1
|
Lemmen KD, Pennekamp F. Food web context modifies predator foraging and weakens trophic interaction strength. Ecol Lett 2024; 27:e14475. [PMID: 39060898 DOI: 10.1111/ele.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Trophic interaction modifications (TIM) are widespread in natural systems and occur when a third species indirectly alters the strength of a trophic interaction. Past studies have focused on documenting the existence and magnitude of TIMs; however, the underlying processes and long-term consequences remain elusive. To address this gap, we experimentally quantified the density-dependent effect of a third species on a predator's functional response. We conducted short-term experiments with ciliate communities composed of a predator, prey and non-consumable 'modifier' species. In both communities, increasing modifier density weakened the trophic interaction strength, due to a negative effect on the predator's space clearance rate. Simulated long-term dynamics indicate quantitative differences between models that account for TIMs or include only pairwise interactions. Our study demonstrates that TIMs are important to understand and predict community dynamics and highlights the need to move beyond focal species pairs to understand the consequences of species interactions in communities.
Collapse
Affiliation(s)
- Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Sanders D, Baker DJ, Cruse D, Bell F, van Veen FJF, Gaston KJ. Spectrum of artificial light at night drives impact of a diurnal species in insect food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154893. [PMID: 35364173 DOI: 10.1016/j.scitotenv.2022.154893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Artificial light at night (ALAN) has become a profound form of global anthropogenic environmental change differing in from natural light regimes in intensity, duration, distribution and spectra. It is clear that ALAN impacts individual organisms, however, population level effects, particularly of spectral changes, remain poorly understood. Here we exposed experimental multigenerational aphid-parasitoid communities in the field to seven different light spectra at night ranging from 385 to 630 nm and compared responses to a natural day-night light regime. We found that while aphid population growth was initially unaffected by ALAN, parasitoid efficiency declined under most ALAN spectra, leading to reduced top-down control and higher aphid densities. These results differ from those previously found for white light, showing a strong impact on species' daytime performance. This highlights the importance of ALAN spectra when considering their environmental impact. ALAN can have large impacts on the wider ecological community by influencing diurnal species.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| | - David J Baker
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Dave Cruse
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Fraser Bell
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Frank J F van Veen
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
3
|
Kehoe R, Sanders D, Cruse D, Silk M, Gaston KJ, Bridle JR, van Veen F. Longer photoperiods through range shifts and artificial light lead to a destabilizing increase in host-parasitoid interaction strength. J Anim Ecol 2020; 89:2508-2516. [PMID: 32858779 DOI: 10.1111/1365-2656.13328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022]
Abstract
Many organisms are experiencing changing daily light regimes due to latitudinal range shifts driven by climate change and increased artificial light at night (ALAN). Activity patterns are often driven by light cycles, which will have important consequences for species interactions. We tested whether longer photoperiods lead to higher parasitism rates by a day-active parasitoid on its host using a laboratory experiment in which we independently varied daylength and the presence of ALAN. We then tested whether reduced nighttime temperature tempers the effect of ALAN. We found that parasitism rate increased with daylength, with ALAN intensifying this effect only when the temperature was not reduced at night. The impact of ALAN was more pronounced under short daylength. Increased parasitoid activity was not compensated for by reduced life span, indicating that increased daylength leads to an increase in total parasitism effects on fitness. To test the significance of increased parasitism rate for population dynamics, we developed a host-parasitoid model. The results of the model predicted an increase in time-to-equilibrium with increased daylength and, crucially, a threshold daylength above which interactions are unstable, leading to local extinctions. Here we demonstrate that ALAN impact interacts with daylength and temperature by changing the interaction strength between a common day-active consumer species and its host in a predictable way. Our results further suggest that range expansion or ALAN-induced changes in light regimes experienced by insects and their natural enemies will result in unstable dynamics beyond key tipping points in daylength.
Collapse
Affiliation(s)
- Rachel Kehoe
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Dave Cruse
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Matthew Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK.,Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Frank van Veen
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
4
|
Lu C, Tang J, Dong W, Zhou Y, Gai X, Lin H, Song D, Liang G. A new species of Glyptapanteles Ashmead (Hymenoptera, Braconidae, Microgastrinae) within Macrobrochis gigas (Lepidoptera, Arctiidae, Lithosiidae) in Fujian, China. Zookeys 2020; 913:127-139. [PMID: 32132851 PMCID: PMC7044263 DOI: 10.3897/zookeys.913.46646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 11/28/2022] Open
Abstract
The south-east coastal area of Fujian, China, belongs to the Oriental Realm, and is characterized by a high insect species richness. In this work, a new species of Hymenopteran parasitoid, Glyptapantelesgigas Liang & Song, sp. nov. found in Jinjiang within hosts of caterpillars Macrobrochisgigas (Lepidoptera: Arctiidae), is described and illustrated, with differences from similar species. Additionally, we presumed that both parasitoid and host species play very important role in the coevolution and tritrophic interaction between plants, phytophagous insects, and their parasitoids, because these insects probably broke the sporangia and made contributions to their colonization, or some spores were spread for long distances by adult moths after their emergence, or some parasitoids were attracted by the eggs and larvae of these caterpillars, which was also thought to be helpful to spread of spores.
Collapse
|
5
|
Kehoe RC, Cruse D, Sanders D, Gaston KJ, van Veen FJF. Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics. Ecol Evol 2018; 8:8761-8769. [PMID: 30271543 PMCID: PMC6157684 DOI: 10.1002/ece3.4401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under "southern" summer conditions of 14.5-hr daylight to "northern" summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.
Collapse
Affiliation(s)
- Rachel C. Kehoe
- College of Life and Environmental SciencesUniversity of ExeterPenrynCornwallUK
| | - David Cruse
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | - Dirk Sanders
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | - Kevin J. Gaston
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | | |
Collapse
|
6
|
Abstract
Current species extinction rates are at unprecedentedly high levels. While human activities can be the direct cause of some extinctions, it is becoming increasingly clear that species extinctions themselves can be the cause of further extinctions, since species affect each other through the network of ecological interactions among them. There is concern that the simplification of ecosystems, due to the loss of species and ecological interactions, increases their vulnerability to such secondary extinctions. It is predicted that more complex food webs will be less vulnerable to secondary extinctions due to greater trophic redundancy that can buffer against the effects of species loss. Here, we demonstrate in a field experiment with replicated plant-insect communities, that the probability of secondary extinctions is indeed smaller in food webs that include trophic redundancy. Harvesting one species of parasitoid wasp led to secondary extinctions of other, indirectly linked, species at the same trophic level. This effect was markedly stronger in simple communities than for the same species within a more complex food web. We show that this is due to functional redundancy in the more complex food webs and confirm this mechanism with a food web simulation model by highlighting the importance of the presence and strength of trophic links providing redundancy to those links that were lost. Our results demonstrate that biodiversity loss, leading to a reduction in redundant interactions, can increase the vulnerability of ecosystems to secondary extinctions, which, when they occur, can then lead to further simplification and run-away extinction cascades.
Collapse
|
7
|
Terry JCD, Morris RJ, Bonsall MB. Trophic interaction modifications: an empirical and theoretical framework. Ecol Lett 2017; 20:1219-1230. [PMID: 28921859 PMCID: PMC6849598 DOI: 10.1111/ele.12824] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/01/2017] [Accepted: 07/17/2017] [Indexed: 12/01/2022]
Abstract
Consumer-resource interactions are often influenced by other species in the community. At present these 'trophic interaction modifications' are rarely included in ecological models despite demonstrations that they can drive system dynamics. Here, we advocate and extend an approach that has the potential to unite and represent this key group of non-trophic interactions by emphasising the change to trophic interactions induced by modifying species. We highlight the opportunities this approach brings in comparison to frameworks that coerce trophic interaction modifications into pairwise relationships. To establish common frames of reference and explore the value of the approach, we set out a range of metrics for the 'strength' of an interaction modification which incorporate increasing levels of contextual information about the system. Through demonstrations in three-species model systems, we establish that these metrics capture complimentary aspects of interaction modifications. We show how the approach can be used in a range of empirical contexts; we identify as specific gaps in current understanding experiments with multiple levels of modifier species and the distributions of modifications in networks. The trophic interaction modification approach we propose can motivate and unite empirical and theoretical studies of system dynamics, providing a route to confront ecological complexity.
Collapse
Affiliation(s)
| | - Rebecca J. Morris
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Biological Sciences, Faculty of Natural and Environmental SciencesUniversity of SouthamptonLife Sciences Building 85Highfield CampusSouthamptonSO17 1BJUK
| | - Michael B. Bonsall
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- St. Peter's CollegeNew Inn Hall StreetOxfordOX1 2DLUK
| |
Collapse
|
8
|
Sanders D, Kehoe R, van Veen FF, McLean A, Godfray HCJ, Dicke M, Gols R, Frago E. Defensive insect symbiont leads to cascading extinctions and community collapse. Ecol Lett 2017; 19:789-99. [PMID: 27282315 PMCID: PMC4949664 DOI: 10.1111/ele.12616] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 04/10/2016] [Indexed: 12/19/2022]
Abstract
Animals often engage in mutualistic associations with microorganisms that protect them from predation, parasitism or pathogen infection. Studies of these interactions in insects have mostly focussed on the direct effects of symbiont infection on natural enemies without studying community‐wide effects. Here, we explore the effect of a defensive symbiont on population dynamics and species extinctions in an experimental community composed of three aphid species and their associated specialist parasitoids. We found that introducing a bacterial symbiont with a protective (but not a non‐protective) phenotype into one aphid species led to it being able to escape from its natural enemy and increase in density. This changed the relative density of the three aphid species which resulted in the extinction of the two other parasitoid species. Our results show that defensive symbionts can cause extinction cascades in experimental communities and so may play a significant role in the stability of consumer‐herbivore communities in the field.
Collapse
Affiliation(s)
- Dirk Sanders
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Rachel Kehoe
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Fj Frank van Veen
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Ailsa McLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, Wageningen, 6700AA, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16, Wageningen, 6700AA, The Netherlands
| | - Enric Frago
- Laboratory of Entomology, Wageningen University, P.O. Box 16, Wageningen, 6700AA, The Netherlands
| |
Collapse
|