1
|
Bakker A, Schoenefuss P, Mifsud G, Fuller S, Baker A. Comparing Methods of Detecting an Elusive Dasyurid Marsupial, the Threatened Julia Creek Dunnart ( Sminthopsis douglasi), in Central Western Queensland, Australia. Ecol Evol 2024; 14:e70507. [PMID: 39502462 PMCID: PMC11535226 DOI: 10.1002/ece3.70507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
The Julia Creek dunnart, Sminthopsis douglasi, is a small, threatened carnivorous marsupial occurring in scattered populations in the grasslands of central and northwestern Queensland, Australia. The distribution of the species is largely unknown due to sporadic survey efforts and its historically low detection using traditional live trapping methods. There is an urgent need to determine the best methods of detection to optimise survey methodologies and more effectively manage species conservation efforts. In this study, we compared the effectiveness of live (Elliott) traps, baited white flash camera traps and thermal imagery binocular surveying for detecting S. douglasi. We deployed 40 white flash camera traps at two sites in Bladensburg National Park (south of Winton), where the species is known to occur, for three consecutive periods between June and November 2022. Four comparative sessions of live trapping were undertaken between April and August 2022 at the same locations. During the live trapping periods, a total of 12 nights of surveying were conducted with thermal imagery binoculars in a preliminary assessment of the technique. The total live trapping effort was 3600 trap nights (approximately 700 trap nights per site in each trapping event). Live trapping resulted in 12 detections of individual S. douglasi from 19 total captures. The highest trap success on a given trapping session was 1.71%, and overall trap success from both sites across all sessions was 0.53%. In comparison, baited camera traps (deployed facing the ground at 70 cm range) took 1,269,884 images over 5383 trap nights. There were 11 confirmed images of S. douglasi, on three individual occasions, which represented 2.10% of all small mammal captures and just 0.0009% of the total images. Four species of small mammals were detected using camera traps, whereas live trapping detected only two species. No small mammals were detected on any of the 12 thermal binocular surveys. Overall, our study highlights the comparative high utility of traditional live trapping for detecting S. douglasi. This research provides a framework for ongoing monitoring of the Bladensburg National Park population. It will be more broadly beneficial for informing the best detection techniques of S. douglasi in ongoing work investigating the overall distribution of the species. Similar studies assessing multiple detection methods for small terrestrial mammals have shown an advantage of white flash camera traps compared to other traditional detection techniques. Our contrasting results serve as a reminder that the utility of different techniques for detecting small mammals is best assessed on a species-by-species basis.
Collapse
Affiliation(s)
- Alice H. Bakker
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Pia Schoenefuss
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Greg Mifsud
- Greg Mifsud ConsultingToowoombaQueenslandAustralia
| | - Susan Fuller
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Andrew M. Baker
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Biodiversity and Geosciences Program, Queensland MuseumSouth BrisbaneQueenslandAustralia
| |
Collapse
|
2
|
Di Girolamo EL, Jordan MA, Albers G, Bergeson SM. Comparing the effectiveness of environmental DNA and camera traps for surveying American mink (Neogale vison) in northeastern Indiana. PLoS One 2024; 19:e0310888. [PMID: 39312555 PMCID: PMC11419345 DOI: 10.1371/journal.pone.0310888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
While camera traps can effectively detect semi-aquatic mammal species, they are also often temporally and monetarily inefficient and have a difficult time detecting smaller bodied, elusive mammals. Recent studies have shown that extracting DNA from environmental samples can be a non-invasive, alternative method of detecting elusive species. Environmental DNA (eDNA) has not yet been used to survey American mink (Neogale vison), a cryptic and understudied North American mustelid. To help determine best survey practices for the species, we compared the effectiveness and efficiency of eDNA and camera traps in surveys for American mink. We used both methods to monitor the shoreline of seven bodies of water in northeastern Indiana from March to May 2021. We extracted DNA from filtered environmental water samples and used quantitative real-time PCR to determine the presence of mink at each site. We used Akaike's Information Criterion to rank probability of detection models with and without survey method as a covariate. We detected mink at four of the seven sites and seven of the 21 total survey weeks using camera traps (probability of detection (ρ) = 0.36). We detected mink at five sites and during five survey weeks using eDNA (ρ = 0.25). However, the highest probability of detection was obtained when both methods were combined, and data were pooled (ρ = 0.47). Survey method did not influence model fit, suggesting no difference in detectability between camera traps and eDNA. Environmental DNA was twice as expensive, but only required a little over half (58%) of the time when compared to camera trapping. We recommend ways in which an improved eDNA methodology may be more cost effective for future studies. For this study, a combination of both methods yielded the highest probability for detecting mink presence.
Collapse
Affiliation(s)
- Eleanor L. Di Girolamo
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Mark A. Jordan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Geriann Albers
- Division of Fish and Wildlife, Indiana Department of Natural Resources, Bloomington, Indiana, United States of America
| | - Scott M. Bergeson
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| |
Collapse
|
3
|
Coetzer WG. Using grass inflorescence as source material for biomonitoring through environmental DNA metabarcoding. Mol Biol Rep 2024; 51:987. [PMID: 39283359 PMCID: PMC11405429 DOI: 10.1007/s11033-024-09885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Over the last decade, increasing attention has been directed to using different substrates as sources of environmental DNA (eDNA) in ecological research. Reports on the use of environmental DNA located on the surface of plant leaves and flowers have highlighted the utility of this DNA source in studies including, but not limited to, biodiversity, invasive species, and pollination ecology. The current study assesses grass inflorescence as a source of eDNA for detecting invertebrate taxa. METHODS AND RESULTS Inflorescences from four common grass species in a central South African grassland were collected for high-throughput sequencing analysis. Universal COI primers were utilised to detect Metazoan diversity. The sequencing results allowed for the detection of three Arthropoda orders, with most OTUs assigned to fungal taxa (Ascomycota and Basidiomycota). Some biases were detected while observing the relative read abundance (RRA) results. DISCUSSION The observed biases could be explained by the accidental inclusion of invertebrate specimens during sample collection and DNA extraction. Primer biases towards the amplified taxa could be another reason for the observed RRA results. This study provided insight into the invertebrate community associated with the four sampled grass species. It should be noted that with the lack of negative field controls, it is impossible to rule out the influence of airborne eDNA on the observed diversity associated with each grass species. The lack of the inclusion of PCR and extraction blanks in the sequencing step, as well as the inclusion of negative field controls, including other areas for refinement were highlighted, and suggestions were provided to improve the outcomes of future studies.
Collapse
Affiliation(s)
- Willem G Coetzer
- Department of Zoology and Entomology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
- Department of Genetics, University of the Free State, Bloemfontein, Free State, South Africa.
| |
Collapse
|
4
|
Ortiz-Colin P, Hulshof CM. Ecotones as Windows into Organismal-to-Biome Scale Responses across Neotropical Forests. PLANTS (BASEL, SWITZERLAND) 2024; 13:2396. [PMID: 39273880 PMCID: PMC11397621 DOI: 10.3390/plants13172396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Tropical forests are incredibly diverse in structure and function. Despite, or perhaps because of, this diversity, tropical biologists often conduct research exclusively in one or perhaps a few forest types. Rarely do we study the ecotone-the interstitial region between forest types. Ecotones are hyper-diverse, dynamic systems that control the flow of energy and organisms between adjacent ecosystems, with their locations determined by species' physiological limits. In this review, we describe how studying ecotones can provide key indicators for monitoring the state of Neotropical forests from organisms to ecosystems. We first describe how ecotones have been studied in the past and summarize our current understanding of tropical ecotones. Next, we provide three example lines of research focusing on the ecological and evolutionary dynamics of the ecotone between tropical dry forests and desert; between tropical dry and rainforests; and between Cerrado and Atlantic rainforests, with the latter being a particularly well-studied ecotone. Lastly, we outline methods and tools for studying ecotones that combine remote sensing, new statistical techniques, and field-based forest dynamics plot data, among others, for understanding these important systems.
Collapse
Affiliation(s)
- Perla Ortiz-Colin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Catherine M Hulshof
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Tetzlaff SJ, Katz AD, Wolff PJ, Kleitch ME. Comparison of soil eDNA to camera traps for assessing mammal and bird community composition and site use. Ecol Evol 2024; 14:e70022. [PMID: 39011132 PMCID: PMC11246831 DOI: 10.1002/ece3.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Species detections often vary depending on the survey methods employed. Some species may go undetected when using only one approach in community-level inventory and monitoring programs, which has management and conservation implications. We conducted a comparative study of terrestrial mammal and bird detections in the spring and summer of 2021 by placing camera traps at 30 locations across a large military installation in northern Michigan, USA and testing replicate soil samples from these sites for environmental DNA (eDNA) using an established vertebrate metabarcoding assay. We detected a total of 48 taxa from both survey methods: 26 mammalian taxa (excluding humans, 24 to species and two to genus) and 22 avian taxa (21 to species and one to genus). We detected a relatively even distribution of mammalian taxa on cameras (17) and via eDNA analysis (15), with seven taxa detected from both methods. Most medium-to-large carnivores were detected only on cameras, whereas semi-fossorial small mammals were detected only via eDNA analysis. We detected higher bird diversity with camera traps (18 taxa) compared to eDNA analysis (eight taxa; four taxa were detected with both methods), but cameras alone were most effective at detecting smaller birds that frequently occupy arboreal environments. We also used Bayesian spatial occupancy models for two widely distributed game species (white-tailed deer, Odocoileus virginianus, and ruffed grouse, Bonasa umbellus) that were moderately detected with both survey methods and found species-specific site use (occupancy) estimates were similar between cameras and eDNA analysis. Concordant with similar studies, our findings suggest that a combination of camera trap and eDNA surveys could be most useful for assessing the composition of terrestrial mammal communities. Camera traps may be most efficient for assessing bird diversity but can be complemented with eDNA analysis, particularly for species that spend considerable time on the ground.
Collapse
Affiliation(s)
| | - Aron D. Katz
- Engineer Research and Development CenterChampaignIllinoisUSA
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | | | | |
Collapse
|
6
|
Oliveira HFM, Freire-Jr GB, Silva DC, Mata VA, Abra FD, Camargo NFD, Araujo Goebel LG, Longo GR, Silva JM, Colli GR, Domingos FMCB. Barcoding Brazilian mammals to monitor biological diversity and threats: Trends, perspectives, and knowledge gaps. ENVIRONMENTAL RESEARCH 2024; 258:119374. [PMID: 38885824 DOI: 10.1016/j.envres.2024.119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
DNA barcoding and environmental DNA (eDNA) represent significant advances for biomonitoring the world's biodiversity and its threats. However, these methods are highly dependent on the presence of species sequences on molecular databases. Brazil is one of the world's largest and most biologically diverse countries. However, many knowledge gaps still exist for describing, identifying, and monitoring of mammalian biodiversity using molecular methods. We aimed to unravel the patterns of the presence of Brazilian mammal species on molecular databases to improve our understanding of how effectively it would be to monitor them using DNA barcoding and environmental DNA, and contribute to mammalian conservation. We foundt many gaps in molecular databases, with many taxa being poorly represented, particularly from Amazonia, the order Lagomorpha, and arboreal, gomivorous, near extinct, and illegally traded species. Moreover, our analyses revealed that species description year was the most important factor determining the probability of a species to being sequenced. Primates are the group with the highest number of species considered a priority for sequencing due to their high level of combined threats. We highlight where investments are needed to fill knowledge gaps and increase the representativity of species on molecular databases to enable a better monitoring ability of Brazilian mammals encompassing different traits using DNA barcoding and environmental DNA.
Collapse
Affiliation(s)
- Hernani Fernandes Magalhães Oliveira
- Departamento de Zoologia, Universidade Federal do Paraná - UFPR, Curitiba, Brazil; Departamento de Zoologia, Universidade de Brasília - UnB, Brasília, Brazil; Knowledge Center for Biodiversity, Belo Horizonte, MG, 31270-901, Brazil.
| | - Geraldo Brito Freire-Jr
- Departamento de Ecologia, Universidade de Brasília - UnB, Brasília, Brazil; Department of Biology, University of Nevada - UNR, Reno, USA
| | - Daiana Cardoso Silva
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso - UNEMAT, Nova Xavantina, Brazil
| | - Vanessa Alves Mata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Vila do Conde, Portugal
| | - Fernanda Delborgo Abra
- Smithsonian National Zoo and Conservation Biology Institute-Center for Conservation and Sustainability, Washington, DC, USA; ViaFAUNA Estudos Ambientais, São Paulo, SP, Brazil; Instituto Pró-Carnívoros, Atibaia, SP, Brazil
| | | | - L G Araujo Goebel
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Mato Grosso - UNEMAT, Cáceres, Brazil
| | - Gabriela Rodrigues Longo
- Programa de Pós-graduação em Ensino de Ciências, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, Brazil
| | - Joaquim Manoel Silva
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso - UNEMAT, Nova Xavantina, Brazil
| | | | | |
Collapse
|
7
|
Schenekar T, Baxter J, Phukuntsi MA, Sedlmayr I, Weckworth B, Mwale M. Optimizing waterborne eDNA capture from waterholes in savanna systems under remote field conditions. Mol Ecol Resour 2024; 24:e13942. [PMID: 38390664 DOI: 10.1111/1755-0998.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Environmental DNA (eDNA) is used for biodiversity assessments in a variety of ecosystems across the globe, whereby different eDNA concentration, preservation and extraction methods can outperform others depending on the sampling conditions and environment. Tropical and subtropical ecosystems in Africa are among the less studied systems concerning eDNA-based monitoring. Waterholes in arid parts of southern Africa represent important agglomeration points for terrestrial mammals, and the eDNA shed into such waterbodies provides a powerful source of information for monitoring mammalian biodiversity in the surrounding area. However, the applied methods for eDNA sampling, preservation and filtering in different freshwater systems vary greatly, and rigorous protocol testing in African freshwater systems is still lacking. This study represents the first attempt to examine variations in eDNA concentration, preservation and extraction methods under remote field conditions using waterborne eDNA in a savanna system. Collected samples were heavily affected by microalgal and bacterial growth, impeding eDNA capture and PCR success. We demonstrate clear effects of the methodological choices, which also depend on the state of eDNA. A preliminary metabarcoding run showed little taxonomic overlap in mammal species detection between two metabarcoding primers tested. We recommend water filtering (using filters with pore sizes >1 μm) over centrifugation for eDNA concentration, Longmire's solution for ambient temperature sample preservation and Qiagen's DNeasy PowerSoil Pro Kit for DNA extraction of these inhibitor-prone samples. Furthermore, at least two independent metabarcoding markers should be utilized in order to maximize species detections in metabarcoding studies.
Collapse
Affiliation(s)
| | - Janine Baxter
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
| | - Metlholo Andries Phukuntsi
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
- South African Environmental Observation Network, Egagasini Node, South African Environmental Observation Network, Cape Town, South Africa
| | | | | | - Monica Mwale
- South African National Biodiversity Institute, National Zoological Gardens, Pretoria, South Africa
- NRF-South African Institute for Aquatic Biodiversity, Makhanda (Grahamstown), South Africa
| |
Collapse
|
8
|
Kaspari M, Weiser MD, Siler CD, Marshall KE, Smith SN, Stroh KM, de Beurs KM. Capacity and establishment rules govern the number of nonnative species in communities of ground-dwelling invertebrates. Ecol Evol 2024; 14:e10856. [PMID: 38487748 PMCID: PMC10937486 DOI: 10.1002/ece3.10856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 03/17/2024] Open
Abstract
Nonnative species are a key agent of global change. However, nonnative invertebrates remain understudied at the community scales where they are most likely to drive local extirpations. We use the North American NEON pitfall trapping network to document the number of nonnative species from 51 invertebrate communities, testing four classes of drivers. We sequenced samples using the eDNA from the sample's storage ethanol. We used AICc informed regression to evaluate how native species richness, productivity, habitat, temperature, and human population density and vehicular traffic account for continent-wide variation in the number of nonnative species in a local community. The percentage of nonnatives varied 3-fold among habitat types and over 10-fold (0%-14%) overall. We found evidence for two types of constraints on nonnative diversity. Consistent with Capacity rules (i.e., how the number of niches and individuals reflect the number of species an ecosystem can support) nonnatives increased with existing native species richness and ecosystem productivity. Consistent with Establishment Rules (i.e., how the dispersal rate of nonnative propagules and the number of open sites limits nonnative species richness) nonnatives increased with automobile traffic-a measure of human-generated propagule pressure-and were twice as common in pastures than native grasslands. After accounting for drivers associated with a community's ability to support native species (native species richness and productivity), nonnatives are more common in communities that are regularly seasonally disturbed (pastures and, potentially deciduous forests) and those experiencing more vehicular traffic. These baseline values across the US North America will allow NEON's monitoring mission to document how anthropogenic change-from disturbance to propagule transport, from temperature to trends in local extinction-further shape biotic homogenization.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Conservation Ecology CenterSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Michael D. Weiser
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Cameron D. Siler
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOklahomaUSA
| | - Katie E. Marshall
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sierra N. Smith
- Geographical Ecology Group, Department of BiologyUniversity of OklahomaNormanOklahomaUSA
- Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOklahomaUSA
| | - Katherine M. Stroh
- Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOklahomaUSA
| | - Kirsten M. de Beurs
- Laboratory of Geo‐Information Science and Remote SensingWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
9
|
Arana A, Arana C, Watsa M, Tobler MW, Pacheco V, Esteves J, Mena JL, Salinas L, Ramirez JL. Lack of local genetic representation in one of the regions with the highest bird species richness, the Peruvian Amazonia. PLoS One 2024; 19:e0296305. [PMID: 38165899 PMCID: PMC10760656 DOI: 10.1371/journal.pone.0296305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/08/2023] [Indexed: 01/04/2024] Open
Abstract
Peru ranks among the three countries with the highest bird species diversity globally and a majority of those species are found in the Peruvian Amazon. However, birds in this area are currently facing serious anthropogenic threats. Genetic and genomic methods are becoming important tools for avian biodiversity monitoring and conservation planning. Comprehensive molecular libraries that are publicly available are key to the effective deployment of these tools. We analyze the information gaps for four molecular markers in the most important genetic sequence databases, Barcode of Life Data Systems (BOLD) and NCBI GenBank, for bird species of the Peruvian Amazonia. We found that 64% of Peruvian Amazonian bird species have gene sequences for COI, 59.5% have CYTB sequences, 16.4% have 12S sequences, and only 0.6% have 18S sequences. However, these numbers decrease drastically to 4.3% for COI sequences when we only consider specimens sampled in Peru. Our data also showed that 43.8% of Peruvian Amazonian endemic species (n = 32) are missing sequences of any screened marker uploaded to GenBank or BOLD. Our results will encourage and guide efforts of the scientific community to complete reference libraries for Peruvian avian species that will be useful for future DNA-based monitoring projects that include birds.
Collapse
Affiliation(s)
- Alejandra Arana
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - César Arana
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mrinalini Watsa
- San Diego Zoo Wildlife Alliance, Conservation Science and Wildlife Health, Escondido, California, United States of America
| | - Mathias W. Tobler
- San Diego Zoo Wildlife Alliance, Conservation Science and Wildlife Health, Escondido, California, United States of America
| | - Víctor Pacheco
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Juan Esteves
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Letty Salinas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Jorge L. Ramirez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
10
|
Zhang S, Zhao J, Yao M. Urban landscape-level biodiversity assessments of aquatic and terrestrial vertebrates by environmental DNA metabarcoding. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117971. [PMID: 37119629 DOI: 10.1016/j.jenvman.2023.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
Globally, expansive urbanization profoundly alters natural habitats and the associated biota. Monitoring biodiversity in cities can provide essential information for conservation management, but the complexity of urban landscapes poses serious challenges to conventional observational and capture-based surveys. Here we assessed pan-vertebrate biodiversity, including both aquatic and terrestrial taxa, using environmental DNA (eDNA) sampled from 109 water sites across Beijing, China. Using eDNA metabarcoding with a single primer set (Tele02), we detected 126 vertebrate species, including 73 fish, 39 birds, 11 mammals, and 3 reptiles belonging to 91 genera, 46 families, and 22 orders. The probability of detection from eDNA varied substantially among species and was related to their lifestyle, as shown by the greater detectability of fish compared to that of terrestrial and arboreal (birds and mammals) groups, as well as the greater detectability of water birds compared to that of forest birds (Wilcoxon rank-sum test p = 0.007). Furthermore, the eDNA detection probabilities across all vertebrates (Wilcoxon rank-sum test p = 0.009), as well as for birds (p < 0.001), were higher at lentic sites in comparison with lotic sites. Also, the detected biodiversity was positively correlated with lentic waterbody size for fish (Spearman p = 0.012), but not for other groups. Our results demonstrate the capacity of eDNA metabarcoding to efficiently surveil diverse vertebrate communities across an extensive spatial scale in heterogenous urban landscapes. With further methodological development and optimization, the eDNA approach has great potential for non-invasive, efficient, economic, and timely assessments of biodiversity responses to urbanization, thus guiding city ecosystem conservation management.
Collapse
Affiliation(s)
- Shan Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing, 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Buřivalová Z, Yoh N, Butler RA, Chandra Sagar HSS, Game ET. Broadening the focus of forest conservation beyond carbon. Curr Biol 2023; 33:R621-R635. [PMID: 37279693 DOI: 10.1016/j.cub.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two concurrent trends are contributing towards a much broader view of forest conservation. First, the appreciation of the role of forests as a nature-based climate solution has grown rapidly, particularly among governments and the private sector. Second, the spatiotemporal resolution of forest mapping and the ease of tracking forest changes have dramatically improved. As a result, who does and who pays for forest conservation is changing: sectors and people previously considered separate from forest conservation now play an important role and need to be held accountable and motivated or forced to conserve forests. This change requires, and has stimulated, a broader range of forest conservation solutions. The need to assess the outcomes of conservation interventions has motivated the development and application of sophisticated econometric analyses, enabled by high resolution satellite data. At the same time, the focus on climate, together with the nature of available data and evaluation methods, has worked against a more comprehensive view of forest conservation. Instead, it has encouraged a focus on trees as carbon stores, often leaving out other important goals of forest conservation, such as biodiversity and human wellbeing. Even though both are intrinsically connected to climate outcomes, these areas have not kept pace with the scale and diversification of forest conservation. Finding synergies between these 'co-benefits', which play out on a local scale, with the carbon objective, related to the global amount of forests, is a major challenge and area for future advances in forest conservation.
Collapse
Affiliation(s)
- Zuzana Buřivalová
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Natalie Yoh
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - H S Sathya Chandra Sagar
- The Nelson Institute for Environmental Studies and the Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward T Game
- The Nature Conservancy, South Brisbane, QLD 4101, Australia; School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, Heydenrych MJ, Juszkiewicz DJ, Nevill P, Dawkins KL, Bessey C, Fernandes K, Miller H, Power M, Mousavi-Derazmahalleh M, Newton JP, White NE, Richards ZT, Allentoft ME. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162322. [PMID: 36801404 DOI: 10.1016/j.scitotenv.2023.162322] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.
Collapse
Affiliation(s)
- Miwa Takahashi
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia.
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia.
| | - Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Georgia Nester
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mieke van der Heyde
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew J Heydenrych
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Jarman Laboratory, Indian Ocean Marine Research Centre, School of Biological Sciences, University of Western Australia, Australia
| | - David J Juszkiewicz
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Kathryn L Dawkins
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Cindy Bessey
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, Western Australia, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia
| | - Matthew Power
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Joshua P Newton
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Allen MC, Kwait R, Vastano A, Kisurin A, Zoccolo I, Jaffe BD, Angle JC, Maslo B, Lockwood JL. Sampling environmental DNA from trees and soil to detect cryptic arboreal mammals. Sci Rep 2023; 13:180. [PMID: 36604526 PMCID: PMC9814459 DOI: 10.1038/s41598-023-27512-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Environmental DNA (eDNA) approaches to monitoring biodiversity in terrestrial environments have largely focused on sampling water bodies, potentially limiting the geographic and taxonomic scope of eDNA investigations. We assessed the performance of two strictly terrestrial eDNA sampling approaches to detect arboreal mammals, a guild with many threatened and poorly studied taxa worldwide, within two central New Jersey (USA) woodlands. We evaluated species detected with metabarcoding using two eDNA collection methods (tree bark vs. soil sampling), and compared the performance of two detection methods (qPCR vs. metabarcoding) within a single species. Our survey, which included 94 sampling events at 21 trees, detected 16 species of mammals, representing over 60% of the diversity expected in the area. More DNA was found for the 8 arboreal versus 8 non-arboreal species detected (mean: 2466 vs. 289 reads/sample). Soil samples revealed a generally similar composition, but a lower diversity, of mammal species. Detection rates for big brown bat were 3.4 × higher for qPCR over metabarcoding, illustrating the enhanced sensitivity of single-species approaches. Our results suggest that sampling eDNA from on and around trees could serve as a useful new monitoring tool for cryptic arboreal mammal communities globally.
Collapse
Affiliation(s)
- Michael C. Allen
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Robert Kwait
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Anthony Vastano
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Alex Kisurin
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Isabelle Zoccolo
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | | | - Jordan C. Angle
- grid.421234.20000 0004 1112 1641ExxonMobil Upstream Research Company, Spring, TX USA
| | - Brooke Maslo
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Julie L. Lockwood
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| |
Collapse
|
14
|
Garrett NR, Watkins J, Francis CM, Simmons NB, Ivanova N, Naaum A, Briscoe A, Drinkwater R, Clare EL. Out of thin air: surveying tropical bat roosts through air sampling of eDNA. PeerJ 2023; 11:e14772. [PMID: 37128209 PMCID: PMC10148639 DOI: 10.7717/peerj.14772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023] Open
Abstract
Understanding roosting behaviour is essential to bat conservation and biomonitoring, often providing the most accurate methods of assessing bat population size and health. However, roosts can be challenging to survey, e.g., physically impossible to access or presenting risks for researchers. Disturbance during monitoring can also disrupt natural bat behaviour and present material risks to the population such as disrupting hibernation cycles. One solution to this is the use of non-invasive monitoring approaches. Environmental (e)DNA has proven especially effective at detecting rare and elusive species particularly in hard-to-reach locations. It has recently been demonstrated that eDNA from vertebrates is carried in air. When collected in semi-confined spaces, this airborne eDNA can provide remarkably accurate profiles of biodiversity, even in complex tropical communities. In this study, we deploy novel airborne eDNA collection for the first time in a natural setting and use this approach to survey difficult to access potential roosts in the neotropics. Using airborne eDNA, we confirmed the presence of bats in nine out of 12 roosts. The identified species matched previous records of roost use obtained from photographic and live capture methods, thus demonstrating the utility of this approach. We also detected the presence of the white-winged vampire bat (Diaemus youngi) which had never been confirmed in the area but was long suspected based on range maps. In addition to the bats, we detected several non-bat vertebrates, including the big-eared climbing rat (Ototylomys phyllotis), which has previously been observed in and around bat roosts in our study area. We also detected eDNA from other local species known to be in the vicinity. Using airborne eDNA to detect new roosts and monitor known populations, particularly when species turnover is rapid, could maximize efficiency for surveyors while minimizing disturbance to the animals. This study presents the first applied use of airborne eDNA collection for ecological analysis moving beyond proof of concept to demonstrate a clear utility for this technology in the wild.
Collapse
Affiliation(s)
- Nina R. Garrett
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jonathan Watkins
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Charles M. Francis
- Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | | | - Amanda Naaum
- Nature Metrics North America Ltd., Guelph, Ontario, Canada
| | - Andrew Briscoe
- Nature Metrics Ltd., Surrey Research Park, Guildford, United Kingdom
| | - Rosie Drinkwater
- Palaeogenomics group, Department of Veterinary Sciences, Ludwig-Maximillian University Munich, Munich, Germany
| | | |
Collapse
|
15
|
Environmental DNA in human and veterinary parasitology - Current applications and future prospects for monitoring and control. Food Waterborne Parasitol 2022; 29:e00183. [DOI: 10.1016/j.fawpar.2022.e00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
|
16
|
Brun L, Schneider J, Carrió EM, Dongre P, Taberlet P, van de Waal, Fumagalli L. Focal vs. fecal: Seasonal variation in the diet of wild vervet monkeys from observational and DNA metabarcoding data. Ecol Evol 2022; 12:e9358. [PMID: 36203642 PMCID: PMC9526031 DOI: 10.1002/ece3.9358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
Assessing the diet of wild animals reveals valuable information about their ecology and trophic relationships that may help elucidate dynamic interactions in ecosystems and forecast responses to environmental changes. Advances in molecular biology provide valuable research tools in this field. However, comparative empirical research is still required to highlight strengths and potential biases of different approaches. Therefore, this study compares environmental DNA and observational methods for the same study population and sampling duration. We employed DNA metabarcoding assays targeting plant and arthropod diet items in 823 fecal samples collected over 12 months in a wild population of an omnivorous primate, the vervet monkey (Chlorocebus pygerythrus). DNA metabarcoding data were subsequently compared to direct observations. We observed the same seasonal patterns of plant consumption with both methods; however, DNA metabarcoding showed considerably greater taxonomic coverage and resolution compared to observations, mostly due to the construction of a local plant DNA database. We found a strong effect of season on variation in plant consumption largely shaped by the dry and wet seasons. The seasonal effect on arthropod consumption was weaker, but feeding on arthropods was more frequent in spring and summer, showing overall that vervets adapt their diet according to available resources. The DNA metabarcoding assay outperformed also direct observations of arthropod consumption in both taxonomic coverage and resolution. Combining traditional techniques and DNA metabarcoding data can therefore not only provide enhanced assessments of complex diets and trophic interactions to the benefit of wildlife conservationists and managers but also opens new perspectives for behavioral ecologists studying whether diet variation in social species is induced by environmental differences or might reflect selective foraging behaviors.
Collapse
Affiliation(s)
- Loïc Brun
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Judith Schneider
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Eduard Mas Carrió
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Pooja Dongre
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Inkawu Vervet ProjectMawana Game Reserve, Swart MfoloziKwaZulu NatalSouth Africa
| | - Pierre Taberlet
- Laboratoire d'Ecologie AlpineUniversité Grenoble Alpes, CNRSGrenobleFrance
- UiT – The Arctic University of Norway, Tromsø MuseumTromsøNorway
| | - van de Waal
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Inkawu Vervet ProjectMawana Game Reserve, Swart MfoloziKwaZulu NatalSouth Africa
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
- Swiss Human Institute of Forensic Taphonomy, University Centre of Legal Medicine Lausanne‐Geneva, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
17
|
Environmental DNA Metabarcoding: A Novel Contrivance for Documenting Terrestrial Biodiversity. BIOLOGY 2022; 11:biology11091297. [PMID: 36138776 PMCID: PMC9495823 DOI: 10.3390/biology11091297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary The innovative concept of environmental DNA has found its foot in aquatic ecosystems but remains an unexplored area of research concerning terrestrial ecosystems. When making management choices, it is important to understand the rate of eDNA degradation, the persistence of DNA in terrestrial habitats, and the variables affecting eDNA detectability for a target species. Therefore an attempt has been made to provide comprehensive information regarding the exertion of eDNA in terrestrial ecosystems from 2012 to 2022. The information provided will assist ecologists, researchers and decision-makers in developing a holistic understanding of environmental DNA and its applicability as a biodiversity monitoring contrivance. Abstract The dearth of cardinal data on species presence, dispersion, abundance, and habitat prerequisites, besides the threats impeded by escalating human pressure has enormously affected biodiversity conservation. The innovative concept of eDNA, has been introduced as a way of overcoming many of the difficulties of rigorous conventional investigations, and is hence becoming a prominent and novel method for assessing biodiversity. Recently the demand for eDNA in ecology and conservation has expanded exceedingly, despite the lack of coordinated development in appreciation of its strengths and limitations. Therefore it is pertinent and indispensable to evaluate the extent and significance of eDNA-based investigations in terrestrial habitats and to classify and recognize the critical considerations that need to be accounted before using such an approach. Presented here is a brief review to summarize the prospects and constraints of utilizing eDNA in terrestrial ecosystems, which has not been explored and exploited in greater depth and detail in such ecosystems. Given these obstacles, we focused primarily on compiling the most current research findings from journals accessible in eDNA analysis that discuss terrestrial ecosystems (2012–2022). In the current evaluation, we also review advancements and limitations related to the eDNA technique.
Collapse
|
18
|
Nordstrom B, Mitchell N, Byrne M, Jarman S. A review of applications of environmental DNA for reptile conservation and management. Ecol Evol 2022; 12:e8995. [PMID: 35784065 PMCID: PMC9168342 DOI: 10.1002/ece3.8995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
Reptile populations are in decline globally, with total reptile abundance halving in the past half century, and approximately a fifth of species currently threatened with extinction. Research on reptile distributions, population trends, and trophic interactions can greatly improve the accuracy of conservation listings and planning for species recovery, but data deficiency is an impediment for many species. Environmental DNA (eDNA) can detect species and measure community diversity at diverse spatio-temporal scales, and is especially useful for detection of elusive, cryptic, or rare species, making it potentially very valuable in herpetology. We aim to summarize the utility of eDNA as a tool for informing reptile conservation and management and discuss the benefits and limitations of this approach. A literature review was conducted to collect all studies that used eDNA and focus on reptile ecology, conservation, or management. Results of the literature search are summarized into key discussion points, and the review also draws on eDNA studies from other taxa to highlight methodological challenges and to identify future research directions. eDNA has had limited application to reptiles, relative to other vertebrate groups, and little use in regions with high species richness. eDNA techniques have been more successfully applied to aquatic reptiles than to terrestrial reptiles, and most (64%) of studies focused on aquatic habitats. Two of the four reptilian orders dominate the existing eDNA studies (56% Testudines, 49% Squamata, 5% Crocodilia, 0% Rhynchocephalia). Our review provides direction for the application of eDNA as an emerging tool in reptile ecology and conservation, especially when it can be paired with traditional monitoring approaches. Technologies associated with eDNA are rapidly advancing, and as techniques become more sensitive and accessible, we expect eDNA will be increasingly valuable for addressing key knowledge gaps for reptiles.
Collapse
Affiliation(s)
- Bethany Nordstrom
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Nicola Mitchell
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Margaret Byrne
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
| | - Simon Jarman
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- UWA Oceans InstituteThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
19
|
Chan AHE, Saralamba N, Saralamba S, Ruangsittichai J, Chaisiri K, Limpanont Y, Charoennitiwat V, Thaenkham U. Sensitive and accurate DNA metabarcoding of parasitic helminth mock communities using the mitochondrial rRNA genes. Sci Rep 2022; 12:9947. [PMID: 35705676 PMCID: PMC9200835 DOI: 10.1038/s41598-022-14176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Next-generation sequencing technologies have accelerated the pace of helminth DNA metabarcoding research, enabling species detection in bulk community samples. However, finding suitable genetic markers with robust species-level resolution and primers targeting a broad species range among parasitic helminths are some of the challenges faced. This study aimed to demonstrate the potential use of the mitochondrial 12S and 16S rRNA genes for parasitic helminth (nematodes, trematodes, cestodes) DNA metabarcoding. To demonstrate the robustness of the 12S and 16S rRNA genes for DNA metabarcoding, we determined the proportion of species successfully recovered using mock helminth communities without environment matrix and mock helminth communities artificially spiked with environmental matrices. The environmental matrices are human fecal material, garden soil, tissue, and pond water. Our results revealed the robustness of the mitochondrial rRNA genes, through the high sensitivity of the 12S rRNA gene, and the effectiveness of the 12S and 16S primers targeting platyhelminths. With the mitochondrial rRNA genes, a broad range of parasitc helminths were successfully detected to the species level. The potential of the mitochondrial rRNA genes for helminth DNA metabarcoding was demonstrated, providing a valuable gateway for future helminth DNA metabarcoding applications like helminth detection and biodiversity studies.
Collapse
Affiliation(s)
- Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sompob Saralamba
- Mathematical and Economic Modelling (MAEMOD), Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
20
|
Proctor MF, Garshelis DL, Thatte P, Steinmetz R, Crudge B, McLellan BN, McShea WJ, Ngoprasert D, Nawaz MA, Te Wong S, Sharma S, Fuller AK, Dharaiya N, Pigeon KE, Fredriksson G, Wang D, Li S, Hwang MH. Review of field methods for monitoring Asian bears. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Clare EL, Economou CK, Bennett FJ, Dyer CE, Adams K, McRobie B, Drinkwater R, Littlefair JE. Measuring biodiversity from DNA in the air. Curr Biol 2021; 32:693-700.e5. [PMID: 34995488 DOI: 10.1016/j.cub.2021.11.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022]
Abstract
The crisis of declining biodiversity1 exceeds our current ability to monitor changes in ecosystems. Rapid terrestrial biomonitoring approaches are essential to quantify the causes and consequences of global change. Environmental DNA2 has revolutionized aquatic ecology,3 permitting population monitoring4 and remote diversity assessments matching or outperforming conventional methods of community sampling.3-5 Despite this model, similar methods have not been widely adopted in terrestrial ecosystems. Here, we demonstrate that DNA from terrestrial animals can be filtered, amplified, and then sequenced from air samples collected in natural settings representing a powerful tool for terrestrial ecology. We collected air samples at a zoological park, where spatially confined non-native species allowed us to track DNA sources. We show that DNA can be collected from air and used to identify species and their ecological interactions. Air samples contained DNA from 25 species of mammals and birds, including 17 known terrestrial resident zoo species. We also identified food items from air sampled in enclosures and detected taxa native to the local area, including the Eurasian hedgehog, endangered in the United Kingdom. Our data demonstrate that airborne eDNA concentrates around recently inhabited areas but disperses away from sources, suggesting an ecology to airborne eDNA and the potential for sampling at a distance. Our findings demonstrate the profound potential of air as a source of DNA for global terrestrial biomonitoring.
Collapse
Affiliation(s)
- Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Chloe K Economou
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Frances J Bennett
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Caitlin E Dyer
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | | | - Rosie Drinkwater
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Joanne E Littlefair
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
22
|
Broadhurst HA, Gregory LM, Bleakley EK, Perkins JC, Lavin JV, Bolton P, Browett SS, Howe CV, Singleton N, Tansley D, Sales NG, McDevitt AD. Mapping differences in mammalian distributions and diversity using environmental DNA from rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149724. [PMID: 34467903 DOI: 10.1016/j.scitotenv.2021.149724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Finding more efficient ways to monitor and estimate the diversity of mammalian communities is a major step towards their management and conservation. Environmental DNA (eDNA) from river water has recently been shown to be a viable method for biomonitoring mammalian communities. Most of the studies to date have focused on the potential for eDNA to detect individual species, with little focus on describing patterns of community diversity and structure. Here, we first focus on the sampling effort required to reliably map the diversity and distribution of semi-aquatic and terrestrial mammals and allow inferences of community structure surrounding two rivers in southeastern England. Community diversity and composition was then assessed based on species richness and β-diversity, with differences between communities partitioned into nestedness and turnover, and the sampling effort required to rapidly detect semi-aquatic and terrestrial species was evaluated based on species accumulation curves and occupancy modelling. eDNA metabarcoding detected 25 wild mammal species from five orders, representing the vast majority (82%) of the species expected in the area. The required sampling effort varied between orders, with common species (generally rodents, deer and lagomorphs) more readily detected, with carnivores detected less frequently. Measures of species richness differed between rivers (both overall and within each mammalian order) and patterns of β-diversity revealed the importance of species replacement in sites within each river, against a pattern of species loss between the two rivers. eDNA metabarcoding demonstrated its capability to rapidly detect mammal species, allowing inferences of community composition that will better inform future sampling strategies for this Class. Importantly, this study highlights the potential use of eDNA data for investigating mammalian community dynamics over different spatial scales.
Collapse
Affiliation(s)
- Holly A Broadhurst
- School of Science, Engineering and Environment, University of Salford, UK
| | - Luke M Gregory
- School of Science, Engineering and Environment, University of Salford, UK
| | - Emma K Bleakley
- School of Science, Engineering and Environment, University of Salford, UK
| | - Joseph C Perkins
- School of Science, Engineering and Environment, University of Salford, UK
| | - Jenna V Lavin
- School of Science, Engineering and Environment, University of Salford, UK
| | - Polly Bolton
- School of Science, Engineering and Environment, University of Salford, UK
| | - Samuel S Browett
- School of Science, Engineering and Environment, University of Salford, UK; School of Science and Computing, Waterford Institute of Technology, Waterford, Ireland
| | - Claire V Howe
- Natural England, Horizon House, Deanery Road, Bristol, UK
| | - Natalie Singleton
- Essex Wildlife Trust, Abbotts Hall Farm, Great Wigborough, Colchester, UK
| | - Darren Tansley
- Essex Wildlife Trust, Abbotts Hall Farm, Great Wigborough, Colchester, UK
| | | | - Allan D McDevitt
- School of Science, Engineering and Environment, University of Salford, UK.
| |
Collapse
|
23
|
Guenay-Greunke Y, Bohan DA, Traugott M, Wallinger C. Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Sci Rep 2021; 11:19510. [PMID: 34593851 PMCID: PMC8484467 DOI: 10.1038/s41598-021-98018-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
High-throughput sequencing platforms are increasingly being used for targeted amplicon sequencing because they enable cost-effective sequencing of large sample sets. For meaningful interpretation of targeted amplicon sequencing data and comparison between studies, it is critical that bioinformatic analyses do not introduce artefacts and rely on detailed protocols to ensure that all methods are properly performed and documented. The analysis of large sample sets and the use of predefined indexes create challenges, such as adjusting the sequencing depth across samples and taking sequencing errors or index hopping into account. However, the potential biases these factors introduce to high-throughput amplicon sequencing data sets and how they may be overcome have rarely been addressed. On the example of a nested metabarcoding analysis of 1920 carabid beetle regurgitates to assess plant feeding, we investigated: (i) the variation in sequencing depth of individually tagged samples and the effect of library preparation on the data output; (ii) the influence of sequencing errors within index regions and its consequences for demultiplexing; and (iii) the effect of index hopping. Our results demonstrate that despite library quantification, large variation in read counts and sequencing depth occurred among samples and that the sequencing error rate in bioinformatic software is essential for accurate adapter/primer trimming and demultiplexing. Moreover, setting an index hopping threshold to avoid incorrect assignment of samples is highly recommended.
Collapse
Affiliation(s)
- Yasemin Guenay-Greunke
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria. .,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria.
| | - David A Bohan
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Michael Traugott
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Corinna Wallinger
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria
| |
Collapse
|
24
|
Mena JL, Yagui H, Tejeda V, Bonifaz E, Bellemain E, Valentini A, Tobler MW, Sánchez-Vendizú P, Lyet A. Environmental DNA metabarcoding as a useful tool for evaluating terrestrial mammal diversity in tropical forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02335. [PMID: 33780592 DOI: 10.1002/eap.2335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 11/04/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Innovative techniques, such as environmental DNA (eDNA) metabarcoding, are now promoting broader biodiversity monitoring at unprecedented scales, because of the reduction in time, presumably lower cost, and methodological efficiency. Our goal was to assess the efficiency of established inventory techniques (live-trapping grids, pitfall traps, camera trapping, mist netting) as well as eDNA for detecting Amazonian mammals. For terrestrial small mammals, we used 32 live-trapping grids based on Sherman and Tomahawk traps (total effort of 10,368 trap-nights); in addition to 16 pitfall traps (1,408 trap-nights). For bats, we used mist nets at 8 sites (4,800 net hours). For medium and large mammals, we used 72 camera trap stations (5,208 camera-days). We identified vertebrate and mammal taxa based on eDNA analysis (12S region, with V05 and Mamm01 markers) from water samples, including a total of 11 3-km transects for stagnant water sampling and seven small streams for running water sampling. A total of 106 mammal species were recorded. Building on sample-based rarefaction and extrapolation curves, both trapping grids and pitfall were successful, recording 91.16% and 82.1% of the expected species for these techniques (~22 and ~9 species), and 16.98% and 6.60% of the total recorded mammal species, respectively. Mist nets recorded 83.2% of the expected bat species (~48), and 34.91% of the total recorded species. Camera trapping recorded 99.2% of the predicted large- and medium-sized species (~31), and 33.02% of the total recorded species. eDNA recorded 75.4% of the expected mammal species for this technique (~68), and 47.0% of the total recorded species. eDNA resulted in a useful tool that saves on effort and reduces sampling costs. This study is among the first to show the large potential of eDNA metabarcoding for assessing Amazonian mammal communities, providing, in combination with conventional techniques, a rapid overview of mammal diversity with broad applications to monitoring, management and conservation. By including appropriate genetic markers and updated reference databases, eDNA metabarcoding method can be extended to the whole vertebrate community.
Collapse
Affiliation(s)
- José Luis Mena
- World Wildlife Fund-Perú, Trinidad Moran 853, Lima 14, Peru
| | | | - Vania Tejeda
- World Wildlife Fund-Perú, Trinidad Moran 853, Lima 14, Peru
- Museo de Historia Natural de la Universidad Nacional de San Agustín de Arequipa, Av. Alcides Carrión S/N, Arequipa, Peru
| | - Emilio Bonifaz
- Museo de Historia Natural Vera Alleman Haeghebaert, Universidad Ricardo Palma, Lima 33, Perú
| | - Eva Bellemain
- SPYGEN, 17 rue du Lac St André, Savoie Technolac, BP20274, Le Bourget du Lac, 73375, France
| | - Alice Valentini
- SPYGEN, 17 rue du Lac St André, Savoie Technolac, BP20274, Le Bourget du Lac, 73375, France
| | - Mathias W Tobler
- San Diego Zoo Global, Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, California, 92027, USA
| | - Pamela Sánchez-Vendizú
- Facultad de Ciencias Biológicas de la Universidad Nacional Mayor de San Marcos, Ca. German Amezaga 375, Lima, Peru
| | - Arnaud Lyet
- World Wildlife Fund, 1250 24th Street NW, Washington, D.C., 20037, USA
| |
Collapse
|