuate across generations. In addition to transfer of germline factors, epigenetic inheritance via gametes also requires a mechanism whereby the information pertaining to the induced traits is communicated from soma to germline. Despite violating a century-old view in biology, this communication seems to play a role in transmission of environmental effects across generations. Circulating RNAs, especially those associated with extracellular vesicles like exosomes, are emerging as promising candidates that can transmit gene regulatory information in this direction. Cumulatively, these new observations provide a basis to integrate epigenetic inheritance. With significant implications in health, disease and ageing, the latter appears poised to revolutionize biology.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
32
|
Sison EAR, Kurre P, Kim YM. Understanding the bone marrow microenvironment in hematologic malignancies: A focus on chemokine, integrin, and extracellular vesicle signaling. Pediatr Hematol Oncol 2017; 34:365-378. [PMID: 29211600 PMCID: PMC6516746 DOI: 10.1080/08880018.2017.1395938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling between leukemia cells and nonhematopoietic cells in the bone marrow microenvironment contributes to leukemia cell growth and survival. This complicated extrinsic mechanism of chemotherapy resistance relies on a number of pathways and factors, some of which have yet to be determined. Research on cell-cell crosstalk the bone marrow microenvironment in acute leukemia was presented at the 2016 annual Therapeutic Advances in Childhood Leukemia (TACL) investigator meeting. This review summarizes the mini-symposium proceedings and focuses on chemokine signaling via the cell surface receptor CXCR4, adhesion molecule signaling via integrin α4, and crosstalk between leukemia cells and the bone marrow microenvironment that is mediated through extracellular vesicles.
Collapse
Affiliation(s)
| | - Peter Kurre
- Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, Oregon
| | - Yong-Mi Kim
- Children’s Hospital of Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop. Regul Toxicol Pharmacol 2016; 82:127-139. [DOI: 10.1016/j.yrtph.2016.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
|
34
|
Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2016; 113:12496-12501. [PMID: 27791108 DOI: 10.1073/pnas.1608959113] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Experiences during the lifetime of an animal have been proposed to have consequences for subsequent generations. Although it is unclear how such intergenerational transfer of information occurs, RNAs found extracellularly in animals are candidate molecules that can transfer gene-specific regulatory information from one generation to the next because they can enter cells and regulate gene expression. In support of this idea, when double-stranded RNA (dsRNA) is introduced into some animals, the dsRNA can silence genes of matching sequence and the silencing can persist in progeny. Such persistent gene silencing is thought to result from sequence-specific interaction of the RNA within parents to generate chromatin modifications, DNA methylation, and/or secondary RNAs, which are then inherited by progeny. Here, we show that dsRNA can be directly transferred between generations in the worm Caenorhabditis elegans Intergenerational transfer of dsRNA occurs even in animals that lack any DNA of matching sequence, and dsRNA that reaches progeny can spread between cells to cause gene silencing. Surprisingly, extracellular dsRNA can also reach progeny without entry into the cytosol, presumably within intracellular vesicles. Fluorescently labeled dsRNA is imported from extracellular space into oocytes along with yolk and accumulates in punctate structures within embryos. Subsequent entry into the cytosol of early embryos causes gene silencing in progeny. These results demonstrate the transport of extracellular RNA from one generation to the next to regulate gene expression in an animal and thus suggest a mechanism for the transmission of experience-dependent effects between generations.
Collapse
|
35
|
Chaloner T, van Kan JAL, Grant-Downton RT. RNA 'Information Warfare' in Pathogenic and Mutualistic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:738-748. [PMID: 27318950 DOI: 10.1016/j.tplants.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 05/08/2023]
Abstract
Regulatory non-coding RNAs are emerging as key players in host-pathogen interactions. Small RNAs such as microRNAs are implicated in regulating plant transcripts involved in immunity and defence. Surprisingly, RNAs with silencing properties can be translocated from plant hosts to various invading pathogens and pests. Small RNAs are now confirmed virulence factors, with the first report of fungal RNAs that travel to host cells and hijack post-transcriptional regulatory machinery to suppress host defence. Here, we argue that trans-organism movement of RNAs represents a common mechanism of control in diverse interactions between plants and other eukaryotes. We suggest that extracellular vesicles are the key to such RNA movement events. Plant pathosystems serve as excellent experimental models to dissect RNA 'information warfare' and other RNA-mediated interactions.
Collapse
Affiliation(s)
- Thomas Chaloner
- The Queen's College, University of Oxford, High Street, Oxford, UK
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|