1
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. Development 2024; 151:dev203002. [PMID: 39417576 DOI: 10.1242/dev.203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny V Esin
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | - Grigorii N Markevich
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | | | | | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Matthew P Harris
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fedor N Shkil
- Laboratory of Evolutionary Morphology, Severtsov Institute, Moscow 119071, Russian Federation
- Laboratory of Postembryonic Development, Koltzov Institute, Moscow 119071, Russian Federation
| |
Collapse
|
2
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529919. [PMID: 38712299 PMCID: PMC11071292 DOI: 10.1101/2023.02.24.529919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Evgeny V Esin
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
| | - Grigorii N Markevich
- Kronotsky Nature Biosphere Reserve; Ryabikova-48, 68400 Yelizovo, Russian Federation
| | | | | | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Matthew P Harris
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Fedor N Shkil
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
- NK Koltzov Institute of Developmental Biology, RAS; Vavilova-26, 119334 Moscow, Russian Federation
| |
Collapse
|
3
|
Tiddy IC, Schneider K, Elmer KR. Environmental correlates of adaptive diversification in postglacial freshwater fishes. JOURNAL OF FISH BIOLOGY 2024; 104:517-535. [PMID: 37984834 DOI: 10.1111/jfb.15621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Determining how environmental conditions contribute to divergence among populations and drive speciation is fundamental to resolving mechanisms and understanding outcomes in evolutionary biology. Postglacial freshwater fish species in the Northern Hemisphere are ideal biological systems to explore the effects of environment on diversification in morphology, ecology, and genetics (ecomorph divergences) within lakes. To date, various environmental factors have been implicated in the presence of multiple ecomorphs within particular lakes or regions. However, concerted evidence for generalizable patterns in environmental variables associated with speciation across geographical regions and across species and genera has been lacking. Here, we aimed to identify key biotic and abiotic factors associated with ecological divergence of postglacial freshwater fish species into multiple sympatric ecomorphs, focusing on species in the well-studied, widespread, and co-distributed genera Gasterosteus, Salvelinus, and Coregonus (stickleback, charr, and whitefish, respectively). We found that the presence of multiple sympatric ecomorphs tended to be associated with increasing lake surface area, maximum depth, and nutrient availability. In addition, predation, competition, and prey availability were suggested to play a role in divergence into multiple ecomorphs, but the effects of biotic factors require further study. Although we identified several environmental factors correlated with the presence of multiple ecomorphs, there were substantial data gaps across species and regions. An improved understanding of these systems may provide insight into both generalizable environmental factors involved in speciation in other systems, and potential ecological and evolutionary responses of species complexes when these variables are altered by environmental change.
Collapse
Affiliation(s)
- Isabelle C Tiddy
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kevin Schneider
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Smith R, Hitkolok E, Loewen T, Dumond A, Swanson H. Migration timing and marine space use of an anadromous Arctic fish (Arctic Char, Salvelinus alpinus) revealed by local spatial statistics and network analysis. MOVEMENT ECOLOGY 2024; 12:12. [PMID: 38310319 PMCID: PMC10837978 DOI: 10.1186/s40462-024-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The ice-free season (typically late-June to early-October) is crucial for anadromous species of fish in the Arctic, including Arctic Char (Salvelinus alpinus), which must acquire adequate resources for growth, reproduction, and survival during a brief period of feeding in the marine environment. Arctic Char is an important food fish for Inuit communities across the Arctic. Understanding drivers and patterns of migration in the marine environment is thus essential for conservation and management of the species. METHODS We used passive acoustic telemetry to characterize migration patterns of 51 individual anadromous Arctic Char during the ice-free season in the marine environment of Coronation Gulf (Nunavut, Canada; 2019-2022). Based on recent genetic evidence, some tagged individuals were likely Dolly Varden (Salvelinus malma malma), a closely related species to Arctic Char. Using local Getis G* and network analysis, we described movement patterns and identified high-use locations in the marine environment. We also related freshwater overwintering location to migration timing and movement pattern. RESULTS Comparing groups of fish that overwintered in distinct locations, we found: (i) limited evidence that marine movements were associated with overwintering location; (ii) minor differences in use of marine space; and, (iii) timing of freshwater return differed significantly between overwintering groups, and was related to length and difficulty of the migratory pathway in freshwater. Results from both network analysis and local Getis G* revealed that, regardless of overwintering location, coastal locations were highly used by fish. CONCLUSIONS Overwintering locations, and the migratory routes to access overwintering locations, affect the timing of freshwater return. Preference of fish for coastal marine locations is likely due to abundance of forage and patterns in break-up of sea ice. Similarities in marine space use and movement patterns present challenges for managing this and other mixed stock fisheries of anadromous Salvelinus spp. Absences or periods of time when fish were not detected prevented comprehensive assessment of movement patterns. Local Getis G*, a local indicator of spatial association, is a helpful tool in identifying locations associated with absences in acoustic telemetry arrays, and is a complementary method to network analysis.
Collapse
Affiliation(s)
- Rosie Smith
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Eric Hitkolok
- Kugluktuk Hunters and Trappers Organization, Kugluktuk, NU, Canada
| | - Tracey Loewen
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada
| | - Amanda Dumond
- Kugluktuk Hunters and Trappers Organization, Kugluktuk, NU, Canada
| | - Heidi Swanson
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
5
|
Koene JP, Adams CE. Resource instability undermines predictable plasticity-mediated morphological responses to diet in a postglacial fish. Ecol Evol 2024; 14:e10932. [PMID: 38343565 PMCID: PMC10853658 DOI: 10.1002/ece3.10932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 10/28/2024] Open
Abstract
Phenotypic plasticity has been presented as a potential rapid-response mechanism with which organisms may confront swift environmental change and increasing instability. Among the many difficulties potentially facing freshwater fishes in recently glaciated ecosystems is that of invertebrate prey communities becoming significantly altered in species composition and relative abundance. To test how the rapidity of diet resource change may affect phenotypic responses during development, we subjected juvenile brown trout to pelagic-type or littoral-type diets that alternated either daily, sub-seasonally, or not at all over a single growth season. The proportional intake of each diet was traced with stable isotopes of carbon and nitrogen and modelled with morphometric data on head and jaw shape. While those trout exposed to a single diet type developed predictable morphologies associated with pelagic or littoral foragers, those raised on alternating diets expressed more unpredictable morphologies. With extreme (daily) or even sub-seasonal (monthly) resource instability, the association of diet type with the phenotype was overwhelmed, calling into question the efficacy of plasticity as a means of adaptation to environments with rapidly fluctuating prey resources.
Collapse
Affiliation(s)
- J. Peter Koene
- Scottish Centre for Ecology and the Natural Environment (SCENE), School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment (SCENE), School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Markevich GN, Pavlova NS, Kapitanova DV, Esin EV. Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism. Evol Dev 2023; 25:274-288. [PMID: 37540043 DOI: 10.1111/ede.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.
Collapse
Affiliation(s)
- Grigorii N Markevich
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Scientific Department, Kronotsky Nature Reserve, Yelizovo, Kamchatka Region, Russia
| | - Nadezhda S Pavlova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Daria V Kapitanova
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Lab of Postnatal Ontogenesis, N.K. Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Esin
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Matlosz S, Sigurgeirsson B, Franzdóttir SR, Pálsson A, Jónsson ZO. DNA methylation differences during development distinguish sympatric morphs of Arctic charr (Salvelinus alpinus). Mol Ecol 2022; 31:4739-4761. [PMID: 35848921 DOI: 10.1111/mec.16620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Changes in DNA methylation in specific coding or non-coding regions can influence development and potentially divergence in traits within species and groups. While the impact of epigenetic variation on developmental pathways associated with evolutionary divergence is the focus of intense investigation, few studies have looked at recently diverged systems. Phenotypic diversity between closely related populations of Arctic charr (Salvelinus alpinus), which diverged within the last 10 000 years, offers an interesting ecological model to address such effects. Using bisulfite sequencing, we studied general DNA methylation patterns during development in the four sympatric morphs of Arctic charr from Lake Thingvallavatn. The data revealed strong differences between developmental timepoints and between morphs (mainly along the benthic - limnetic axis), both at single CpG sites and in 1,000bp-regions. Genes located close to differentially methylated CpG sites were involved in nucleosome assembly, regulation of osteoclast differentiation, and cell-matrix adhesion. Differentially methylated regions were enriched in tRNA and rRNA sequences, and half of them were located close to transcription start sites. The expression of 14 genes showing methylation differences over time or between morphs was further investigated by qPCR and nine of these were found to be differentially expressed between morphs. Four genes (ARHGEF37-like, H3-like, MPP3 and MEGF9) showed a correlation between methylation and expression. Lastly, histone gene clusters displayed interesting methylation differences between timepoints and morphs, as well as intragenic methylation variation. The results presented here provide a motivation for further studies on the contribution of epigenetic traits, such as DNA methylation, to phenotypic diversity and developmental mechanisms.
Collapse
Affiliation(s)
- Sebastien Matlosz
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
8
|
Markevich GN, Izvekova EI, Anisimova LA, Mugue NS, Bonk TV, Esin EV. Annual Temperatures and Dynamics of Food Availability are Associated with the Pelagic-Benthic Diversification in a Sympatric Pair of Salmonid Fish. Evol Biol 2022. [DOI: 10.1007/s11692-022-09560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Levin B, Simonov E, Gabrielyan BK, Mayden RL, Rastorguev SM, Roubenyan HR, Sharko FS, Nedoluzhko AV. Caucasian treasure: Genomics sheds light on the evolution of half-extinct Sevan trout, Salmo ischchan, species flock. Mol Phylogenet Evol 2021; 167:107346. [PMID: 34763069 DOI: 10.1016/j.ympev.2021.107346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Five ecologically and phenotypically divergent ecomorphs of the genus Salmo are known from a landlocked alpine lake in the Caucasus, Lake Sevan. It is an example of sympatric diversification within a species-rich lineage with predominate mode of speciation being allopatric. The diversification of Sevan trouts was accompanied by spawning resource partitioning. Four lacustrine ecomorphs with different temporal-spatial spawning strategies and divergent morphology and coloration evolved along with a fifth ecomorph, brook trout, inhabiting the tributaries. Unfortunately, the Sevan trout diversity was almost destroyed by human activity, with two ecomorphs becoming extinct in the 1980s. We performed reconstruction of the evolutionary history of Sevan trouts based on high-throughput sequencing of both contemporary and historical DNA (∼ 50 y.o.) of all Sevan trout ecomorphs. Our study of complete mitogenomes along with genome-wide SNP data revealed the monophyly of four lacustrine ecomorphs and local brook trout, all derived from the anadromous form Caspian salmon, S. caspius. The species tree suggests a scenario of stepwise evolution from riverine to lacustrine spawning. Three genomic clusters were revealed, of which two refer to the riverine and lacustrine spawners within the flock of Sevan trouts (with FST value = 0.069). A few SNP outliers under selection were discovered that could be responsible for assortative mating based on visual recognition. The Holocene climatic oscillations and the desiccation of tributaries could have played an important role in the origin of lacustrine spawning. The relationships between lacustrine ecomorphs were not yet fully resolved. This radiation warrants further investigation.
Collapse
Affiliation(s)
- Boris Levin
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia; Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences - Borok, Russia; Cherepovets State University, Cherepovets, Russia.
| | | | - Bardukh K Gabrielyan
- Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Republic of Armenia, Yerevan, Armenia
| | - Richard L Mayden
- Department of Biology, Saint Louis University, St. Louis, MO USA
| | | | - Haikaz R Roubenyan
- Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Republic of Armenia, Yerevan, Armenia
| | - Fedor S Sharko
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | | |
Collapse
|
10
|
Esin EV, Markevich GN, Melnik NO, Zlenko DV, Shkil FN. Ambient temperature as a factor contributing to the developmental divergence in sympatric salmonids. PLoS One 2021; 16:e0258536. [PMID: 34653206 PMCID: PMC8519426 DOI: 10.1371/journal.pone.0258536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Factors and mechanisms promoting resource-based radiation in animals still represent a main challenge to evolutionary biology. The modifications of phenotype tied with adaptive diversification may result from an environmentally related shift having occurred at the early stage of development. Here, we study the role of temperature dynamics on the reproductive sites in the early-life divergence and adaptive radiation of the salmonid fish Salvelinus malma dwelling in the Lake Kronotskoe basin (North-East Asia). Local sympatric charr ecomorphs demonstrate strict homing behaviour guiding the preordained distribution along tributaries and, hence, further development under different temperatures. We thoroughly assessed the annual temperature dynamics at the spawning grounds of each morph as compared to an ancestral anadromous morph. Then we carried out an experimental rearing of both under naturally diverging and uniformed temperatures. To compare the morphs' development under the dynamically changing temperatures, we have designed a method based on calculating the accumulated heat by the Arrhenius equation. The proposed equation shows a strong predictive power and, at the same time, is not bias-susceptible when the developmental temperature approximates 0°C. The temperature was found to significantly affect the charrs' early ontogeny, which underlies the divergence of developmental and growth rates between the morphs, as well as morph-specific ontogenetic adaptations to the spawning site's temperatures. As opposed to the endemic morphs from Lake Kronotskoe, the anadromous S. malma, being unexposed to selection оn highly specific reproduction conditions, showed a wide temperature tolerance, Our findings demonstrate that the hatch, onset timing of external feeding, and size dissimilarities between the sympatric morphs reveal themselves during the development under contrast temperatures. As a result of the observed developmental disparities, the morphs occupy specific definitive foraging niches in the lake.
Collapse
Affiliation(s)
- Evgeny V. Esin
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russian Federation
| | | | - Nikolai O. Melnik
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russian Federation
| | | | - Fedor N. Shkil
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russian Federation
- Koltzov Institute of Developmental Biology RAS, Moscow, Russian Federation
| |
Collapse
|
11
|
Markevich GN, Zlenko DV, Shkil FN, Schliewen UK, Anisimova LA, Sharapkova AA, Esin EV. Natural Barriers and Internal Sources for the Reproductive Isolation in Sympatric Salmonids from the Lake–River System. Evol Biol 2021. [DOI: 10.1007/s11692-021-09546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Peris Tamayo A, Devineau O, Præbel K, Kahilainen KK, Østbye K. A brain and a head for a different habitat: Size variation in four morphs of Arctic charr ( Salvelinus alpinus (L.)) in a deep oligotrophic lake. Ecol Evol 2020; 10:11335-11351. [PMID: 33144968 PMCID: PMC7593136 DOI: 10.1002/ece3.6771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Adaptive radiation is the diversification of species to different ecological niches and has repeatedly occurred in different salmonid fish of postglacial lakes. In Lake Tinnsjøen, one of the largest and deepest lakes in Norway, the salmonid fish, Arctic charr (Salvelinus alpinus (L.)), has likely radiated within 9,700 years after deglaciation into ecologically and genetically segregated Piscivore, Planktivore, Dwarf, and Abyssal morphs in the pelagial, littoral, shallow-moderate profundal, and deep-profundal habitats. We compared trait variation in the size of the head, the eye and olfactory organs, as well as the volumes of five brain regions of these four Arctic charr morphs. We hypothesised that specific habitat characteristics have promoted divergent body, head, and brain sizes related to utilized depth differing in environmental constraints (e.g., light, oxygen, pressure, temperature, and food quality). The most important ecomorphological variables differentiating morphs were eye area, habitat, and number of lamellae. The Abyssal morph living in the deepest areas of the lake had the smallest brain region volumes, head, and eye size. Comparing the olfactory bulb with the optic tectum in size, it was larger in the Abyssal morph than in the Piscivore morph. The Piscivore and Planktivore morphs that use more illuminated habitats have the largest optic tectum volume, followed by the Dwarf. The observed differences in body size and sensory capacities in terms of vision and olfaction in shallow and deepwater morphs likely relates to foraging and mating habitats in Lake Tinnsjøen. Further seasonal and experimental studies of brain volume in polymorphic species are needed to test the role of plasticity and adaptive evolution behind the observed differences.
Collapse
Affiliation(s)
- Ana‐Maria Peris Tamayo
- Faculty of Applied Ecology, Agricultural Sciences and BiotechnologyInland Norway University of Applied SciencesKoppangNorway
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and EconomicsUiT—The Arctic University of NorwayTromsøNorway
| | - Olivier Devineau
- Faculty of Applied Ecology, Agricultural Sciences and BiotechnologyInland Norway University of Applied SciencesKoppangNorway
| | - Kim Præbel
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and EconomicsUiT—The Arctic University of NorwayTromsøNorway
| | | | - Kjartan Østbye
- Faculty of Applied Ecology, Agricultural Sciences and BiotechnologyInland Norway University of Applied SciencesKoppangNorway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
13
|
Qiao J, Hu J, Xia Q, Zhu R, Chen K, Zhao J, Yan Y, Chu L, He D. Pelagic-benthic resource polymorphism in Schizopygopsis thermalis Herzenstein 1891 (Pisces, Cyprinidae) in a headwater lake in the Salween River system on the Tibetan Plateau. Ecol Evol 2020; 10:7431-7444. [PMID: 32760539 PMCID: PMC7391544 DOI: 10.1002/ece3.6470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/13/2023] Open
Abstract
Resource polymorphism is a ubiquitous phenomenon in vertebrates and may represent a critical intermediate stage in speciation. Freshwater lakes in high-altitude areas represent a natural system for understanding resource polymorphism in fishes benefiting from diverse lacustrine environments and species-poor fish assemblages. We report resource polymorphism in a cyprinid fish, Schizopygopsis thermalis, in Lake Amdo Tsonak Co, a headwater lake in the upper Salween River system. Two discrete intraspecific morphs, planktivorous and benthivorous, were identified according to geometric morphometrics and traditional univariate linear measures. The planktivorous morph exhibits a longer head, longer upper and lower jaw, larger asymptotic standard length (L∞ ), lower growth rate (k), and higher growth performance index (φ) than the benthivorous morph. With respect to descriptive traits, the planktivorous morph possesses a large, terminal mouth and obvious mucus pores on the cheek and chin, while the benthivorous morph is characterized by a more inferior mouth with a sharpen horny edge on the lower jaw and unconspicuous mucus pores. The discrete pelagic-benthic resources and low interspecific competition in the lake system might drive the initial differentiation of the two morphs, and partial spatial reproductive isolation in breeding further maintains and reinforces the differences between them.
Collapse
Affiliation(s)
- Jialing Qiao
- Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, and College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Jiaxin Hu
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Qin Xia
- Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, and College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Ren Zhu
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Kang Chen
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Jie Zhao
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Yunzhi Yan
- Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, and College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Ling Chu
- Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, and College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Dekui He
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| |
Collapse
|
14
|
Öhlund G, Bodin M, Nilsson KA, Öhlund S, Mobley KB, Hudson AG, Peedu M, Brännström Å, Bartels P, Præbel K, Hein CL, Johansson P, Englund G. Ecological speciation in European whitefish is driven by a large-gaped predator. Evol Lett 2020; 4:243-256. [PMID: 32547784 PMCID: PMC7293097 DOI: 10.1002/evl3.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/21/2019] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.
Collapse
Affiliation(s)
- Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Department of Business Administration, Technology, and Social SciencesLuleå University of TechnologyLuleåSE‐971 87Sweden
- Department of Wildlife, Fish, and Environmental StudiesSLUUmeåSE‐901 83Sweden
| | - Mats Bodin
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSE‐901 87Sweden
| | - Karin A. Nilsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Department of Integrative BiologyUniversity of GuelphGuelphONN1G 2W1Canada
| | - Sven‐Ola Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Kenyon B. Mobley
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Max Planck Institute for Evolutionary BiologyPlönD‐24302Germany
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland
| | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUnited Kingdom
| | - Mikael Peedu
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSE‐901 87Sweden
- Evolution and Ecology ProgramInternational Institute for Applied Systems AnalysisLaxenburgA‐2361Austria
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Kim Præbel
- Norwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøN‐9037Norway
| | - Catherine L. Hein
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Climate Impacts Research Centre (CIRC)Abisko Scientific Research StationAbiskoSE‐981 07Sweden
| | - Petter Johansson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| |
Collapse
|
15
|
Esin EV, Bocharova ES, Borisova EA, Markevich GN. Interaction among morphological, trophic and genetic groups in the rapidly radiating Salvelinus fishes from Lake Kronotskoe. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10048-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Levin BA, Simonov E, Dgebuadze YY, Levina M, Golubtsov AS. In the rivers: Multiple adaptive radiations of cyprinid fishes (Labeobarbus) in Ethiopian Highlands. Sci Rep 2020; 10:7192. [PMID: 32346059 PMCID: PMC7189375 DOI: 10.1038/s41598-020-64350-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple repeated patterns of adaptive radiation were revealed in cyprinid fish inhabiting the compact geographic region of the Ethiopian Highlands. We found four independently evolved radiations in the evolutionary hexaploid (2n = 150) Labeobarbus lineage based on matrilineal relationships of >800 individuals. Each radiation displayed similar patterns of mouth phenotype diversification, and included ecomorphs/species of the generalized, lipped, scraping (one or two), and large-mouthed (one to three) types. All radiations were detected in geographically isolated rivers, and originated from different ancestral populations. This is the first documented case in which numerous parallel radiations of fishes occurred-via different ways-in a riverine environment. Some radiations are very recent and monophyletic, while others are older and include ecomorphs that originated in separate mini flocks and later combined into one. The diversification bursts among Ethiopian Labeobarbus were detected in the mid-upper reaches of rivers (1050-1550 m above sea level), which likely offer ecological opportunities that include diverse habitats yet poor fauna (i.e. lower competition and relaxed selection). This promising example of parallel evolution of adaptive radiation warrants further investigation.
Collapse
Affiliation(s)
- Boris A Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia. .,Cherepovets State University, Cherepovets, Russia.
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, Russia.,Tomsk State University, Tomsk, Russia
| | - Yury Y Dgebuadze
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marina Levina
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexander S Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Finlay R, Poole R, Coughlan J, Phillips KP, Prodöhl P, Cotter D, McGinnity P, Reed TE. Telemetry and genetics reveal asymmetric dispersal of a lake-feeding salmonid between inflow and outflow spawning streams at a microgeographic scale. Ecol Evol 2020; 10:1762-1783. [PMID: 32128115 PMCID: PMC7042748 DOI: 10.1002/ece3.5937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022] Open
Abstract
The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.
Collapse
Affiliation(s)
- Ross Finlay
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | | | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | - Paulo Prodöhl
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastIreland
| | | | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnaceNewportIreland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| |
Collapse
|
18
|
Nakano S, Fausch KD, Koizumi I, Kanno Y, Taniguchi Y, Kitano S, Miyake Y. Evaluating a pattern of ecological character displacement: charr jaw morphology and diet diverge in sympatry versus allopatry across catchments in Hokkaido, Japan. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractSimilar species that overlap in sympatry may diverge in characters related to resource use as a result of evolution or phenotypic plasticity. Dolly Varden charr (Salvelinus malma) and whitespotted charr (S. leucomaenis) overlap along streams in Hokkaido, Japan, and compete by interference for invertebrate drift-foraging positions. Previous research has shown that as drift declines during summer, Dolly Varden shift foraging modes to capture benthic prey, a behaviour facilitated by their subterminal jaw morphology. We compare body and jaw morphology of Dolly Varden in sympatry vs. allopatry in two locations to test for character displacement. Statistical analysis showed significant divergence in characters related to foraging, which was correlated with variation in individual charr diets. Dolly Varden in sympatry had shorter heads and lower jaws than in allopatry, and even within sites charr with these characteristics fed less on drifting terrestrial invertebrates but more on benthic aquatic invertebrates. Those in allopatry had longer heads and lower jaws, and fed more on terrestrial invertebrates. The close proximity of sites in one stream suggests that Dolly Varden may display phenotypic plasticity similar to other charr, allowing rapid responses in morphology to the presence of competitors. These morphological shifts probably help them maintain positive fitness when competing with whitespotted charr in Hokkaido streams.
Collapse
Affiliation(s)
- Shigeru Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan, and Tomakomai Forest Research Station, Hokkaido University Forests, Tomakomai, Hokkaido, Japan
| | - Kurt D Fausch
- Department of Fish, Wildlife, and Conservation Biology, and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Itsuro Koizumi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoichiro Kanno
- Department of Fish, Wildlife, and Conservation Biology, and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | | | - Satoshi Kitano
- Nagano Environmental Conservation Research Institute, Kitago, Nagano, Japan
| | - Yo Miyake
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
19
|
Delling B, Palm S. Evolution and disappearance of sympatric Coregonus albula in a changing environment-A case study of the only remaining population pair in Sweden. Ecol Evol 2019; 9:12727-12753. [PMID: 31788210 PMCID: PMC6875587 DOI: 10.1002/ece3.5745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
During the past 50 years, Fennoscandian populations of spring-spawning Baltic cisco (Coregonus albula), sympatric to common autumn-spawners, have declined or disappeared; for example, three out of four known spring-spawning populations in Sweden are regarded as extinct. Over the same period, the climate has changed and populations have been subject to other anthropogenic stressors. We compared historic (1960s) and recent (1990-2000s) morphological data from the still-existent sympatric cisco populations in Lake Fegen, Sweden. Phenotypic changes were found for spring-spawners making them more similar to the sympatric autumn-spawners that had remained virtually unchanged. Based on results for other salmoniform fishes, a phenotypically plastic response to increased temperature during early development appears unlikely. The recent material was also analyzed with microsatellite markers; long-term effective population size in spring-spawners was estimated to be about 20 times lower than autumn-spawners, with signs of long-term gene flow in both directions and a recent genetic bottleneck in spring-spawners. We suggest the change toward a less distinct phenotype in spring-spawners to reflect a recent increase in gene flow from autumn-spawners. Time since divergence was estimated to only c. 1,900 years (95% CI: 400-5,900), but still the Fegen populations represent the most morphologically and genetically distinct sympatric populations studied. Consequently, we hypothesize that less distinct population pairs can be even younger and that spring-spawning may have repeatedly evolved and disappeared in several lakes since the end of the last glaciation, concurrent with changed environmental conditions.
Collapse
Affiliation(s)
- Bo Delling
- Department of ZoologySwedish Museum of Natural HistoryStockholmSweden
| | - Stefan Palm
- Swedish University of Agricultural SciencesDepartment of Aquatic ResourcesInstitute of Freshwater ResearchDrottningholmSweden
| |
Collapse
|
20
|
Doenz CJ, Krähenbühl AK, Walker J, Seehausen O, Brodersen J. Ecological opportunity shapes a large Arctic charr species radiation. Proc Biol Sci 2019; 286:20191992. [PMID: 31640512 DOI: 10.1098/rspb.2019.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecological opportunity is considered a crucial factor for adaptive radiation. Here, we combine genetic, morphological and ecological data to assess species and ecomorphological diversity of Artic charr in six lakes of a catchment in southernmost Greenland, where only charr and stickleback occur. Because the diversity of habitats and resources increases with lake size, we predict a positive association between lake size and the extent of ecomorphological diversity. The largest lake of the catchment harbours the largest Arctic charr assemblage known today. It consists of six genetically differentiated species belonging to five ecomorphs (anadromous, littoral benthic, profundal dwarf, planktivorous, piscivorous), of which the latter comprises two ecomorphologically extremely similar species. Lakes of intermediate size contain two ecomorphologically and genetically distinct species. Small lakes harbour one genetically homogeneous, yet sometimes ecomorphologically variable population. Supporting our prediction, lake size is positively correlated with the extent of ecomorphological specialization towards profundal, pelagic and piscivorous lifestyle. Furthermore, assemblage-wide morphospace increases sharply when more than one genetic cluster is present. Our data suggest that ecological opportunity and speciation jointly determine phenotypic expansion in this charr radiation.
Collapse
Affiliation(s)
- Carmela J Doenz
- Department of Fish Ecology and Evolution, EAWAG, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Andrin K Krähenbühl
- Department of Fish Ecology and Evolution, EAWAG, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Jonas Walker
- Department of Fish Ecology and Evolution, EAWAG, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, EAWAG, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, EAWAG, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
21
|
Arostegui MC, Quinn TP. Ontogenetic and ecotypic variation in the coloration and morphology of rainbow trout (Oncorhynchus mykiss) in a stream–lake system. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Alternative ecotypes of diverse animal taxa exhibit distinct, habitat-specific phenotypes. Rainbow trout (Oncorhynchus mykiss), a salmonid fish, exhibits stream-resident (fluvial), lake-migrant (adfluvial) and ocean-migrant (anadromous) ecotypes throughout its range. We investigated the coloration, and morphology associated with swimming performance of wild, native non-anadromous rainbow trout in connected stream and lake habitats of a south-west Alaskan watershed to assess if they exhibited phenotypic diversity consistent with the presence of alternative fluvial and adfluvial ecotypes. Colour differences among rainbow trout of different size classes and habitats (stream or lake) indicated ecotype-specific pathways, diverging at the same point in ontogeny and resulting in different terminal coloration patterns. Specifically, lake-caught fish exhibited distinct silvering of the body, whereas stream-caught fish displayed banded coloration when small and bronze colour when larger. The morphology of lake-caught rainbow trout also differed from that of stream-caught fish in features associated with swimming performance, and they exhibited both shared and unique morphological patterns compared to sympatric Salvelinus species in those habitats [Dolly Varden (S. malma) in streams, and Arctic char (S. alpinus) in the lake]. Greater morphological variation within stream- than lake-caught rainbow trout, and their limited overlap in morphology, suggested population-specific partial migration. This study highlights the intraspecific diversity of migratory behaviour and how conservation of particular phenotypes depends on managing both for genotypes and for habitats.
Collapse
Affiliation(s)
- M C Arostegui
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - T P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Guðbrandsson J, Kapralova KH, Franzdóttir SR, Bergsveinsdóttir ÞM, Hafstað V, Jónsson ZO, Snorrason SS, Pálsson A. Extensive genetic differentiation between recently evolved sympatric Arctic charr morphs. Ecol Evol 2019; 9:10964-10983. [PMID: 31641448 PMCID: PMC6802010 DOI: 10.1002/ece3.5516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
The availability of diverse ecological niches can promote adaptation of trophic specializations and related traits, as has been repeatedly observed in evolutionary radiations of freshwater fish. The role of genetics, environment, and history in ecologically driven divergence and adaptation, can be studied on adaptive radiations or populations showing ecological polymorphism. Salmonids, especially the Salvelinus genus, are renowned for both phenotypic diversity and polymorphism. Arctic charr (Salvelinus alpinus) invaded Icelandic streams during the glacial retreat (about 10,000 years ago) and exhibits many instances of sympatric polymorphism. Particularly, well studied are the four morphs in Lake Þingvallavatn in Iceland. The small benthic (SB), large benthic (LB), planktivorous (PL), and piscivorous (PI) charr differ in many regards, including size, form, and life history traits. To investigate relatedness and genomic differentiation between morphs, we identified variable sites from RNA-sequencing data from three of those morphs and verified 22 variants in population samples. The data reveal genetic differences between the morphs, with the two benthic morphs being more similar and the PL-charr more genetically different. The markers with high differentiation map to all linkage groups, suggesting ancient and pervasive genetic separation of these three morphs. Furthermore, GO analyses suggest differences in collagen metabolism, odontogenesis, and sensory systems between PL-charr and the benthic morphs. Genotyping in population samples from all four morphs confirms the genetic separation and indicates that the PI-charr are less genetically distinct than the other three morphs. The genetic separation of the other three morphs indicates certain degree of reproductive isolation. The extent of gene flow between the morphs and the nature of reproductive barriers between them remain to be elucidated.
Collapse
Affiliation(s)
- Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Marine and Freshwater Research InstituteReykjavikIceland
| | - Kalina H. Kapralova
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | - Sigríður R. Franzdóttir
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| | | | - Völundur Hafstað
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | - Zophonías O. Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| | | | - Arnar Pálsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| |
Collapse
|
23
|
Piette‐Lauzière G, Bell AH, Ridgway MS, Turgeon J. Evolution and diversity of two cisco forms in an outlet of glacial Lake Algonquin. Ecol Evol 2019; 9:9654-9670. [PMID: 31534683 PMCID: PMC6745834 DOI: 10.1002/ece3.5496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022] Open
Abstract
The diversity of Laurentian Great Lakes ciscoes (Coregonus artedi, sensu lato) arose via repeated local adaptive divergence including deepwater ciscoes that are now extirpated or threatened. The nigripinnis form, or Blackfin Cisco, is extirpated from the Great Lakes and remains only in Lake Nipigon. Putative nigripinnis populations were recently discovered in sympatry with artedi in a historical drainage system of glacial Lake Algonquin, the precursor of lakes Michigan and Huron. Given the apparent convergence on Great Lakes form, we labeled this form blackfin. Here, we test the hypothesis that nigripinnis may have colonized this area from the Great Lakes as a distinct lineage. It would then represent a relict occurrence of the historical diversity of Great Lakes ciscoes. Alternatively, blackfin could have evolved in situ in several lakes. We captured more than 600 individuals in the benthic or pelagic habitat in 14 lakes in or near Algonquin Provincial Park (Ontario, Canada). Fish were compared based on habitat, morphology, and genetic variation at 6,676 SNPs. Contrary to our expectations, both cisco and blackfin belonged to an Atlantic lineage that colonized the area from the east, not from the Great Lakes. Sympatric cisco and blackfin were closely related while fish from different lakes were genetically differentiated, strongly suggesting the repeated in situ origin of each form. Across lakes, there was a continuum of ecological, morphological, and genetic differentiation that could be associated with alternative resources and lake characteristics. This study uncovers a new component of cisco diversity in inland lakes of Canada that evolved independently from ciscoes of the Laurentian Great lakes. The diversity of cisco revealed in this study and across their Canadian range presents a challenge for designating conservation units at the intraspecific level within the framework of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).
Collapse
Affiliation(s)
| | - Allan H. Bell
- Harkness Laboratory of Fisheries ResearchAquatic Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughONCanada
| | - Mark S. Ridgway
- Harkness Laboratory of Fisheries ResearchAquatic Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughONCanada
| | - Julie Turgeon
- Département de biologieUniversité LavalQuébec CityQCCanada
| |
Collapse
|
24
|
Genetic mixture analyses in support of restoration of a high value recreational fishery for rainbow trout (Oncorhynchus mykiss) from a large lake in interior British Columbia. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01182-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Esin EV, Markevich GN, Pichugin MY. Juvenile divergence in adaptive traits among seven sympatric fish ecomorphs arises before moving to different lacustrine habitats. J Evol Biol 2018; 31:1018-1034. [PMID: 29672982 DOI: 10.1111/jeb.13283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/03/2023]
Abstract
Identifying the mechanisms initiating sympatric diversification in vertebrates has remained a conceptual challenge. Here, we analyse an assemblage of sympatric charr (Salvelinus malma) morphs from landlocked Lake Kronotskoe basin as a model to uncover the divergence pathways in freshwater fishes during the early life history stages. All morphs have distinct developmental biology, but a similar developmental rate retardation compared to the ancestor. Our study reveals that adult morphological differences, which acquire functionality at maturation, originate in the early juvenile stages due to heterochrony in skeletogenesis and allometric changes triggered by variation in metabolic activity. The craniofacial differences among the morphs result from asynchronous development of several skeletal modules. The accelerated ossification of teeth-armed bones occurs in predatory feeding morphs, whereas cranial cover ossification is promoted in benthivorous morphs. These contrasting growth patterns have led to seven phenotypes that span a range far beyond the ancestral variability. The most distinct morphs are a riverine spawning, epilimnetic predator and a lacustrine spawning, profundal benthic feeder. Taken together, we argue that the adaptive morphological differentiation in these sympatric freshwater fishes is driven by diverging patterns in ossification rate and metabolic activity against a background of uneven somatic growth. This divergence is primarily associated with basic environmental differences on the nursery grounds that might be unrelated to resource use. This nonheritable phenotype divergence is then exposed to natural selection that could result in further adaptive genetic changes.
Collapse
Affiliation(s)
- Evgeny V Esin
- Kronotsky State Nature Biosphere Reserve, Yelizovo, Russian Federation
| | | | | |
Collapse
|