1
|
Omondi E, Barchi L, Gaccione L, Portis E, Toppino L, Tassone MR, Alonso D, Prohens J, Rotino GL, Schafleitner R, van Zonneveld M, Giuliano G. Association analyses reveal both anthropic and environmental selective events during eggplant domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17229. [PMID: 39918113 PMCID: PMC11803709 DOI: 10.1111/tpj.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025]
Abstract
Eggplant (Solanum melongena) is one of the four most important Solanaceous crops, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. We studied the genome-wide association of historical genebank phenotypic data on a genotyped worldwide collection of 3449 eggplant accessions. Overall, 334 significant associations for key agronomic traits were detected. Significant correlations were obtained between different types of phenotypic data, some of which were not obvious, such as between fruit size/yield and fruit color components, suggesting simultaneous anthropic selection for genetically unrelated traits. Anthropic selection of traits like leaf prickles, fruit color, and yield, acted on distinct genomic regions in the two domestication centers (India and Southeast Asia), further confirming the multiple domestication of eggplant. To discriminate anthropic from environmental selection in domestication centers, we conducted a genotype-environment association (GEA) on a subset of georeferenced accessions from the Indian subcontinent. The population structure in this area revealed four genetic clusters, corresponding to a latitudinal gradient, and environmental factors explained 31% of the population structure when the effect of spatial distances was removed. GEA and outlier association identified 305 candidate regions under environmental selection, containing genes for abiotic stress responses, plant development, and flowering transition. Finally, in the Indian domestication center anthropic and environmental selection acted largely independently, and on different genomic regions. These data allow a better understanding of the different effects of environmental and anthropic selection during domestication of a crop, and the different world regions where some traits were initially selected by humans.
Collapse
Affiliation(s)
| | - Lorenzo Barchi
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Luciana Gaccione
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Ezio Portis
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Laura Toppino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Maria Rosaria Tassone
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - David Alonso
- Universitat Politècnica de ValènciaCamino de Vera 1446022ValenciaSpain
| | - Jaime Prohens
- Universitat Politècnica de ValènciaCamino de Vera 1446022ValenciaSpain
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | | | | | | |
Collapse
|
2
|
Meucci S, Kruse S, Haupt S, Stoof‐Leichsenring KR, Krutovsky KV, Bernhardt N, Harpke D, Herzschuh U. Biological Processes Underlying Genetic Adaptation of Larches to Cold and Dry Winter Conditions in Eastern Siberia. Ecol Evol 2025; 15:e70940. [PMID: 39949889 PMCID: PMC11821550 DOI: 10.1002/ece3.70940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The boreal forests of central and eastern Siberia, dominated by larches, are challenged by increasingly harsher continental conditions and more frequent droughts. Despite the crucial ecosystem services provided by these Siberian boreal forests, the major stressors driving the selective factors as well as the genetic adaptation mechanisms of larches are still unknown. Here we present a landscape genomics study on 243 individuals of the dominant larch tree species, Larix gmelinii and L. cajanderi. We assessed genotype-environment associations (GEAs) between genetic variation of individual markers based on genotyping-by-sequencing (GBS) data and bioclimatic variables recorded at the sampling locations. We find that the cold and dry winter conditions of eastern Siberia are likely the main selective factor driving the genetic adaptation of larches. Gene ontology (GO) enrichment analysis identified metabolic, transmembrane transport, and homeostatic, as well as developmental processes among the main biological processes underlying genetic adaptation driven by cold and dry winter conditions.
Collapse
Affiliation(s)
- Stefano Meucci
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPolar Terrestrial Environmental SystemsPotsdamGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Stefan Kruse
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPolar Terrestrial Environmental SystemsPotsdamGermany
| | - Sarah Haupt
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPolar Terrestrial Environmental SystemsPotsdamGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Kathleen R. Stoof‐Leichsenring
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPolar Terrestrial Environmental SystemsPotsdamGermany
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree BreedingGeorge‐August University of GöttingenGöttingenGermany
- Center for Integrated Breeding ResearchGeorg‐August University of GöttingenGöttingenGermany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussian Federation
- Laboratory of Forest Genomics, Genome Research and Education Center, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and BiotechnologySiberian Federal UniversityKrasnoyarskRussian Federation
- Scientific and Methodological CenterG. F. Morozov Voronezh State University of Forestry and TechnologiesVoronezhRussian Federation
| | - Nadine Bernhardt
- Julius Kühn‐Institut, Federal Research Centre for Cultivated PlantsInstitute for Resistance Research and Stress ToleranceQuedlinburgGermany
| | - Dörte Harpke
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenStadt SeelandGermany
| | - Ulrike Herzschuh
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPolar Terrestrial Environmental SystemsPotsdamGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Institute of Environmental Science and GeographyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
3
|
Hein K, Girma D, McKay J. Genetic diversity and environmental adaptation in Ethiopian tef. G3 (BETHESDA, MD.) 2025:jkae303. [PMID: 39853275 DOI: 10.1093/g3journal/jkae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/13/2024] [Indexed: 01/26/2025]
Abstract
Orphan crops serve as essential resources for both nutrition and income in local communities and offer potential solutions to the challenges of food security and climate vulnerability. Tef [Eragrostis tef (Zucc.)], a small-grained allotetraploid, C4 cereal mainly cultivated in Ethiopia, stands out for its adaptability to marginal conditions and high nutritional value, which holds both local and global promise. Despite its significance, tef is considered an orphan crop due to limited genetic improvement efforts, reliance on subsistence farming, and its nutritional, economic, and cultural importance. Although pre-Semitic inhabitants of Ethiopia have cultivated tef for millennia (4000-1000 BCE), the genetic and environmental drivers of local adaptation remain poorly understood. To address this, we resequenced a diverse collection of traditional tef varieties to investigate their genetic structure and identify genomic regions under environmental selection using redundancy analysis, complemented by differentiation-based methods. We identified 145 loci associated with abiotic environmental factors, with minimal geographic influence observed in the genetic structure of the sample population. Overall, this work contributes to the broader understanding of local adaptation and its genetic basis in tef, providing insights that support efforts to develop elite germplasms with improved environmental resilience.
Collapse
Affiliation(s)
- Kirsten Hein
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dejene Girma
- Ethiopian Institute of Agricultural Research, Addis Ababa 1000, Ethiopia
| | - John McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Modica A, Lalagüe H, Muratorio S, Scotti I. Rolling down that mountain: microgeographical adaptive divergence during a fast population expansion along a steep environmental gradient in European beech. Heredity (Edinb) 2024; 133:99-112. [PMID: 38890557 PMCID: PMC11286953 DOI: 10.1038/s41437-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Forest tree populations harbour high genetic diversity thanks to large effective population sizes and strong gene flow, allowing them to diversify through adaptation to local environmental pressures within dispersal distance. Many tree populations also experienced historical demographic fluctuations, including spatial population contraction or expansions at various temporal scales, which may constrain their ability to adapt to environmental variations. Our aim is to investigate how recent contraction and expansion events interfere with local adaptation, by studying patterns of adaptive divergence between closely related stands undergoing environmentally contrasted conditions, and having or not recently expanded. To investigate genome-wide signatures of local adaptation while accounting for demography, we analysed divergence in a European beech population by testing pairwise differentiation among four tree stands at ~35k Single Nucleotide Polymorphisms from ~9k genomic regions. We applied three divergence outlier search methods resting on different assumptions and targeting either single SNPs or contiguous genomic regions, while accounting for the effect of population size variations on genetic divergence. We found 27 signals of selective signatures in 19 target regions. Putatively adaptive divergence involved all stand pairs. We retrieved signals both when comparing old-growth stands and recently colonised areas and when comparing stands within the old-growth area. Therefore, adaptive divergence processes have taken place both over short time spans, under strong environmental contrasts, and over short ecological gradients, in populations that have been stable in the long term. This suggests that standing genetic variation supports local, microgeographic divergence processes, which can maintain genetic diversity at the landscape level.
Collapse
Affiliation(s)
- Andrea Modica
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France
| | - Hadrien Lalagüe
- INRAE, EcoFoG, Campus agronomique, 97310, Kourou, French Guiana
| | - Sylvie Muratorio
- INRAE, EcoBioP, 173, Route de Saint-Jean-de-Luz RD 918, 64310, Saint-Pée-sur-Nivelle, France
| | - Ivan Scotti
- INRAE, URFM, 228, Route de l'Aérodrome, 84914, Avignon, France.
| |
Collapse
|
5
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
6
|
Zhang X, Guo R, Shen R, Landis JB, Jiang Q, Liu F, Wang H, Yao X. The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhad031. [PMID: 37799629 PMCID: PMC10548413 DOI: 10.1093/hr/uhad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. Actinidia eriantha is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for A. eriantha. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853 USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
7
|
Wang Y, Zhang L, Zhou Y, Ma W, Li M, Guo P, Feng L, Fu C. Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb Tetrastigma hemsleyanum (Vitaceae) in subtropical China. Front Genet 2023; 14:1150704. [PMID: 37144128 PMCID: PMC10151583 DOI: 10.3389/fgene.2023.1150704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding adaptive genetic variation of plant populations and their vulnerabilities to climate change are critical to preserve biodiversity and subsequent management interventions. To this end, landscape genomics may represent a cost-efficient approach for investigating molecular signatures underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a widespread perennial herb of warm-temperate evergreen forest in subtropical China. Its ecological and medicinal values constitute a significant revenue for local human populations and ecosystem. Using 30,252 single nucleotide polymorphisms (SNPs) derived from reduced-representation genome sequencing in 156 samples from 24 sites, we conducted a landscape genomics study of the T. hemsleyanum to elucidate its genomic variation across multiple climate gradients and genomic vulnerability to future climate change. Multivariate methods identified that climatic variation explained more genomic variation than that of geographical distance, which implied that local adaptation to heterogeneous environment might represent an important source of genomic variation. Among these climate variables, winter precipitation was the strongest predictor of the contemporary genetic structure. F ST outlier tests and environment association analysis totally identified 275 candidate adaptive SNPs along the genetic and environmental gradients. SNP annotations of these putatively adaptive loci uncovered gene functions associated with modulating flowering time and regulating plant response to abiotic stresses, which have implications for breeding and other special agricultural aims on the basis of these selection signatures. Critically, modelling revealed that the high genomic vulnerability of our focal species via a mismatch between current and future genotype-environment relationships located in central-northern region of the T. hemsleyanum's range, where populations require proactive management efforts such as assistant adaptation to cope with ongoing climate change. Taken together, our results provide robust evidence of local climate adaption for T. hemsleyanum and further deepen our understanding of adaptation basis of herbs in subtropical China.
Collapse
Affiliation(s)
- Yihan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Yuchao Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Wenxin Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Manyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Abstract
Forest research and professional workforces continue to be dominated by men, particularly at senior and management levels. In this review, we identify some of the historical and ongoing barriers to improved gender inclusion and suggest some solutions. We showcase a selection of women in forestry from different disciplines and parts of the globe to highlight a range of research being conducted by women in forests. Boosting gender equity in forest disciplines requires a variety of approaches across local, regional and global scales. It is also important to include intersectional analyses when identifying barriers for women in forestry, but enhanced equity, diversity and inclusion will improve outcomes for forest ecosystems and social values of forests, with potential additional economic benefits.
Collapse
|
9
|
Gene Frequency Shift in Relict Abies pinsapo Forests Associated with Drought-Induced Mortality: Preliminary Evidence of Local-Scale Divergent Selection. FORESTS 2021. [DOI: 10.3390/f12091220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current climate change constitutes a challenge for the survival of several drought-sensitive forests. The study of the genetic basis of adaptation offers a suitable way to understand how tree species may respond to future climatic conditions, as well as to design suitable conservation and management strategies. Here, we focus on selected genetic signatures of the drought-sensitive relict fir, Abies pinsapo Boiss. Field sampling of 156 individuals was performed in two elevation ecotones, characterized by widespread A. pinsapo decline and mortality. The DNA from dead trees was investigated and compared to living individuals, accounting for different ages and elevations. We studied the genes gated outwardly-rectifying K+ (GORK) channel and Plasma membrane Intrinsic Protein (PIP1) aquaporin, previously related to drought response in plant model species, to test whether drought was the main abiotic factor driving the decline of A. pinsapo forests. A combination of linear regression and factor models were used to test these selection signatures, as well as a fixation index (Fst), used here to analyze the genetic structure. The results were consistent among these approaches, supporting a statistically significant association of the GORK gene with survival in one of the A. pinsapo populations. These results provide preliminary evidence for the potential role of the GORK gene in the resilience to drought of A. pinsapo.
Collapse
|
10
|
Rajora OP, Zinck JWR. Genetic Diversity, Structure and Effective Population Size of Old-Growth vs. Second-Growth Populations of Keystone and Long-Lived Conifer, Eastern White Pine ( Pinus strobus): Conservation Value and Climate Adaptation Potential. Front Genet 2021; 12:650299. [PMID: 34456961 PMCID: PMC8388927 DOI: 10.3389/fgene.2021.650299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Whether old-growth (OG) forests have higher genetic diversity and effective population size, consequently higher conservation value and climate adaptive potential than second-growth (SG) forests, remain an unresolved issue. We have tested the hypothesis that old-growth forest tree populations have higher genetic diversity, effective population size (NE ), climate adaptive potential and conservation value and lower genetic differentiation than second-growth forest tree populations, employing a keystone and long-lived conifer, eastern white pine (EWP; Pinus strobus). Genetic diversity and population structure of old-growth and second-growth populations of eastern white pine (EWP) were examined using microsatellites of the nuclear and chloroplast genomes and single nucleotide polymorphisms (SNPs) in candidate nuclear genes putatively involved in adaptive responses to climate and underlying multilocus genetic architecture of local adaptation to climate in EWP. Old-growth and second-growth EWP populations had statistically similar genetic diversity, inbreeding coefficient and inter-population genetic differentiation based on nuclear microsatellites (nSSRs) and SNPs. However, old-growth populations had significantly higher chloroplast microsatellites (cpSSRs) haploid diversity than second-growth populations. Old-growth EWP populations had significantly higher coalescence-based historical long-term NE than second-growth EWP populations, but the linkage disequilibrium (LD)-based contemporary NE estimates were statistically similar between the old-growth and second-growth EWP populations. Analyses of population genetic structure and inter-population genetic relationships revealed some genetic constitution differences between the old-growth and second-growth EWP populations. Overall, our results suggest that old-growth and second-growth EWP populations have similar genetic resource conservation value. Because old-growth and second-growth EWP populations have similar levels of genetic diversity in genes putatively involved in adaptive responses to climate, old-growth, and second-growth populations may have similar adaptive potential under climate change. Our results could potentially be generalized across most of the boreal and temperate conifer forest trees. Our study contributes to address a long-standing issue, advances research field and knowledge about conservation and ecological and climate adaptation of forest trees.
Collapse
Affiliation(s)
- Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - John W R Zinck
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
11
|
Li J, West JB, Hart A, Wegrzyn JL, Smith MA, Domec JC, Loopstra CA, Casola C. Extensive Variation in Drought-Induced Gene Expression Changes Between Loblolly Pine Genotypes. Front Genet 2021; 12:661440. [PMID: 34140968 PMCID: PMC8203665 DOI: 10.3389/fgene.2021.661440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Drought response is coordinated through expression changes in a large suite of genes. Interspecific variation in this response is common and associated with drought-tolerant and -sensitive genotypes. The extent to which different genetic networks orchestrate the adjustments to water deficit in tolerant and sensitive genotypes has not been fully elucidated, particularly in non-model or woody plants. Differential expression analysis via RNA-seq was evaluated in root tissue exposed to simulated drought conditions in two loblolly pine (Pinus taeda L.) clones with contrasting tolerance to drought. Loblolly pine is the prevalent conifer in southeastern U.S. and a major commercial forestry species worldwide. Significant changes in gene expression levels were found in more than 4,000 transcripts [drought-related transcripts (DRTs)]. Genotype by environment (GxE) interactions were prevalent, suggesting that different cohorts of genes are influenced by drought conditions in the tolerant vs. sensitive genotypes. Functional annotation categories and metabolic pathways associated with DRTs showed higher levels of overlap between clones, with the notable exception of GO categories in upregulated DRTs. Conversely, both differentially expressed transcription factors (TFs) and TF families were largely different between clones. Our results indicate that the response of a drought-tolerant loblolly pine genotype vs. a sensitive genotype to water limitation is remarkably different on a gene-by-gene level, although it involves similar genetic networks. Upregulated transcripts under drought conditions represent the most diverging component between genotypes, which might depend on the activation and repression of substantially different groups of TFs.
Collapse
Affiliation(s)
- Jingjia Li
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| | - Jason B West
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| | - Alexander Hart
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Matthew A Smith
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, UMR 1391 INRA ISPA, Gradignan, France.,Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Carol A Loopstra
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| | - Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Liu L, Wang Z, Su Y, Wang T. Population transcriptomic sequencing reveals allopatric divergence and local adaptation in Pseudotaxus chienii (Taxaceae). BMC Genomics 2021; 22:388. [PMID: 34039278 PMCID: PMC8157689 DOI: 10.1186/s12864-021-07682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Elucidating the effects of geography and selection on genetic variation is critical for understanding the relative importance of adaptation in driving differentiation and identifying the environmental factors underlying its occurrence. Adaptive genetic variation is common in tree species, especially widely distributed long-lived species. Pseudotaxus chienii can occupy diverse habitats with environmental heterogeneity and thus provides an ideal material for investigating the process of population adaptive evolution. Here, we characterize genetic and expression variation patterns and investigate adaptive genetic variation in P. chienii populations. RESULTS We generated population transcriptome data and identified 13,545 single nucleotide polymorphisms (SNPs) in 5037 unigenes across 108 individuals from 10 populations. We observed lower nucleotide diversity (π = 0.000701) among the 10 populations than observed in other gymnosperms. Significant negative correlations between expression diversity and nucleotide diversity in eight populations suggest that when the species adapts to the surrounding environment, gene expression and nucleotide diversity have a reciprocal relationship. Genetic structure analyses indicated that each distribution region contains a distinct genetic group, with high genetic differentiation among them due to geographical isolation and local adaptation. We used FST outlier, redundancy analysis, and latent factor mixed model methods to detect molecular signatures of local adaptation. We identified 244 associations between 164 outlier SNPs and 17 environmental variables. The mean temperature of the coldest quarter, soil Fe and Cu contents, precipitation of the driest month, and altitude were identified as the most important determinants of adaptive genetic variation. Most candidate unigenes with outlier signatures were related to abiotic and biotic stress responses, and the monoterpenoid biosynthesis and ubiquitin-mediated proteolysis KEGG pathways were significantly enriched in certain populations and deserve further attention in other long-lived trees. CONCLUSIONS Despite the strong population structure in P. chienii, genomic data revealed signatures of divergent selection associated with environmental variables. Our research provides SNPs, candidate unigenes, and biological pathways related to environmental variables to facilitate elucidation of the genetic variation in P. chienii in relation to environmental adaptation. Our study provides a promising tool for population genomic analyses and insights into the molecular basis of local adaptation.
Collapse
Affiliation(s)
- Li Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, Guangdong, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Guo Y, Zhao X, Li Y, Li Z, Xiao Q, Wang Y, Zhang X, Ni Y. Environment-Driven Adaptations of Leaf Cuticular Waxes Are Inheritable for Medicago ruthenica. FRONTIERS IN PLANT SCIENCE 2021; 12:620245. [PMID: 34079563 PMCID: PMC8165318 DOI: 10.3389/fpls.2021.620245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Cuticular waxes covering the plant surface play pivotal roles in helping plants adapt to changing environments. However, it is still not clear whether the responses of plant cuticular waxes to their growing environments are inheritable. We collected seeds of Medicago ruthenica (a perennial legume) populations from 30 growing sites in northern China and examined the variations of leaf cuticular waxes in a common garden experiment. Four wax genes, MrFAR3-1, MrFAR3-2, MrCER1, and MrKCS1, involved in biosynthesis of predominant wax classes (primary alcohol and alkane) and wax precursors, were isolated to test the contributions of genetic variations of the coding sequences (CDS) and the promoter sequences and epigenetic modifications. The plasticity responses of the cuticular waxes were further validated by two stress-modeling experiments (drought and enhancing ultraviolet B). Great variations in total wax coverage and abundance of wax classes or wax compounds were observed among M. ruthenica populations in a common garden experiment. Stress-modeling experiments further validated that M. ruthenica would alter leaf wax depositions under changed growing conditions. The transcriptional levels of the wax genes were positively or negatively correlated with amounts of cuticular waxes. However, the analysis of promoter methylation showed that the methylation level of the promoter region was not associated with their expressions. Although both promoter sequences and CDS showed a number of polymorphic sites, the promoters were not naturally selected and insignificant difference could be observed in the numbers and types of acting elements of the four wax genes among populations. In contrast, the CDS of the wax genes were naturally selected, with a number of missense mutations resulting in alterations of the amino acid as well as their isoelectric points and polarities, which could impact on enzyme function/activity. We conclude that long-term adaptation under certain environments would induce genetic mutation of wax biosynthesis genes, resulting in inheritable alterations of cuticular wax depositions.
Collapse
Affiliation(s)
- Yanjun Guo
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiao Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhen Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanmei Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xuefeng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Matallana-Ramirez LP, Whetten RW, Sanchez GM, Payn KG. Breeding for Climate Change Resilience: A Case Study of Loblolly Pine ( Pinus taeda L.) in North America. FRONTIERS IN PLANT SCIENCE 2021; 12:606908. [PMID: 33995428 PMCID: PMC8119900 DOI: 10.3389/fpls.2021.606908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 05/25/2023]
Abstract
Earth's atmosphere is warming and the effects of climate change are becoming evident. A key observation is that both the average levels and the variability of temperature and precipitation are changing. Information and data from new technologies are developing in parallel to provide multidisciplinary opportunities to address and overcome the consequences of these changes in forest ecosystems. Changes in temperature and water availability impose multidimensional environmental constraints that trigger changes from the molecular to the forest stand level. These can represent a threat for the normal development of the tree from early seedling recruitment to adulthood both through direct mortality, and by increasing susceptibility to pathogens, insect attack, and fire damage. This review summarizes the strengths and shortcomings of previous work in the areas of genetic variation related to cold and drought stress in forest species with particular emphasis on loblolly pine (Pinus taeda L.), the most-planted tree species in North America. We describe and discuss the implementation of management and breeding strategies to increase resilience and adaptation, and discuss how new technologies in the areas of engineering and genomics are shaping the future of phenotype-genotype studies. Lessons learned from the study of species important in intensively-managed forest ecosystems may also prove to be of value in helping less-intensively managed forest ecosystems adapt to climate change, thereby increasing the sustainability and resilience of forestlands for the future.
Collapse
Affiliation(s)
- Lilian P. Matallana-Ramirez
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Georgina M. Sanchez
- Center for Geospatial Analytics, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Kitt G. Payn
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| |
Collapse
|
15
|
Sun YQ, Zhao W, Xu CQ, Xu Y, El-Kassaby YA, De La Torre AR, Mao JF. Genetic Variation Related to High Elevation Adaptation Revealed by Common Garden Experiments in Pinus yunnanensis. Front Genet 2020; 10:1405. [PMID: 32117429 PMCID: PMC7027398 DOI: 10.3389/fgene.2019.01405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Local adaptation, adaptation to specialized niches and environmental clines have been extensively reported for forest trees. Investigation of the adaptive genetic variation is crucial for forest resource management and breeding, especially in the context of global climate change. Here, we utilized a Pinus yunnanensis common garden experiments established at high and low elevation sites to assess the differences in growth and survival among populations and between the two common garden sites. The studied traits showed significant variation between the two test sites and among populations, suggesting adaptive divergence. To detect genetic variation related to environment, we captured 103,608 high quality SNPs based on RNA sequencing, and used them to assess the genetic diversity and population structure. We identified 321 outlier SNPs from 131 genes showing significant divergence in allelic frequency between survival populations of two sites. Functional categories associated with adaptation to high elevation were found to be related to flavonoid biosynthesis, response to UV, DNA repair, response to reactive oxygen species, and membrane lipid metabolic process. Further investigation of the outlier genes showed overrepresentation of the flavonoid biosynthesis pathway, suggesting that this pathway may play a key role in P. yunnanensis adaptation to high elevation environments. The outlier genes identified, and their variants, provide a basic reference for advanced investigations.
Collapse
Affiliation(s)
- Yan-Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yulan Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | | | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Lu M, Krutovsky KV, Loopstra CA. Predicting Adaptive Genetic Variation of Loblolly Pine (Pinus taeda L.) Populations Under Projected Future Climates Based on Multivariate Models. J Hered 2019; 110:857-865. [DOI: 10.1093/jhered/esz065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/25/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Greenhouse gas emission and global warming are likely to cause rapid climate change within the natural range of loblolly pine over the next few decades, thus bringing uncertainty to their adaptation to the environment. Here, we studied adaptive genetic variation of loblolly pine and correlated genetic variation with bioclimatic variables using multivariate modeling methods—Redundancy Analysis, Generalized Dissimilarity Modeling, and Gradient Forests. Studied trees (N = 299) were originally sampled from their native range across eight states on the east side of the Mississippi River. Genetic variation was calculated using a total of 44,317 single-nucleotide polymorphisms acquired by exome target sequencing. The fitted models were used to predict the adaptive genetic variation on a large spatial and temporal scale. We observed east-to-west spatial genetic variation across the range, which presented evidence of isolation by distance. Different key factors drive adaptation of loblolly pine from different geographical regions. Trees residing near the northeastern edge of the range, spanning across Delaware and Maryland and mountainous areas of Virginia, North Carolina, South Carolina, and northern Georgia, were identified to be most likely impacted by climate change based on the large difference in genetic composition under current and future climate conditions. This study provides new perspectives on adaptive genetic variation of loblolly pine in response to different climate scenarios, and the results can be used to target particular populations while developing adaptive forest management guidelines.
Collapse
Affiliation(s)
- Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August-University of Göttingen, Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX
| | - Carol A Loopstra
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX
| |
Collapse
|