1
|
Feng WL, Yang JL, Xu LG, Zhang GL. The spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil in the terrestrial ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175543. [PMID: 39153619 DOI: 10.1016/j.scitotenv.2024.175543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Carbon(C), nitrogen(N), and phosphorus(P) are crucial elements in the element cycling in the terrestrial ecosystems. In the past decades, the spatial patterns and driving mechanisms of plant and soil ecological stoichiometry have been hot topics in ecological geography. So far, many studies at different spatial and ecological scales have been conducted, but systematic review has not been reported to summarize the research status. In this paper, we tried to fill this gap by reviewing both the spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil at regional to large scale. Additionally, we synthesized researches on the relationships between plant and soil C, N and P stoichiometric characteristics. At the global scale, plant C, N, P stoichiometric characteristics exhibited some trends along latitude and temperature gradient. Plant taxonomic classification was the main factor controlling the spatial variations of plant C, N and P stoichiometric characteristics. Climate factor and soil properties showed varying impacts on the spatial variations of plant C, N, P stoichiometric characteristics across different spatial scales. Soil C, N, P stoichiometric characteristics also varied along climate gradient at large scale. Their spatial variations resulted from the combined effects of climate, topography, soil properties, and vegetation characteristics at regional scale. The spatial pattern of soil C, N, P stoichiometric characteristics and the driving effects from environmental factors could be notably different among different ecosystems and vegetation types. Plant C:N:P was obviously higher than that of soil, and there existed a positive correlation between plant and soil C:N:P. Their trends along longitude and latitude were similar, but this correlation varied significantly among different vegetation types. Finally, based on the issues identified in this paper, we highlighted eight potential research themes for the future studies.
Collapse
Affiliation(s)
- Wen-Lan Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Gang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Zhao Y, Chen H, Sun H, Yang F. In the Qaidam Basin, Soil Nutrients Directly or Indirectly Affect Desert Ecosystem Stability under Drought Stress through Plant Nutrients. PLANTS (BASEL, SWITZERLAND) 2024; 13:1849. [PMID: 38999689 PMCID: PMC11244565 DOI: 10.3390/plants13131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
The low nutrient content of soil in desert ecosystems results in unique physiological and ecological characteristics of plants under long-term water and nutrient stress, which is the basis for the productivity and stability maintenance of the desert ecosystem. However, the relationship between the soil and the plant nutrient elements in the desert ecosystem and its mechanism for maintaining ecosystem stability is still unclear. In this study, 35 sampling sites were established in an area with typical desert vegetation in the Qaidam Basin, based on a drought gradient. A total of 90 soil samples and 100 plant samples were collected, and the soil's physico-chemical properties, as well as the nutrient elements in the plant leaves, were measured. Regression analysis, redundancy analysis (RDA), the Theil-Sen Median and Mann-Kendall methods, the structural equation model (SEM), and other methods were employed to analyze the distribution characteristics of the soil and plant nutrient elements along the drought gradient and the relationship between the soil and leaf nutrient elements and its impact on ecosystem stability. The results provided the following conclusions: Compared with the nutrient elements in plant leaves, the soil's nutrient elements had a more obvious regularity of distribution along the drought gradient. A strong correlation was observed between the soil and leaf nutrient elements, with soil organic carbon and alkali-hydrolyzed nitrogen identified as important factors influencing the leaf nutrient content. The SEM showed that the soil's organic carbon had a positive effect on ecosystem stability by influencing the leaf carbon, while the soil's available phosphorus and the mean annual temperature had a direct positive effect on stability, and the soil's total nitrogen had a negative effect on stability. In general, the soil nutrient content was high in areas with a low mean annual temperature and high precipitation, and the ecosystem stability in the area distribution of typical desert vegetation in the Qaidam Basin was low. These findings reveal that soil nutrients affect the stability of desert ecosystems directly or indirectly through plant nutrients in the Qaidam Basin, which is crucial for maintaining the stability of desert ecosystems with the background of climate change.
Collapse
Affiliation(s)
| | - Hui Chen
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.Z.); (H.S.); (F.Y.)
| | | | | |
Collapse
|
3
|
Chen X, Hou G, Shi P, Zong N, Yu J. Functional Groups Dominate Aboveground Net Primary Production under Long-Term Nutrient Additions in a Tibetan Alpine Meadow. PLANTS (BASEL, SWITZERLAND) 2024; 13:344. [PMID: 38337876 PMCID: PMC10857096 DOI: 10.3390/plants13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Anthropogenic nutrient additions are influencing the structure and function of alpine grassland ecosystems. However, the underlying mechanisms of the direct and indirect effects of nutrient additions on aboveground net primary productivity (ANPP) are not well understood. In this study, we conducted an eight-year field experiment to explore the ecological consequences of nitrogen (N) and/or phosphorous (P) additions on the northern Tibetan Plateau. ANPP, species diversity, functional diversity, and functional groups were used to assess species' responses to increasing nutrients. Our results showed that nutrient additions significantly increased ANPP due to the release in nutrient limitations. Although N addition had a significant effect on species richness and functional richness, and P and N + P additions altered functional diversity, it was functional groups rather than biodiversity that drove changes in ANPP in the indirect pathways. We identified the important roles of N and P additions in begetting the dominance of grasses and forbs, respectively. The study highlights that the shift of functional groups should be taken into consideration to better predict the structure, function, and biodiversity-ANPP relationship in grasslands, particularly under future multifaceted global change.
Collapse
Affiliation(s)
- Xueying Chen
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Yu J, Hou G, Shi P, Zong N, Peng J. Nitrogen rather than phosphorous addition alters the asymmetric responses of primary productivity to precipitation variability across a precipitation gradient on the northern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167856. [PMID: 37866615 DOI: 10.1016/j.scitotenv.2023.167856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Understanding the response of alpine grassland productivity to precipitation fluctuations is essential for assessing the future changes of ecosystem services. However, the underlying mechanism by which grassland productivity responds to wet and dry years after nitrogen (N) or/and phosphorus (P) nutrient addition remains unclear. In this study, we investigated the dynamics of plant communities based on eight-year N or/and P addition gradient experiments in four grassland types across a precipitation gradient on the north Tibetan Plateau. The asymmetry index (AI) was used to evaluate the responses of aboveground net primary productivity (ANPP) to precipitation fluctuations where AI > 0 indicates a greater increase of ANPP in wet years compared to the decline in dry years, and AI < 0 indicates a greater decline of ANPP in dry years compared to the increase in wet years. Our results showed that the AI values at community level in four natural grasslands were non-significant trend across the precipitation gradient, and showed slightly negative asymmetry, suggesting that the increase of ANPP in wet years was less than the decrease in dry years. N addition resulted in a significant decrease in community-level AI values with increasing mean annual precipitation (MAP), indicating that improved nutrient availability may favor the recovery of productivity in drier grasslands in wet years. At the functional group level, nutrient addition resulted in a significant decrease in the AI values of grasses and legumes and an increase in the AI values of forbs as MAP increased. Furthermore, the coupling of nutrients with precipitation can influence the productivity responses to precipitation changes by affecting soil nutrient availability and species richness. This research provides new insights into better predicting vegetation activity on N deposition rates and precipitation changes exacerbated in the context of climate change.
Collapse
Affiliation(s)
- Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Tang S, Lin X, Li W, Guo C, Han J, Yu L. Nutrient resorption responses of female and male Populus cathayana to drought and shade stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13980. [PMID: 37616009 DOI: 10.1111/ppl.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Nutrient resorption can increase nutrient use and play important roles in terrestrial plant nutrient cycles. Although several studies have reported individual responses of plant nutrient resorption to drought or shade stress, the interaction of drought and shade remains unclear, especially for dioecious plants. This study explored whether nutrient resorption is correlated to growth characteristics (such as biomass and root/shoot ratio [R/S ratio]) and leaf economics (such as leaf thickness, leaf mass per area [LMA] and leaf vein density [LVD]) in female and male Populus cathayana across different conditions. We found that drought stress significantly increased nitrogen (N) resorption efficiency (NRE) in both sexes, but shade and interactive stress decreased NRE in P. cathayana females. Under drought stress, nutrient resorption was sexually dimorphic such that P. cathayana males have higher NRE than females. Furthermore, NRE and phosphorous (P) resorption efficiency (PRE) were positively related to R/S ratio, leaf thickness, LMA, and LVD in both sexes across different treatments. Our study is the first to present how nutrient resorption is related to biomass accumulation and allocation, and leaf economics, suggesting that nutrient uptake may be modulated by R/S ratio and leaf economics, which is important for understanding the conservation mechanism of plant nutrients.
Collapse
Affiliation(s)
- Shuanglei Tang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiazhen Lin
- Teaching Center, Zhejiang Open University, Hangzhou, China
| | - Wen Li
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chengjin Guo
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jungang Han
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, China
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Chibowski P, Zegarek M, Zarzycka A, Suska‐Malawska M. Ecosystem engineers in the extreme: The modest impact of marmots on vegetation cover and plant nitrogen and phosphorus content in a cold, extremely arid mountain environment. Ecol Evol 2023; 13:e9948. [PMID: 36993151 PMCID: PMC10041373 DOI: 10.1002/ece3.9948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Burrowing mammals strongly impact plant communities. One of the main effects is accelerating nutrient cycling and thus promoting plant growth. This mechanism is well-studied in grasslands and alpine habitats, but less is known about this phenomenon in arid, cold mountain environments. We studied ecosystem engineering by long-tailed marmots (Marmota caudata) by measuring the content of plant nitrogen and phosphorus, as well as nitrogen stable isotopes in plant biomass and marmot feces in a distance gradient up to 20 m from marmot burrows in an extremely arid glacier valley in Eastern Pamir, Tajikistan. We also captured aerial images of the area inhabited by marmots to study the spatial distribution of vegetation. There was a weak relationship between the presence of burrows and vegetation cover on soil not covered by burrow material. Burrow mounds were not colonized by plants, as opposed to other studies, where mounds are often microhabitats that enhance plant diversity. A significant increase in N and P in aboveground green plant biomass in the proximity of burrows was found in one out of six studied plant species. Contrary to our expectations, stable N isotopes did not give further insight into N routing. We assume that plant growth is strongly limited by water availability, which prevents them from utilizing the local increase in nutrients, certainly provided by marmot activity. The results are contrary to numerous studies, which showed that the role of burrowing animals as ecosystem engineers increases with increasing abiotic stress, including aridity. This shows a lack of this type of study at the end of the gradient of abiotic factors.
Collapse
Affiliation(s)
- Piotr Chibowski
- Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Marcin Zegarek
- Mammal Research InstitutePolish Academy of SciencesWarsawPoland
| | - Aleksandra Zarzycka
- Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | | |
Collapse
|
7
|
Hou G, Zhou T, Sun J, Zong N, Shi P, Yu J, Song M, Zhu J, Zhang Y. Functional identity of leaf dry matter content regulates community stability in the northern Tibetan grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156150. [PMID: 35613643 DOI: 10.1016/j.scitotenv.2022.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Biodiversity-stability mechanisms have been the focus of many long-term community stability studies. Community functional composition (i.e., functional diversity and functional identity of community plant functional traits) is critical for community stability; however, this topic has received less attention in large-scale studies. Here, we combined a field survey of biodiversity and plant functional traits in 22 alpine grassland sites throughout the northern Tibetan Plateau with 20 years of satellite-sensed proxy data (enhanced vegetation index) of community productivity to identify the factors influencing community stability. Our results showed that functional composition influenced community stability the most, explaining 61.71% of the variation in community stability (of which functional diversity explained 18.56% and functional identity explained 43.15%), which was a higher contribution than that of biodiversity (Berger-Parker index and species evenness; 35.04%). Structural equation modeling suggested that functional identity strongly affected community stability, whereas biodiversity had a minor impact. Furthermore, functional identity of leaf dry matter content regulated community stability by enhancing species dominance (Berger-Parker index). Our findings demonstrate that functional composition, specifically functional identity, plays a key role in community stability, highlighting the importance of functional identity in understanding and revealing the stabilizing mechanisms in these fragile alpine ecosystems which are subjected to increasing environmental fluctuations.
Collapse
Affiliation(s)
- Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tiancai Zhou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Minghua Song
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangjian Zhang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Yu J, Hou G, Zhou T, Shi P, Zong N, Sun J. Variation of plant CSR strategies across a precipitation gradient in the alpine grasslands on the northern Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156512. [PMID: 35679928 DOI: 10.1016/j.scitotenv.2022.156512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Identifying ecological strategies based on functional traits can help us better understand plants' adaptations and changes in ecological processes, and thus predict the impact of climate change on ecosystems, especially in the vulnerable alpine grasslands. Herein, we investigated the plant CSR strategies of four grassland types (alpine meadows, AM; alpine meadow steppes, AMS; alpine steppes, AS; and alpine desert steppes, ADS) and its functional groups (grasses, sedges, legumes, and forbs) along the east-to-west gradient of decreasing precipitation on the northern Tibetan grasslands by using Grime's CSR (C: competitor, S: stress tolerator, and R: ruderal) analysis. Although alpine grasslands were dominated by S-strategy, our results also indicated that AM with higher water, nitrogen (N) and phosphorus (P) availability had significantly lower S-strategy values and relatively higher C- and R-strategy values (C: S: R = 6: 63: 31 %) than those in AMS (C: S: R = 3: 94: 3 %,), AS (C: S: R = 3: 87: 10 %), and ADS (C: S: R = 1: 94: 5 %). The CSR strategy values of forbs and legumes showed greater variability compared with grasses and sedges in the environmental gradient. Furthermore, water variability on the precipitation gradient eventually affected plant traits and CSR strategies through soil N and P availability and pH. Our findings highlighted that plant CSR strategies were regulated by the availability of soil resources, and plants adopted more flexible adaptation strategies in relatively resource-rich environments. This study sheds light on the mechanisms of plant adaptation to the changing environment in the alpine grasslands.
Collapse
Affiliation(s)
- Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tiancai Zhou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhang J, Tang Z, Wang W, Zhang H, Liu Y, Xin Y, Zhao L, Li H. Nutrient resorption responses of plant life forms to nitrogen addition in temperate shrublands. Ecosphere 2022. [DOI: 10.1002/ecs2.4143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jianhua Zhang
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Zhiyao Tang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Lab for Earth Surface Processes of the Ministry of Education Peking University Beijing China
| | - Wenting Wang
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Hufang Zhang
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Yong Liu
- Institute of Loess Plateau Shanxi University Taiyuan China
| | - Yanhua Xin
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Lijuan Zhao
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - He Li
- Department of Geographical Sciences, School of Geography, Geomatics and Planning Jiangsu Normal University Xuzhou China
| |
Collapse
|
10
|
Wu S, Wen L, Dong S, Gao X, Xu Y, Li S, Dong Q, Wessell K. The Plant Interspecific Association in the Revegetated Alpine Grasslands Determines the Productivity Stability of Plant Community Across Restoration Time on Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:850854. [PMID: 35386668 PMCID: PMC8978524 DOI: 10.3389/fpls.2022.850854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Grassland cultivation is the key measure for restoring "Black Beach," the extremely degraded alpine meadow in the Three River Headwater Area of the Qinghai-Tibetan Plateau. In this study, we examined the inter-specific relationship in the vegetation community of cultivated grasslands with different restoration times through the network analysis method. The results showed that with the extension of restoration time, the development of cultivated grassland would lead to increasing neutral interactions among the plant species. The proportion of species with positive and negative associations in the community decreased, while the number of species-independent pairs increased significantly. The complexity of plant interspecific association (species network density) had more influence on community stability with the extension of recovery time, which can be used to quantify the characteristics of community structure.
Collapse
Affiliation(s)
- Shengnan Wu
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Lu Wen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xiaoxia Gao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yudan Xu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, China
| | - Shuai Li
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Quanming Dong
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Kelly Wessell
- Tompkins Cortland Community College, Dryden, NY, United States
| |
Collapse
|
11
|
Zhang B, Tang G, Yin H, Zhao S, Shareef M, Liu B, Gao X, Zeng F. Groundwater Depths Affect Phosphorus and Potassium Resorption but Not Their Utilization in a Desert Phreatophyte in Its Hyper-Arid Environment. FRONTIERS IN PLANT SCIENCE 2021; 12:665168. [PMID: 34163505 PMCID: PMC8216241 DOI: 10.3389/fpls.2021.665168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 05/30/2023]
Abstract
Nutrients are vital for plant subsistence and growth in nutrient-poor and arid ecosystems. The deep roots of phreatophytic plants are necessary to access groundwater, which is the major source of nutrients for phreatophytes in an arid desert ecosystem. However, the mechanisms through which changes in groundwater depth affect nutrient cycles of phreatophytic plants are still poorly understood. This study was performed to reveal the adaptive strategies involving the nutrient use efficiency (NUE) and nutrient resorption efficiency (NRE) of desert phreatophytes as affected by different groundwater depths. This work investigated the nitrogen (N), phosphorus (P), and potassium (K) concentrations in leaf, stem, and assimilating branch, as well as the NUE and NRE of the phreatophytic Alhagi sparsifolia. The plant was grown at groundwater depths of 2.5, 4.5, and 11.0 m during 2015 and 2016 in a desert-oasis transition ecotone at the southern rim of the Taklimakan Desert in northwestern China. Results show that the leaf, stem, and assimilating branch P concentrations of A. sparsifolia at 4.5 m groundwater depth were significantly lower than those at 2.5 and 11.0 m groundwater depths. The K concentrations in different tissues of A. sparsifolia at 4.5 m groundwater depth were significantly higher than those at 2.5 and 11.0 m groundwater depths. Conversely, the NRE of P in A. sparsifolia was the highest among the three groundwater depths, while that of K in A. sparsifolia was the lowest among the three groundwater depths in 2015 and 2016. The N concentration and NUE of N, P, and K in A. sparsifolia, however, were not influenced by groundwater depth. Further analyses using structural equation models showed that groundwater depth had significant effects on the P and K resorption of A. sparsifolia by changing soil P and senescent leaf K concentrations. Overall, our results suggest groundwater depths affect P and K concentrations and resorption but not their utilization in a desert phreatophyte in its hyper-arid environment. This study provides a new insight into the phreatophytic plant nutrient cycle strategy under a changing external environment in a hyper-arid ecosystem.
Collapse
Affiliation(s)
- Bo Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
| | - Gangliang Tang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
| | - Hui Yin
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
| | - Shenglong Zhao
- Northwest Institute of Eco-Environment and Resources, Academy of Science, Lanzhou, China
| | - Muhammad Shareef
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
| | - Bo Liu
- College of Resources and Environment, Linyi University, Linyi, China
| | - Xiaopeng Gao
- Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
12
|
Tong R, Zhou B, Jiang L, Ge X, Cao Y, Shi J. Leaf litter carbon, nitrogen and phosphorus stoichiometry of Chinese fir (Cunninghamia lanceolata) across China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Yan Y, Lu X. Are N, P, and N:P stoichiometry limiting grazing exclusion effects on vegetation biomass and biodiversity in alpine grassland? Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Oikawa S, Matsui Y, Oguro M, Okanishi M, Tanabe R, Tanaka T, Togashi A, Itagaki T. Species-specific nitrogen resorption proficiency in legumes and nonlegumes. JOURNAL OF PLANT RESEARCH 2020; 133:639-648. [PMID: 32623531 DOI: 10.1007/s10265-020-01211-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N) resorption from senescing leaves enables plants to reuse N, thereby making them less dependent on current N uptake from the environment. Therefore, N resorption is important for survival and fitness, particularly for plants growing under low N supply. We studied N resorption from senescing leaves of 25 legumes and 25 nonlegumes in a temperate region of Japan to test the hypothesis that high N resorption has not evolved in legumes that fix atmospheric N2. The extent of N resorption was quantified by N resorption proficiency that is measured as the level to which leaf N concentration was reduced during senescence, i.e., the lower the senesced leaf N concentration, the lower the N loss through leaf fall and higher the N resorption proficiency. In support of the hypothesis, senesced leaf N concentration was higher in legumes than in nonlegumes, but there was considerable overlap between the groups. The higher senesced leaf N concentration of legumes was associated with a lower proportion of leaf N resorbed during senescence, particularly in species with higher leaf N concentrations. According to a hierarchical partitioning analysis, there was a large contribution of species to the total variance in the senesced leaf N concentration as opposed to a minor contribution of functional group (legume/nonlegume). This study reveals that legumes are not proficient at resorbing N from senescing leaves but that N2-fixation might not be the single most important determinant of N resorption.
Collapse
Affiliation(s)
- Shimpei Oikawa
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan.
| | - Yusuke Matsui
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan
| | - Michio Oguro
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Masanori Okanishi
- Graduate School of Science, Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Ryo Tanabe
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan
| | - Tomoki Tanaka
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan
| | - Ayaka Togashi
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan
| | - Tomoyuki Itagaki
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
15
|
Zhao Q, Guo J, Shu M, Wang P, Hu S. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138106. [PMID: 32222509 DOI: 10.1016/j.scitotenv.2020.138106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 05/18/2023]
Abstract
Plant nutrient resorption, a process by which plant withdraws nutrients from senescing structures to developing tissues, can significantly affect plant growth, litter decomposition and nutrient cycling. Global change factors, such as nitrogen (N) deposition and altered precipitation, may mediate plant nutrient resorption and allocation. The ongoing global change is accompanied with increased N inputs and drought frequency in many regions. However, the interactive effects of increased N availability and drought on plant nutrient-responses remain largely unclear. In a pot experiment, we examined the impacts of N enrichment and drought on leaf N and phosphorous (P) resorption and root nutrient allocation in four species from the Qinghai-Tibet Plateau, including two graminoid species (Kobresia capillifolia and Elymus nutans) and two forb species (Delphinium kamaonense and Aster diplostephioides). Our results showed divergent resorption patterns within the two functional groups. E. nutans and D. kamaonense showed stronger N resorption than K. capillifolia and A. diplostephioides. N addition did not alter their N resorption efficiencies, but decreased the N resorption proficiencies of the former two species. In contrast, drought did not affect N or P resorption proficiencies, but decreased N resorption efficiency of K. capillifolia. Besides, N addition facilitated P resorption in K. capillifolia and D. kamaonense, and drought did the same in A. diplostephioides, suggesting that P resorption plays an important role in nutrient conservation in these species. Moreover, species with stronger N resorption allocated more biomass C or N to aboveground and enhanced their litter quality under N enrichment, while species with weaker resorption allocated more biomass C and/or N to belowground part under drought. Together, these results show that the responses of nutrient resorption and allocation to N enrichment and drought are highly species-specific. Future studies should take these differential responses into consideration to better predict litter decomposition and ecosystem nutrient cycling.
Collapse
Affiliation(s)
- Qingzhou Zhao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jin Guo
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng Shu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Peng Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shuijin Hu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
16
|
Zhang B, Zhang H, Jing Q, Wu Y, Ma S. Differences in species diversity, biomass, and soil properties of five types of alpine grasslands in the Northern Tibetan Plateau. PLoS One 2020; 15:e0228277. [PMID: 32027662 PMCID: PMC7004366 DOI: 10.1371/journal.pone.0228277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/12/2020] [Indexed: 11/19/2022] Open
Abstract
Approximately 94% of the land area of the Northern Tibetan Plateau is covered by grasslands, which comprise one of five key livestock producing regions in China. In contrast to most other regions worldwide, these alpine grasslands are much more sensitive to global climate change, thus they are under intense study. The differences in species diversity, plant biomass, and soil properties of five representative's alpine grassland types in the Northern Tibetan Plateau were investigated in this research. The results revealed that 11 community types were identified according to the importance of dominant species and constructive species. There were significant differences in the Margalef index (H), Simpson diversity index (D), Shannon-wiener diversity index (H'), and Pielou evenness index (J) indices between these five alpine grasslands. Further, the above-ground biomass (AGB), below-ground biomass (BGB), total biomass (TB), root:shoot (R/S) ratio, and coverage showed significant differences in 5 alpine grasslands. There were also considerable variations in the pH, total nitrogen concentration (TN), total phosphorus concentration (TP), soil organic carbon (SOC) and C-to-N ratio (C:N) among the five alpine grasslands. The highest value of biomass and soil characteristics was always in the alpine steppe (AS), or AM, while the lowest of that was in the alpine desert steppe (ADS), or alpine desert (AD). Moreover, there were significant differences in the soil particle size fractions between the five alpine grasslands. In the AM and AS, the dominant soil particle was clay, while in the alpine meadow-steppe (AMS), ADS, and AD it was fine and medium sand. Substantial correlations were found between the biomass and species diversity indices H, D or H' and soil TN, TP, or SOC. Moreover, silt had a significantly positive correlation with soil C:N, BGB, TB, and R/S, while medium sand and coarse sand was significant negatively correlated. With regard to these grassland types, it is proposed that the AM or AS may be an actively changing grassland types in the Northern Tibetan Plateau.
Collapse
Affiliation(s)
- Beibei Zhang
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, China
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Hui Zhang
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, China
| | - Qi Jing
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, China
| | - Yuexuan Wu
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, China
| | - Shuqin Ma
- College of Tourism, Henan Normal University, Xinxiang, China
| |
Collapse
|
17
|
Zong N, Song M, Zhao G, Shi P. Nitrogen economy of alpine plants on the north Tibetan Plateau: Nitrogen conservation by resorption rather than open sources through biological symbiotic fixation. Ecol Evol 2020; 10:2051-2061. [PMID: 32128137 PMCID: PMC7042762 DOI: 10.1002/ece3.6038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4-6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient-poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.
Collapse
Affiliation(s)
- Ning Zong
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Minghua Song
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Guangshuai Zhao
- China National Forestry-Grassland Economics and Development Research CenterNational Forestry and Grassland AdministrationBeijingChina
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Bahamonde HA, Fernández V, Gyenge J, Mattenet F, Peri PL. Essential Nutrient and Trace Element Foliar Resorption of Two Co-Existing Nothofagus Species Grown Under Different Environmental Conditions in Southern Patagonia. FRONTIERS IN PLANT SCIENCE 2019; 10:1542. [PMID: 31827482 PMCID: PMC6890610 DOI: 10.3389/fpls.2019.01542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Nutrient resorption is crucial for mineral element conservation and efficiency of forest species, but knowledge on its significance and the mechanisms involved is still limited for most species and habitats. Focusing on the harsh conditions for plant growth and survival of southern Patagonia, a field study for comparing the rate of foliar resorption of macro-, micro-nutrients, and trace elements in coexisting Nothofagus pumilio and Nothofagus antarctica forests was performed. Forests located in three contrasting productivity sites (with different soil and climatic conditions) were selected, and mature, functional versus senescent leaves of both species were collected at two different dates of the growing season. Macro- (N, P, Ca, K, S, and Mg), micronutrients (B, Cu, Fe, Mn, Zn, and Ni), and trace elements (Al, Li, Pb, Rb, Sr, Ti, and Tl) were determined in foliar tissues. The mineral element concentrations of mature and senescent leaves were used for calculating the nutrient resorption efficiency (NuR). In general, and making an average of all sites and species, macro-nutrient resorption showed a decreasing trend for N > S = K > P > Mg, being Ca the only macro-nutrient with negative values (i.e., no resorption). Resorption of the majority of the elements did not vary between species in any of the evaluated sites. Variation across sites in nutrient resorption efficiency for most macronutrients, some micronutrients, and trace elements was observed for N. antarctica, whereas N. pumilio had a similar NuR for all experimental sites. On the other hand, regardless of the site or the species, some elements were not resorbed (e.g., B, Cu, Fe, Mn, Al, and Ti). It is concluded that both Nothofagus species performed similarly concerning their nutrient conservation strategy, when coexisting in the same mixed forest. However, no evidence was gained for an increased rate of foliar NuR in association with the sites subjected to more limiting soil and climatic conditions for plant growth.
Collapse
Affiliation(s)
- Héctor A. Bahamonde
- Department of Forestry Research, Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Cruz, Argentina
- Department of Natural Resources, Universidad Nacional de la Patagonia Austral (UNPA), Río Gallegos, Argentina
| | - Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Javier Gyenge
- Department of Ecophysiology Research, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- AER Tandil, EEA Balcarce INTA, Tandil, Argentina
| | - Francisco Mattenet
- Department of Forestry Research, Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Cruz, Argentina
| | - Pablo L. Peri
- Department of Forestry Research, Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Cruz, Argentina
- Department of Natural Resources, Universidad Nacional de la Patagonia Austral (UNPA), Río Gallegos, Argentina
- Department of Ecophysiology Research, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Zong N, Zhao G, Shi P. Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau. Ecol Evol 2019; 9:9782-9793. [PMID: 31534693 PMCID: PMC6745826 DOI: 10.1002/ece3.5514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/29/2022] Open
Abstract
The increase in atmospheric nitrogen (N) deposition has resulted in some terrestrial ecological changes. In order to identify the response of sensitive indicators to N input and estimate the sensitivity and saturation thresholds in alpine grasslands, we set up a series of multilevel N addition experiments in four types of alpine grasslands (alpine meadow [AM], alpine meadow-steppe [AMS], alpine steppe [AS], and alpine desert-steppe [ADS]) along with a decreasing precipitation gradient from east to west on the Northern Tibetan Plateau. N addition only had significant effects on species diversity in AMS, while had no effects on the other three alpine grasslands. Aboveground biomass of grasses and overall community in ADS were enhanced with increasing N addition, but such effects did not occur in AS. Legume biomass in ADS and AS showed similar unimodal patterns and exhibited a decreasing tend in AM. Regression fitting showed that the most sensitive functional groups were grasses, and the N saturation thresholds were 103, 115, 136, and 156 kg N hm-2 year-1 in AM, AMS, AS, and ADS, respectively. This suggests that alpine grasslands become more and more insensitive to N input with precipitation decrease. N saturation thresholds also negatively correlated with soil N availability. N sensitivity differences caused by precipitation and nutrient availability suggest that alpine grasslands along the precipitation gradient will respond differently to atmospheric N deposition in the future global change scenario. This different sensitivity should also be taken into consideration when using N fertilization to restore degraded grasslands.
Collapse
Affiliation(s)
- Ning Zong
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Guangshuai Zhao
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- China National Forestry Economics and Development Research CenterBeijingChina
| | - Peili Shi
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
20
|
Abstract
Nutrient resorption from senescing leaves is one of the plants’ essential nutrient conservation strategies. Parameters associated with resorption are important nutrient-cycling constraints for accurate predictions of long-term primary productivity in forest ecosystems. However, we know little about the spatial patterns and drivers of leaf nutrient resorption in planted forests worldwide. By synthesizing results of 146 studies, we explored nitrogen (N) and phosphorus (P) resorption efficiency (NRE and PRE) among climate zones and tree functional types, as well as the factors that play dominant roles in nutrient resorption in plantations globally. Our results showed that the mean NRE and PRE were 58.98% ± 0.53% and 60.21% ± 0.77%, respectively. NRE significantly increased from tropical to boreal zones, while PRE did not significantly differ among climate zones, suggesting differential impacts of climates on NRE and PRE. Plant functional types exert a strong influence on nutrient resorption. Conifer trees had higher PRE than broadleaf trees, reflecting the adaptation of the coniferous trees to oligotrophic habitats. Deciduous trees had lower PRE than evergreen trees that are commonly planted in P-limited low latitudes and have long leaf longevity with high nutrient use efficiency. While non-N-fixing trees had higher NRE than N-fixing trees, the PRE of non-N-fixing trees was lower than that of N-fixing trees, indicating significant impact of the N-fixing ability on the resorption of N and P. Our multivariate regression analyses showed that variations in NRE were mainly regulated by climates (mean annual precipitation and latitude), while variations in PRE were dominantly controlled by green leaf nutrient concentrations (N and P). Our results, in general, suggest that the predicted global warming and changed precipitation regimes may profoundly affect N cycling in planted forests. In addition, green leaf nutrient concentrations may be good indicators for PRE in planted forests.
Collapse
|
21
|
Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. REMOTE SENSING 2019. [DOI: 10.3390/rs11030360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The timing regimes of precipitation can exert profound impacts on grassland ecosystems. However, it is still unclear how the peak aboveground biomass (AGBpeak) of alpine grasslands responds to the temporal variability of growing season precipitation (GSP) on the northern Tibetan Plateau. Here, the temporal variability of precipitation was defined as the number and intensity of precipitation events as well as the time interval between consecutive precipitation events. We conducted annual field measurements of AGBpeak between 2009 and 2016 at four sites that were representative of alpine meadow, meadow-steppe, alpine steppe, and desert-steppe. Thus, an empirical model was established with the time series of the field-measured AGBpeak and the corresponding enhanced vegetation index (EVI) (R2 = 0.78), which was used to estimate grassland AGBpeak at the regional scale. The relative importance of the three indices of the temporal variability of precipitation, events, intensity, and time interval on grassland AGBpeak was quantified by principal component regression and shown in a red–green–blue (RGB) composition map. The standardized importance values were used to calculate the vegetation sensitivity index to the temporal variability of precipitation (VSIP). Our results showed that the standardized VSIP was larger than 60 for only 15% of alpine grassland pixels and that AGBpeak did not change significantly for more than 60% of alpine grassland pixels over the past decades, which was likely due to the nonsignificant changes in the temporal variability of precipitation in most pixels. However, a U-shaped relationship was found between VSIP and GSP across the four representative grassland types, indicating that the sensitivity of grassland AGBpeak to precipitation was dependent on the types of grassland communities. Moreover, we found that the temporal variability of precipitation explained more of the field-measured AGBpeak variance than did the total amount of precipitation alone at the site scale, which implies that the mechanisms underlying how the temporal variability of precipitation controls the AGBpeak of alpine grasslands should be better understood at the local scale. We hypothesize that alpine grassland plants promptly respond to the temporal variability of precipitation to keep community biomass production more stable over time, but this conclusion should be further tested. Finally, we call for a long-term experimental study that includes multiple natural and anthropogenic factors together, such as warming, nitrogen deposition, and grazing and fencing, to better understand the mechanisms of alpine grassland stability on the Tibetan Plateau.
Collapse
|
22
|
Chen Q, Soulay F, Saudemont B, Elmayan T, Marmagne A, Masclaux-Daubresse CL. Overexpression of ATG8 in Arabidopsis Stimulates Autophagic Activity and Increases Nitrogen Remobilization Efficiency and Grain Filling. PLANT & CELL PHYSIOLOGY 2019; 60:343-352. [PMID: 30407574 DOI: 10.1093/pcp/pcy214] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/27/2018] [Indexed: 05/20/2023]
Abstract
Autophagy knock-out mutants in maize and in Arabidopsis are impaired in nitrogen (N) recycling and exhibit reduced levels of N remobilization to their seeds. It is thus impoortant to determine whether higher autophagy activity could, conversely, improve N remobilization efficiency and seed protein content, and under what circumstances. As the autophagy machinery involves many genes amongst which 18 are important for the core machinery, the choice of which AUTOPHAGY (ATG) gene to manipulate to increase autophagy was examined. We choose ATG8 overexpression since it has been shown that this gene could increase autophagosome size and autophagic activity in yeast. The results we report here are original as they show for the first time that increasing ATG8 gene expression in plants increases autophagosome number and promotes autophagy activity. More importantly, our data demonstrate that, when cultivated under full nitrate conditions, known to repress N remobilization due to sufficient N uptake from the soil, N remobilization efficiency can nevertheless be sharply and significantly increased by overexpressing ATG8 genomic sequences under the control of the ubiquitin promoter. We show that overexpressors have improved seed N% and at the same time reduced N waste in their dry remains. In addition, we show that overexpressing ATG8 does not modify vegetative biomass or harvest index, and thus does not affect plant development.
Collapse
Affiliation(s)
- Qinwu Chen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Fabienne Soulay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Baptiste Saudemont
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | | |
Collapse
|
23
|
Lawrence BT, Melgar JC. Variable Fall Climate Influences Nutrient Resorption and Reserve Storage in Young Peach Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1819. [PMID: 30619397 PMCID: PMC6304733 DOI: 10.3389/fpls.2018.01819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/22/2018] [Indexed: 05/31/2023]
Abstract
A delay of leaf senescence resulting from variable fall climate may allow for additional nutrient resorption, and storage within reserve organs. Autumn leaves and reserve organs (<1 year shoots, >1 year shoots, stem above and below the graft union, the tap root, and fine roots) during dormancy of young peach trees were evaluated following warmer fall temperatures and limited soil moisture on two cultivars ('Scarletprince' and 'Autumnprince' both on GuardianTM rootstock) over two seasons. Four treatments were established for the two cultivars: (1) well-watered trees (100% ETc needs) in ambient outdoor temperatures; (2) water deficient trees (50% ETc needs) in ambient outdoor temperatures; (3) well-watered trees grown within a greenhouse; and (4) water deficient trees within a greenhouse. The greenhouse environment was on average 5°C warmer than the ambient outdoor temperature. Senescence was delayed on greenhouse-grown trees both years with leaf number and area similar in the greenhouse and outdoor environments prior to senescence. Across leaf samples, leaf nitrogen and phosphorus concentrations were lower within delayed senescence tree leaves while potassium was lower in leaves experiencing normal senescence. During dormancy, multiple reserve organs showed higher nitrogen, phosphorus, and potassium in trees with delayed senescence than normal senescence and similar increases were observed in water-deficient trees compared to well-watered trees. Phosphorus and potassium concentrations were also higher in multiple reserve organs within 'Autumnprince' trees compared to 'Scarletprince' trees. This study suggests variable climate conditions of increased temperatures or reduced soil moisture during autumn resulting in delayed senescence influence the process of nutrient resorption and increase nutrient storage within reserve organs.
Collapse
|
24
|
Zheng J, She W, Zhang Y, Bai Y, Qin S, Wu B. Nitrogen enrichment alters nutrient resorption and exacerbates phosphorus limitation in the desert shrub Artemisia ordosica. Ecol Evol 2018; 8:9998-10007. [PMID: 30397442 PMCID: PMC6206216 DOI: 10.1002/ece3.4407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/15/2018] [Accepted: 06/17/2018] [Indexed: 11/06/2022] Open
Abstract
Increasing nitrogen (N) deposition and precipitation are major drivers of global changes that are expected to influence plant nutrient resorption in desert ecosystems, where plant growth is often nutrient and water limited. However, knowledge on the effects of increased N and precipitation on them remain poorly understood. This study determined the effects of increased N (ambient, 60 kg N ha-1 year-1) and water supply (ambient, +20%, +40%), and their combination on the leaf nutrient resorption of Artemisia ordosica, a dominant shrub in the Mu Us Desert of northern China. After 2 years of treatments, only N addition significantly decreased the N resorption efficiency of A. ordosica. Both N and water addition had no effect on the phosphorus (P) resorption efficiency of this shrub, and there were no interactive effects of N and water availability on shrub nutrient resorption. The responses of shrub leaf N:P ratio tended to saturate as soil available N:P increased. The aboveground net primary productivity of A. ordosica was positively correlated with leaf P resorption efficiency, rather than N resorption efficiency. Our results suggest that N addition exacerbated the P limitation of the shrub growth and played a more fundamental role than water addition in controlling the nutrient resorption process of the desert shrub A. ordosica. This information contributes to understand the relationship between nutrient conservation strategy and plant growth of desert shrub species under global environmental changes.
Collapse
Affiliation(s)
- Jing Zheng
- School of Soil and Water ConservationBeijing Forestry UniversityBeijingChina
| | - Weiwei She
- School of Soil and Water ConservationBeijing Forestry UniversityBeijingChina
| | - Yuqing Zhang
- School of Soil and Water ConservationBeijing Forestry UniversityBeijingChina
- Key Laboratory of State Forestry Administration on Soil and Water ConservationBeijing Forestry UniversityBeijingChina
| | - Yuxuan Bai
- School of Soil and Water ConservationBeijing Forestry UniversityBeijingChina
| | - Shugao Qin
- School of Soil and Water ConservationBeijing Forestry UniversityBeijingChina
- Engineering Research Center of Forestry Ecological Engineering, Ministry of EducationBeijing Forestry UniversityBeijingChina
| | - Bin Wu
- School of Soil and Water ConservationBeijing Forestry UniversityBeijingChina
- Key Laboratory of State Forestry Administration on Soil and Water ConservationBeijing Forestry UniversityBeijingChina
| |
Collapse
|
25
|
Wang Z, Fan Z, Zhao Q, Wang M, Ran J, Huang H, Niklas KJ. Global Data Analysis Shows That Soil Nutrient Levels Dominate Foliar Nutrient Resorption Efficiency in Herbaceous Species. FRONTIERS IN PLANT SCIENCE 2018; 9:1431. [PMID: 30319680 PMCID: PMC6168711 DOI: 10.3389/fpls.2018.01431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/10/2018] [Indexed: 05/14/2023]
Abstract
Nutrient resorption plays an important role in ecology because it has a profound effect on subsequent plant growth. However, our current knowledge about patterns of nutrient resorption, particularly among herbaceous species, at a global scale is still inadequate. Here, we present a meta-analysis using a global dataset of nitrogen (N) and phosphorus (P) resorption efficiency encompassing 227 perennial herbaceous species. This analysis shows that the N and P resorption efficiency (NRE and PRE, respectively), and N:P resorption ratios (NRE:PRE) across all herbaceous plant groups are 59.4, 67.5, and 0.89%, respectively. Across all species, NRE, PRE, and NRE:PRE, exhibited different patterns along climatic and soil nutrient gradients, i.e., NRE decreases with increasing mean annual precipitation (MAP) and soil N, PRE increases with aridity index (AI) but decreases with MAP and soil P, and NRE:PRE decreases with increasing potential evapotranspiration (PET), AI, and soil N:P. NRE, PRE, and NRE:PRE also differed in functional species group (graminoids vs. forbs). Soil nutrient level was the largest contributor to the total variations in NRE, PRE, and NRE:PRE, while climate and herbaceous types had relatively smaller effects on NRE, PRE, and NRE:PRE. Collectively, these trends can inform attempts to model biogeochemical cycling at a global scale.
Collapse
Affiliation(s)
- Zhiqiang Wang
- The Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Zhexuan Fan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhao
- The Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Mingcheng Wang
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinzhi Ran
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Heng Huang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Karl J. Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Zhang J, Yan X, Su F, Li Z, Wang Y, Wei Y, Ji Y, Yang Y, Zhou X, Guo H, Hu S. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:440-448. [PMID: 29291558 DOI: 10.1016/j.scitotenv.2017.12.292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/23/2017] [Accepted: 12/24/2017] [Indexed: 05/26/2023]
Abstract
Nitrogen and phosphorus are two important nutrient elements for plants. The current paradigm suggests that the scaling of plant tissue N to P is conserved across environments and plant taxa because these two elements are coupled and coordinately change with each other following a constant allometric trajectory. However, this assumption has not been vigorously examined, particularly in changing N and P environments. We propose that changes in relative availability of N and P in soil alter the N to P relationship in plants. Taking advantage of a 4-yr N and P addition experiment in a Tibetan alpine meadow, we examined changes in plant N and P concentrations of 14 common species. Our results showed that while the scaling of N to P under N additions was similar to the previously reported pattern with a uniform 2/3 slope of the regression between log N and log P, it was significantly different under P additions with a smaller slope. Also, graminoids had different responses from forbs. These results indicate that the relative availability of soil N and P is an important determinant regulating the N and P concentrations in plants. These findings suggest that alterations in the N to P relationships may not only alter plant photosynthate allocation to vegetative or reproductive organs, but also regulate the metabolic and growth rate of plant and promote shifts in plant community composition in a changing nutrient loading environment.
Collapse
Affiliation(s)
- Juanjuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuebin Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fanglong Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ying Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yanan Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yangguang Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xianhui Zhou
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hui Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
27
|
Achat DL, Pousse N, Nicolas M, Augusto L. Nutrient remobilization in tree foliage as affected by soil nutrients and leaf life span. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1300] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Ludovick Achat
- INRA, Bordeaux Sciences Agro; UMR 1391 ISPA, MOST team; F-33140 Villenave d'Ornon France
| | | | | | - Laurent Augusto
- INRA, Bordeaux Sciences Agro; UMR 1391 ISPA, BIONUT team; F-33140 Villenave d'Ornon France
| |
Collapse
|
28
|
Zhao G, Shi P, Wu J, Xiong D, Zong N, Zhang X. Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau. Ecol Evol 2017; 7:7201-7212. [PMID: 28944011 PMCID: PMC5606856 DOI: 10.1002/ece3.3283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 12/05/2022] Open
Abstract
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient-poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient-poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.
Collapse
Affiliation(s)
- Guangshuai Zhao
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- China National Forestry Economics and Development Research CenterBeijingChina
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resource and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianshuang Wu
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- Functional BiodiversityDahlem Center of Plant ScienceFree University of BerlinBerlinGermany
| | - Dingpeng Xiong
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Xianzhou Zhang
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resource and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|