1
|
Le Geay M, Mayers K, Küttim M, Lauga B, Jassey VEJ. Development of a digital droplet PCR approach for the quantification of soil micro-organisms involved in atmospheric CO 2 fixation. Environ Microbiol 2024; 26:e16666. [PMID: 38889760 DOI: 10.1111/1462-2920.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Carbon-fixing micro-organisms (CFMs) play a pivotal role in soil carbon cycling, contributing to carbon uptake and sequestration through various metabolic pathways. Despite their importance, accurately quantifying the absolute abundance of these micro-organisms in soils has been challenging. This study used a digital droplet polymerase chain reaction (ddPCR) approach to measure the abundance of key and emerging CFMs pathways in fen and bog soils at different depths, ranging from 0 to 15 cm. We targeted total prokaryotes, oxygenic phototrophs, aerobic anoxygenic phototrophic bacteria and chemoautotrophs, optimizing the conditions to achieve absolute quantification of these genes. Our results revealed that oxygenic phototrophs were the most abundant CFMs, making up 15% of the total prokaryotic abundance. They were followed by chemoautotrophs at 10% and aerobic anoxygenic phototrophic bacteria at 9%. We observed higher gene concentrations in fen than in bog. There were also variations in depth, which differed between fen and bog for all genes. Our findings underscore the abundance of oxygenic phototrophs and chemoautotrophs in peatlands, challenging previous estimates that relied solely on oxygenic phototrophs for microbial carbon dioxide fixation assessments. Incorporating absolute gene quantification is essential for a comprehensive understanding of microbial contributions to soil processes. This approach sheds light on the complex mechanisms of soil functioning in peatlands.
Collapse
Affiliation(s)
- Marie Le Geay
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Kyle Mayers
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Béatrice Lauga
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Vincent E J Jassey
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
2
|
Buttler A, Bragazza L, Laggoun-Défarge F, Gogo S, Toussaint ML, Lamentowicz M, Chojnicki BH, Słowiński M, Słowińska S, Zielińska M, Reczuga M, Barabach J, Marcisz K, Lamentowicz Ł, Harenda K, Lapshina E, Gilbert D, Schlaepfer R, Jassey VEJ. Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia. GLOBAL CHANGE BIOLOGY 2023; 29:6772-6793. [PMID: 37578632 DOI: 10.1111/gcb.16904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.
Collapse
Affiliation(s)
- Alexandre Buttler
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Lausanne, Switzerland
| | - Luca Bragazza
- Agroscope, Field-Crop Systems and Plant Nutrition, Nyon, Switzerland
| | | | - Sebastien Gogo
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Rennes, France
| | - Marie-Laure Toussaint
- Laboratoire de Chrono-Environnement, UMR, CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Bogdan H Chojnicki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | - Michał Słowiński
- Past Landscape Dynamic Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Sandra Słowińska
- Climate Research Department, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Zielińska
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Monika Reczuga
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Jan Barabach
- Department of Land Improvement, Environmental Development and Spatial Management, Poznan University of Life Sciences, Poznań, Poland
| | - Katarzyna Marcisz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Kamila Harenda
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | | | - Daniel Gilbert
- Laboratoire de Chrono-Environnement, UMR, CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Rodolphe Schlaepfer
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent E J Jassey
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Lausanne, Switzerland
- Laboratoire d'Ecologie Fonctionnelle et Environnement, CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Geisen S, Lara E, Mitchell E. Contemporary issues, current best practice and ways forward in soil protist ecology. Mol Ecol Resour 2023; 23:1477-1487. [PMID: 37259890 DOI: 10.1111/1755-0998.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/23/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Soil protists are increasingly studied due to a release from previous methodological constraints and the acknowledgement of their immense diversity and functional importance in ecosystems. However, these studies often lack sufficient depth in knowledge, which is visible in the form of falsely used terms and false- or over-interpreted data with conclusions that cannot be drawn from the data obtained. As we welcome that also non-experts include protists in their still mostly bacterial and/or fungal-focused studies, our aim here is to help avoid some common errors. We provide suggestions for current terms to use when working on soil protists, like protist instead of protozoa, predator instead of grazer, microorganisms rather than microflora and other terms to be used to describe the prey spectrum of protists. We then highlight some dos and don'ts in soil protist ecology including challenges related to interpreting 18S rRNA gene amplicon sequencing data. We caution against the use of standard bioinformatic settings optimized for bacteria and the uncritical reliance on incomplete and partly erroneous reference databases. We also show why causal inferences cannot be drawn from sequence-based correlation analyses or any sampling/monitoring, study in the field without thorough experimental confirmation and sound understanding of the biology of taxa. Together, we envision this work to help non-experts to more easily include protists in their soil ecology analyses and obtain more reliable interpretations from their protist data and other biodiversity data that, in the end, will contribute to a better understanding of soil ecology.
Collapse
Affiliation(s)
- Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | | | - Edward Mitchell
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Marcisz K, Belka Z, Dopieralska J, Jakubowicz M, Karpińska-Kołaczek M, Kołaczek P, Mauquoy D, Słowiński M, Zieliński M, Lamentowicz M. Neodymium isotopes in peat reveal past local environmental disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161859. [PMID: 36709903 DOI: 10.1016/j.scitotenv.2023.161859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the neodymium (Nd) isotope composition of mineral matter from peat cores has seen increasingly common use as a tracer of dust influx associated with major changes in the Holocene atmospheric circulation. However, the incomplete understanding of the local controls on the sources of the sediment supplied to peatlands remains a key difficulty in the interpretation of the archived Nd isotope signals. Here, we used neodymium isotopes to reconstruct environmental disturbances in peatlands. We performed a multi-proxy study of two peatlands that experienced peatland burning and validated the recorded peat Nd signatures using reference surface sampling. Our data show a link between the Nd isotope signals and local environmental disturbances: peat burning, local fire activity and pollution fluxes. Our study illustrates the crucial role of identifying local events that influence the supply of mineral material to peatlands. Insufficient recognition of such local controls may either obscure the large-scale variations in the atmospheric circulation patterns, or introduce artefacts to the Holocene climate record. We also provide recommendations for the use of Nd isotopes in palaeoecological studies of peatlands.
Collapse
Affiliation(s)
- Katarzyna Marcisz
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland.
| | - Zdzislaw Belka
- Isotope Research Unit, Adam Mickiewicz University, Poznań, Poland
| | - Jolanta Dopieralska
- Isotope Laboratory, Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
| | | | | | - Piotr Kołaczek
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
| | - Dmitri Mauquoy
- School of Geosciences, University of Aberdeen, Aberdeen, UK
| | - Michał Słowiński
- Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | | | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Meehan ML, Lindo Z. Mismatches in thermal performance between ectothermic predators and prey alter interaction strength and top-down control. Oecologia 2023; 201:1005-1015. [PMID: 37039893 DOI: 10.1007/s00442-023-05372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Climate change can alter predator-prey interactions when predators and prey have different thermal preferences as temperature change can exacerbate thermal mismatches (also called thermal asymmetry) with population-level consequences. We tested this using micro-arthropod predators (Stratiolaelaps scimitus) and prey (Folsomia candida) that differ in their temperature optima to examine predator-prey interactions across two temperature ranges, a cool (12 and 20 °C) and warm (20 and 26 °C) range. We predict that the lower thermal preference and optimum in F. candida will alter top-down control (i.e., interaction strength) by predators with interaction strength being strongest at intermediate temperatures, coinciding with F. candida thermal optimum. Predators and prey were placed in mesocosms, whereafter we measured population (predator and prey abundance), trait-based (average predator and prey body mass, and prey body length distribution), and predator-prey indices (predator-prey mass ratio (PPMR), Dynamic Index, and Log Response Ratio) to determine how temperature affected their interactions. Prey populations were the highest at intermediate temperatures (average temperature exposure: 16-23 °C) but declined at warmer temperatures (average temperature exposure: 24.5-26 °C). Predators consistently lowered prey abundances and average prey mass increased when predators were added. Top-down control was the greatest at intermediate temperatures (indicated by Log Response Ratio) when temperatures were near or below the thermal optimum for both species. Temperature-related prey declines negated top-down control under the warmest conditions suggesting that mismatches in thermal performance between predators and their prey will alter the strength and dominance of top-down or bottom-up forces of predator-prey interactions in a warmer world.
Collapse
Affiliation(s)
- Matthew L Meehan
- Department of Biology, Western University, London, ON, N6A 3K7, Canada.
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9BL, UK.
| | - Zoë Lindo
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
| |
Collapse
|
6
|
Agnihotri R, Gujre N, Mitra S, Sharma MP. Decoding the PLFA profiling of microbial community structure in soils contaminated with municipal solid wastes. ENVIRONMENTAL RESEARCH 2023; 219:114993. [PMID: 36535388 DOI: 10.1016/j.envres.2022.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to assess the influence of municipal solid waste (MSW) disposal on soil microbial communities. Soil samples from 20 different locations of an MSW dumping site contaminated with toxic heavy metals (HMs) and a native forest (as control) were collected for phospholipid fatty acid (PLFA) profiling to predict microbial community responses towards unsegregated disposal of MSW. PLFA biomarkers specific to arbuscular mycorrhizal fungi (AMF), Gram-negative and Gram-positive bacteria, fungi, eukaryotes, actinomycetes, anaerobes, and microbial stress markers-fungi: bacteria (F/B) ratio, Gram-positive/Gram-negative (GP/GN) ratio, Gram-negative stress (GNStr) ratio and predator/prey ratio along with AMF spore density and the total HM content (Cu, Cr, Cd, Mn, Zn, and Ni) were assessed. The results showed that all of the PLFA microbial biomarkers and the F/B ratio were positively correlated, while HMs and microbial stress markers were negatively correlated. The significant correlation of AMF biomass with all microbial groups, the F/B ratio, and T. PLFA confirmed its significance as a key predictor of microbial biomass. With AMF and T. PLFA, Cd and Cr had a weak or negative connection. Among the toxic HMs, Zn and Cd had the greatest impact on microbial populations. Vegetation did not have any significant effect on soil microbial communities. This research will aid in the development of bioinoculants for the bioremediation of MSW-polluted sites and will improve our understanding of the soil microbial community's ability to resist, recover, and adapt to toxic waste contamination.
Collapse
Affiliation(s)
- Richa Agnihotri
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Nihal Gujre
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India; Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India
| | - Mahaveer P Sharma
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India.
| |
Collapse
|
7
|
Sytiuk A, Hamard S, Céréghino R, Dorrepaal E, Geissel H, Küttim M, Lamentowicz M, Tuittila ES, Jassey VEJ. Linkages between Sphagnum metabolites and peatland CO 2 uptake are sensitive to seasonality in warming trends. THE NEW PHYTOLOGIST 2023; 237:1164-1178. [PMID: 36336780 PMCID: PMC10108112 DOI: 10.1111/nph.18601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.
Collapse
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Ellen Dorrepaal
- Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversitySE‐981 07AbiskoSweden
| | - Honorine Geissel
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and HealthTallinn UniversityUus‐Sadama 510120TallinnEstonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological SciencesAdam Mickiewicz University in PoznańBogumiła Krygowskiego 1061‐680PoznańPoland
| | - Eeva Stiina Tuittila
- School of Forest SciencesUniversity of Eastern FinlandJoensuu CampusFI‐80100JoensuuFinland
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| |
Collapse
|
8
|
Dang Z, Luo Z, Wang S, Liao Y, Jiang Z, Zhu X, Ji G. Using hierarchical stable isotope to reveal microbial food web structure and trophic transfer efficiency differences during lake melt season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156893. [PMID: 35753488 DOI: 10.1016/j.scitotenv.2022.156893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The microbial food web (MFW) is a material and energy source in lake water ecosystems. Although it is crucial to determine its structure and function for water ecological health, MFW changes during lake melt period have not been well studied. In this study, the MFW was divided into three categories by analyzing its structure and trophic transfer efficiency using hierarchical C/N stable isotopes and eDNA sequencing techniques, including the detrital food web (DFC, 15 %), classical grazing food web (CFC, 60 %), and mixed trophic food web (MFC, 25 %). The trophic structure and type of MFW in ice-melting lakes are always in the process of succession and adaptation, which is in a relatively low trophic transfer efficiency stage under stable conditions (i.e. CFC), whereas the input of exogenous debris and organic pollutants may lead to an increase in MFW trophic transfer efficiency (i.e. MFC, DFC). The trophic transfer efficiency from the previous trophic level to protozoa and micrometazoa was 16.32 % and 20.77 % in DFC and 10.20 % and 29.43 % in MFC, respectively. Both are obviously higher than those of the CFC (11.69 % and 9.45 %, respectively). In terms of trophic structure, the community interaction and trophic cascade effect of DFC and MFC were enhanced but easily changed with environmental factors. In contrast, the core species and cascading effects of the CFC were clearer, and the MFW structure was relatively stable. Overall, this study reveals that the explosive increase in MFW trophic transfer efficiency induced by exogenous input during the lake melt period may subsequently lead to the destabilization of the microbial community structure and cause potential ecological risks. These are manifested in the absence of ecological trophic processes, the decrease in trophic structure complexity and stability, and the weakening of microecology self-adaptive regulation ability.
Collapse
Affiliation(s)
- Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhongxin Luo
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China; National Research Center for Sustainable Hydropower Development, Beijing 100038, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Karpińska-Kołaczek M, Kołaczek P, Czerwiński S, Gałka M, Guzowski P, Lamentowicz M. Anthropocene history of rich fen acidification in W Poland - Causes and indicators of change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155785. [PMID: 35537513 DOI: 10.1016/j.scitotenv.2022.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
In the time of the global climate crisis, it is vital to protect and restore peatlands to maintain their functioning as carbon sinks. Otherwise, their transformations may trigger a shift to a carbon source state and further contribute to global warming. In this study, we focused on eutrophication, which resulted in the transition from rich fen to poor fen conditions on the Kazanie fen (central Greater Poland, western Poland Central Europe). The prior aim was to decipher how i) climate, ii) human, and iii) autogenic processes influenced the pathway of peatland changes in the last ca. 250 years. We applied a high-resolution palaeoecological analysis, based mainly on testate amoebae (TA) and plant macroremains. Our results imply that before ca. 1950 CE, dry shifts on the fen were generally climate-induced. Later, autogenic processes, human pressure and climate warming synergistically affected the fen, contributing to its transition to poor fen within ca. 30 years. Its establishment not only caused changes in vegetation but also altered TA taxonomic content and resulted in a lower diversity of TA. According to our research Microchlamyspatella is an incredibly sensitive testate amoeba that after ca. 200 years of presence, disappeared within 2 years due to changes in water and nutrient conditions. As a whole, our study provides a long-term background that is desired in modern conservation studies and might be used to define future restoration targets. It also confirms the already described negative consequences connected with unsustainable exploitation of nature.
Collapse
Affiliation(s)
- Monika Karpińska-Kołaczek
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland.
| | - Piotr Kołaczek
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland
| | - Sambor Czerwiński
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland; Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Mariusz Gałka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Protection, 1/3 Banacha Str., 90-237 Lodz, Poland
| | - Piotr Guzowski
- Faculty of History and International Relations, University of Bialystok, Pl. NZS 1, 15-420 Bialystok, Poland
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, B. Krygowskiego 10, 61-680 Poznań, Poland
| |
Collapse
|
10
|
Jassey VEJ, Hamard S, Lepère C, Céréghino R, Corbara B, Küttim M, Leflaive J, Leroy C, Carrias JF. Photosynthetic microorganisms effectively contribute to bryophyte CO 2 fixation in boreal and tropical regions. ISME COMMUNICATIONS 2022; 2:64. [PMID: 37938283 PMCID: PMC9723567 DOI: 10.1038/s43705-022-00149-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 04/26/2023]
Abstract
Photosynthetic microbes are omnipresent in land and water. While they critically influence primary productivity in aquatic systems, their importance in terrestrial ecosystems remains largely overlooked. In terrestrial systems, photoautotrophs occur in a variety of habitats, such as sub-surface soils, exposed rocks, and bryophytes. Here, we study photosynthetic microbial communities associated with bryophytes from a boreal peatland and a tropical rainforest. We interrogate their contribution to bryophyte C uptake and identify the main drivers of that contribution. We found that photosynthetic microbes take up twice more C in the boreal peatland (~4.4 mg CO2.h-1.m-2) than in the tropical rainforest (~2.4 mg CO2.h-1.m-2), which corresponded to an average contribution of 4% and 2% of the bryophyte C uptake, respectively. Our findings revealed that such patterns were driven by the proportion of photosynthetic protists in the moss microbiomes. Low moss water content and light conditions were not favourable to the development of photosynthetic protists in the tropical rainforest, which indirectly reduced the overall photosynthetic microbial C uptake. Our investigations clearly show that photosynthetic microbes associated with bryophyte effectively contribute to moss C uptake despite species turnover. Terrestrial photosynthetic microbes clearly have the capacity to take up atmospheric C in bryophytes living under various environmental conditions, and therefore potentially support rates of ecosystem-level net C exchanges with the atmosphere.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France.
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Cécile Lepère
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Bruno Corbara
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Uus-Sadama 5, 10120, Tallinn, Estonia
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Céline Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - Jean-François Carrias
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| |
Collapse
|
11
|
The effect of experimentally simulated climate warming on the microbiome of carnivorous plants – A microcosm experiment. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Whittle A, Barnett RL, Charman DJ, Gallego-Sala AV. Low-salinity transitions drive abrupt microbial response to sea-level change. Ecol Lett 2021; 25:17-25. [PMID: 34708510 DOI: 10.1111/ele.13893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The salinisation of many coastal ecosystems is underway and is expected to continue into the future because of sea-level rise and storm intensification brought about by the changing climate. However, the response of soil microbes to increasing salinity conditions within coastal environments is poorly understood, despite their importance for nutrient cascading, carbon sequestration and wider ecosystem functioning. Here, we demonstrate deterioration in the productivity of a top-tier microbial group (testate amoebae) with increasing coastal salinity, which we show to be consistent across phylogenetic groups, salinity gradients, environment types and latitude. Our results show that microbial changes occur in the very early stages of marine inundation, presaging more radical changes in soil and ecosystem function and providing an early warning of coastal salinisation that could be used to improve coastal planning and adaptation.
Collapse
Affiliation(s)
- Alex Whittle
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Robert L Barnett
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Département de biologie, chimie et géographie et Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, Canada
| | - Dan J Charman
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Angela V Gallego-Sala
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Mieczan T, Grześkiewicz M. The impact of climate warming on the diurnal dynamics of the microbial loop: Ice cover vs. lack of ice cover on dystrophic lakes. Saudi J Biol Sci 2021; 28:5175-5186. [PMID: 34466095 PMCID: PMC8381083 DOI: 10.1016/j.sjbs.2021.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
One of the effects of warming is earlier retreat of the ice cover or a complete lack of ice cover on water bodies in the winter. However, there is still no information on how climate warming affects the 24-hour dynamics of the planktonic microbial loop in winter. The aim of this investigation was to assess the diurnal dynamics of the taxonomic composition and abundance of microbial communities in experimentally reproduced conditions (samples from under the ice, +2, +4 and +8 °C) and to analyse the relationships between components of the microbial loop in relation to physical and chemical parameters. Samples were taken in winter from three dystrophic reservoir. The biological and physicochemical parameters in the water were analysed at the start (day 0), 15 and end of the experiment (day 30) over a 24-hour cycle. The increase in temperature caused an increase in the numbers of predators (particularly testate amoebae and ciliates) and a reduction in the body size of individual populations. During the period with ice cover, marked dominance of mixotrophic testate amoeba (Hyalosphenia papilio) and ciliates (Paramecium bursaria) was observed, while the increase in temperature caused an increase in the proportion of bacterivorous ciliates (Cinetochilum margaritaceum).
Collapse
|
14
|
Kitson E, Bell NGA. The Response of Microbial Communities to Peatland Drainage and Rewetting. A Review. Front Microbiol 2020; 11:582812. [PMID: 33193221 PMCID: PMC7658402 DOI: 10.3389/fmicb.2020.582812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Peatlands are significant global carbon stores and play an important role in mediating the flux of greenhouse gasses into the atmosphere. During the 20th century substantial areas of northern peatlands were drained to repurpose the land for industrial or agricultural use. Drained peatlands have dysfunctional microbial communities, which can lead to net carbon emissions. Rewetting of drained peatlands is therefore an environmental priority, yet our understanding of the effects of peatland drainage and rewetting on microbial communities is still incomplete. Here we summarize the last decade of research into the response of the wider microbial community, methane-cycling microorganisms, and micro-fauna to drainage and rewetting in fens and bogs in Europe and North America. Emphasis is placed on current research methodologies and their limitations. We propose targets for future work including: accounting for timescale of drainage and rewetting events; better vertical and lateral coverage of samples across a peatland; the integration of proteomic and metabolomic datasets into functional community analysis; the use of RNA sequencing to differentiate the active community from legacy DNA; and further study into the response of the viral and micro-faunal communities to peatland drainage and rewetting. This review should benefit researchers embarking on studies in wetland microbiology and non-microbiologists working on peatland drainage and rewetting in general.
Collapse
Affiliation(s)
- Ezra Kitson
- EaSTCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholle G A Bell
- EaSTCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Reczuga MK, Seppey CVW, Mulot M, Jassey VE, Buttler A, Słowińska S, Słowiński M, Lara E, Lamentowicz M, Mitchell EA. Assessing the responses of Sphagnum micro-eukaryotes to climate changes using high throughput sequencing. PeerJ 2020; 8:e9821. [PMID: 32999758 PMCID: PMC7505061 DOI: 10.7717/peerj.9821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world's soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more "terrestrial" community in response to drought, in line with observed changes in the functioning of the ecosystem.
Collapse
Affiliation(s)
- Monika K. Reczuga
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Christophe Victor William Seppey
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Arctic and Marine Biology, Faculty of Biosciences Fisheries and Economics, University of Tromsø, Tromsø, Norway
| | - Matthieu Mulot
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vincent E.J. Jassey
- Laboratoire Ecologie Fonctionelle et Environnement, Université de Toulouse, CNRS, Toulouse Cedex, France
- Ecological Systems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Switzerland
| | - Alexandre Buttler
- Ecological Systems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Switzerland
| | - Sandra Słowińska
- Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Słowiński
- Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Real Jardín Botánico, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Edward A.D. Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
16
|
Yang N, Li Y, Zhang W, Lin L, Qian B, Wang L, Niu L, Zhang H. Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web. WATER RESEARCH 2020; 170:115351. [PMID: 31810033 DOI: 10.1016/j.watres.2019.115351] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/25/2023]
Abstract
Determination of the effects of cascade dams on benthic microbial ecosystem is essential for dam regulation and ecological function protection. However, no comprehensive investigation has yet shown the ecosystem-level responses of microbiota to dam impoundments. This study conducted DNA metabarcoding and microbial food web analysis for multiple species and their interrelationships along a cascade dam-affected river. The composition, distribution and diversity of bacteria, protozoans and metazoans were obviously different between river and reservoirs, mainly controlled by hydrological (P < 0.01) and nutrient parameters (P < 0.05). Those three groups make up a co-occurrence network, with most edges direct from higher to lower trophic levels or vice versa and more than 50% keystones participate in the food web, indicating the significant role of predator-prey relationships. Based on the microbial food web analysis, the predator biomass, especially at higher trophic levels, decreased by about 10% from the riverine to the lacustrine system. The structural equation model illustrates that both bottom-up forces (environmental factors particularly velocity and nutrient concentrations) and top-down forces (higher trophic levels) critically control microbial food web patterns (P < 0.05). As a result of dam impoundments, the lower velocity in the reservoirs has direct negative effects on trophic transfer efficiencies that may be further magnified by nutrient accumulation, probably leading to an increase of eutrophication and posing a risk to water quality. The results suggest the potential ecological risk in the reservoirs and highlight the need to consider from the perspective of ecosystem during the operation of cascade dams.
Collapse
Affiliation(s)
- Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Li Lin
- Department of Basin Water Environment, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Hubei Provincial Key Laboratory of Basin Water Resources and Ecological Environment Sciences, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Bao Qian
- Hydrology Bureau of Changjiang Water Resources Commission, Wuhan, Hubei, 430010, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
17
|
Lamentowicz M, Kajukało-Drygalska K, Kołaczek P, Jassey VEJ, Gąbka M, Karpińska-Kołaczek M. Testate amoebae taxonomy and trait diversity are coupled along an openness and wetness gradient in pine-dominated Baltic bogs. Eur J Protistol 2020; 73:125674. [PMID: 32200296 DOI: 10.1016/j.ejop.2020.125674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 11/26/2022]
Abstract
Sphagnum peatlands host a high abundance of protists, especially testate amoebae. Here, we designed a study to investigate the functional diversity of testate amoebae in relation to wetness and forest cover in Baltic bogs. We provided new data on the influence of openness/wetness gradient on testate amoebae communities, showing significant differences in selected testate amoebae (TA) traits. Three key messages emerged from our investigations: 1) we recorded an effect of peatland surface openness on testate amoebae functional traits that led us to accept the hypothesis that TA traits differ according to light intensity and hydrology. Mixotrophic species were recorded in high relative abundance in open plots, whereas they were nearly absent in forested sites; 2) we revealed a hydrological threshold for the occurrence of mixotrophic testate amoebae that might be very important in terms of peatland functioning and carbon sink vs. source context; and 3) mixotrophic species with organic tests were nearly absent in forested sites that were dominated by heterotrophic species with agglutinated or idiosomic tests. An important message from this study is that taxonomy of TA rather indicates the hydrological gradient whereas traits of mixotrophs the openness gradient.
Collapse
Affiliation(s)
- Mariusz Lamentowicz
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland.
| | - Katarzyna Kajukało-Drygalska
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Kołaczek
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Vincent E J Jassey
- ECOLAB, Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Maciej Gąbka
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Monika Karpińska-Kołaczek
- Laboratory of Climate Change Ecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland; Center for the Study of Demographic and Economic Structures in Preindustrial Central and Eastern Europe University of Białystok, Poland
| |
Collapse
|
18
|
Hamard S, Robroek BJM, Allard PM, Signarbieux C, Zhou S, Saesong T, de Baaker F, Buttler A, Chiapusio G, Wolfender JL, Bragazza L, Jassey VEJ. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol 2019; 10:2042. [PMID: 31555245 PMCID: PMC6742715 DOI: 10.3389/fmicb.2019.02042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/20/2019] [Indexed: 12/03/2022] Open
Abstract
Plant specialized metabolites play an important role in soil carbon (C) and nutrient fluxes. Through anti-microbial effects, they can modulate microbial assemblages and associated microbial-driven processes, such as nutrient cycling, so to positively or negatively cascade on plant fitness. As such, plant specialized metabolites can be used as a tool to supplant competitors. These compounds are little studied in bryophytes. This is especially notable in peatlands where Sphagnum mosses can dominate the vegetation and show strong interspecific competition. Sphagnum mosses form carpets where diverse microbial communities live and play a crucial role in Sphagnum fitness by regulating C and nutrient cycling. Here, by means of a microcosm experiment, we assessed to what extent moss metabolites of two Sphagnum species (S. fallax and S. divinum) modulate the competitive Sphagnum microbiome, with particular focus on microbial respiration. Using a reciprocal leachate experiment, we found that interactions between Sphagnum leachates and microbiome are species-specific. We show that both Sphagnum leachates differed in compound richness and compound relative abundance, especially sphagnum acid derivates, and that they include microbial-related metabolites. The addition of S. divinum leachate on the S. fallax microbiome immediately reduced microbial respiration (−95%). Prolonged exposition of S. fallax microbiome to S. divinum leachate destabilized the food web structure due to a modulation of microbial abundance. In particular, leachate addition decreased the biomass of testate amoebae and rotifers but increased that of ciliates. These changes did not influence microbial CO2 respiration, suggesting that the structural plasticity of the food web leads to its functional resistance through the replacement of species that are functionally redundant. In contrast, S. fallax leachate neither affected S. divinum microbial respiration, nor microbial biomass. We, however, found that S. fallax leachate addition stabilized the food web structure associated to S. divinum by changing trophic interactions among species. The differences in allelopathic effects between both Sphagnum leachates might impact their competitiveness and affect species distribution at local scale. Our study further paves the way to better understand the role of moss and microbial specialized metabolites in peatland C dynamics.
Collapse
Affiliation(s)
- Samuel Hamard
- ECOLAB, Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.,Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland.,Laboratoire de Géologie, UMR 8538, CNRS-ENS, Ecole Normale Supérieure, Paris, France
| | - Bjorn J M Robroek
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,School of Biological Sciences, University of Southampton, Southampton, United Kingdom.,Aquatic Ecology and Environmental Biology Group, Faculty of Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Constant Signarbieux
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland
| | - Shuaizhen Zhou
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tongchai Saesong
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.,Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Flore de Baaker
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Alexandre Buttler
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland.,Laboratoire Chrono-Environnement, Université Bourgogne Franche Comté, UMR CNRS 6249 USC INRA, Montbéliard, France
| | - Geneviève Chiapusio
- Laboratoire Chrono-Environnement, Université Bourgogne Franche Comté, UMR CNRS 6249 USC INRA, Montbéliard, France.,Laboratoire Carrtel, Université Savoie Mont Blanc INRA 042, Domaine Universitaire Belledonne, Le Bourget-du-Lac, France
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Luca Bragazza
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland.,Department of Life Science and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Vincent E J Jassey
- ECOLAB, Laboratoire d'Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.,Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland
| |
Collapse
|