1
|
Wang Z, Martin A, Brunton D, Grueter CC, Qu J, He JS, Ji W, Nan Z. The effects of grassland degradation on the genetic structure of a small mammal. Integr Zool 2024. [PMID: 38704846 DOI: 10.1111/1749-4877.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Grassland degradation is challenging the health of grassland ecosystems globally and causing biodiversity decline. Previous studies have demonstrated the impact of grassland degradation on the abundance and behavior of small mammals. Little is known about how it affects the genetic structure of gregarious mammals in the wild. This study explores the effects of grassland degradation on the genetic structure of a small burrowing mammal, plateau pika (Ochotona curzoniae). We used nine microsatellite loci to analyze the genetic diversity and genetic differentiation between colonies and genetic relatedness between individuals within the colony. We found that pikas in severely degraded grasslands had a significantly higher genetic diversity within colonies, a higher level of gene flow between colonies, and a lower genetic differentiation between colonies compared to pikas in less degraded grasslands. Individuals within colonies had a significantly lower genetic relatedness in severely degraded grasslands than in less degraded grasslands. This study has provided potential evidence of a significant impact of grassland degradation on the genetic structure of pikas, which has caused a breakdown of their kin-selected colony structure.
Collapse
Affiliation(s)
- Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Amy Martin
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Dianne Brunton
- School of Natural Sciences (SNS), Massey University, Auckland, New Zealand
| | - Cyril C Grueter
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, China
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weihong Ji
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- School of Natural Sciences (SNS), Massey University, Auckland, New Zealand
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Millien V, Leo SST, Turney S, Gonzalez A. It's about time: small mammal communities and Lyme disease emergence. Sci Rep 2023; 13:14513. [PMID: 37667029 PMCID: PMC10477272 DOI: 10.1038/s41598-023-41901-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Theory predicts that biodiversity changes due to climate warming can mediate the rate of disease emergence. The mechanisms linking biodiversity-disease relationships have been described both theoretically and empirically but remain poorly understood. We investigated the relations between host diversity and abundance and Lyme disease risk in southern Quebec, a region where Lyme disease is rapidly emerging. We found that both the abundance of small mammal hosts and the relative abundance of the tick's natural host, the white-footed mouse (Peromyscus leucopus), influenced measures of disease risk in tick vectors (Borrelia burgdorferi infection abundance and prevalence in tick vectors). Our results suggest that the increase in Lyme disease risk is modulated by regional processes involving the abundance and composition of small mammal assemblages. However, the nature and strength of these relationships was dependent both on time and geographic area. The strong effect of P. leucopus abundance on disease risk we report here is of significant concern, as this competent host is predicted to increase in abundance and occurrence in the region, with the northern shift in the range of North American species under climate warming.
Collapse
Affiliation(s)
- V Millien
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada.
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada.
| | - S S T Leo
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - S Turney
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - A Gonzalez
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| |
Collapse
|
3
|
Vogels C, Brackney D, Dupuis A, Robich R, Fauver J, Brito A, Williams S, Anderson J, Lubelczyk C, Lange R, Prusinski M, Kramer L, Gangloff-Kaufmann J, Goodman L, Baele G, Smith R, Armstrong P, Ciota A, Dellicour S, Grubaugh N. Phylogeographic reconstruction of the emergence and spread of Powassan virus in the northeastern United States. Proc Natl Acad Sci U S A 2023; 120:e2218012120. [PMID: 37040418 PMCID: PMC10120011 DOI: 10.1073/pnas.2218012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 04/12/2023] Open
Abstract
Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.
Collapse
Affiliation(s)
- Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
| | - Doug E. Brackney
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
| | - Alan P. Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12222
| | - Rebecca M. Robich
- Vector-borne Disease Laboratory, MaineHealth Institute for Research, Scarborough, ME 04074
| | - Joseph R. Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Anderson F. Brito
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
- Instituto Todos pela Saúde, São Paulo SP01310-942, Brazil
| | - Scott C. Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
| | - John F. Anderson
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
| | - Charles B. Lubelczyk
- Vector-borne Disease Laboratory, MaineHealth Institute for Research, Scarborough, ME 04074
| | - Rachel E. Lange
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12222
| | - Melissa A. Prusinski
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY 12237
| | - Laura D. Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12222
| | | | - Laura B. Goodman
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven3000, Belgium
| | - Robert P. Smith
- Vector-borne Disease Laboratory, MaineHealth Institute for Research, Scarborough, ME 04074
| | - Philip M. Armstrong
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
| | - Alexander T. Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12222
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven3000, Belgium
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels1050, Belgium
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511
| |
Collapse
|
4
|
Tutt-Guérette MA, Yuan M, Szaroz D, McKinnon B, Kestens Y, Guillot C, Leighton P, Zinszer K. Modelling Spatiotemporal Patterns of Lyme Disease Emergence in Québec. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189669. [PMID: 34574592 PMCID: PMC8470240 DOI: 10.3390/ijerph18189669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Lyme disease is a growing public health problem in Québec. Its emergence over the last decade is caused by environmental and anthropological factors that favour the survival of Ixodes scapularis, the vector of Lyme disease transmission. The objective of this study was to estimate the speed and direction of human Lyme disease emergence in Québec and to identify spatiotemporal risk patterns. A surface trend analysis was conducted to estimate the speed and direction of its emergence based upon the first detected case of Lyme disease in each municipality in Québec since 2004. A cluster analysis was also conducted to identify at-risk regions across space and time. These analyses were reproduced for the date of disease onset and date of notification for each case of Lyme disease. It was estimated that Lyme disease is spreading northward in Québec at a speed varying between 18 and 32 km/year according to the date of notification and the date of disease onset, respectively. A significantly high risk of disease was found in seven clusters identified in the south-west of Québec in the sociosanitary regions of Montérégie and Estrie. The results obtained in this study improve our understanding of the spatiotemporal patterns of Lyme disease in Québec, which can be used for proactive, targeted interventions by public and clinical health authorities.
Collapse
Affiliation(s)
- Marc-Antoine Tutt-Guérette
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada;
| | - Mengru Yuan
- Centre de Recherche en Santé Publique, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada; (M.Y.); (D.S.); (B.M.); (Y.K.); (C.G.); (P.L.)
| | - Daniel Szaroz
- Centre de Recherche en Santé Publique, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada; (M.Y.); (D.S.); (B.M.); (Y.K.); (C.G.); (P.L.)
- Département de Médecine Sociale et Préventive, École de Santé Publique, Université de Montréal, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada
| | - Britt McKinnon
- Centre de Recherche en Santé Publique, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada; (M.Y.); (D.S.); (B.M.); (Y.K.); (C.G.); (P.L.)
| | - Yan Kestens
- Centre de Recherche en Santé Publique, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada; (M.Y.); (D.S.); (B.M.); (Y.K.); (C.G.); (P.L.)
- Département de Médecine Sociale et Préventive, École de Santé Publique, Université de Montréal, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada
| | - Camille Guillot
- Centre de Recherche en Santé Publique, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada; (M.Y.); (D.S.); (B.M.); (Y.K.); (C.G.); (P.L.)
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Patrick Leighton
- Centre de Recherche en Santé Publique, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada; (M.Y.); (D.S.); (B.M.); (Y.K.); (C.G.); (P.L.)
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Kate Zinszer
- Centre de Recherche en Santé Publique, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada; (M.Y.); (D.S.); (B.M.); (Y.K.); (C.G.); (P.L.)
- Département de Médecine Sociale et Préventive, École de Santé Publique, Université de Montréal, 7101 Av du Parc, Montréal, QC H3N 1X9, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Ave W, Montréal, QC H3A 1A2, Canada
- Correspondence:
| |
Collapse
|
5
|
André A, Michaux J, Gaitan J, Millien V. Long-term stress level in a small mammal species undergoing range expansion. MAMMALIA 2021. [DOI: 10.1515/mammalia-2020-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rapid climate change is currently altering species distribution ranges. Evaluating the long-term stress level in wild species undergoing range expansion may help better understanding how species cope with the changing environment. Here, we focused on the white-footed mouse (Peromyscus leucopus), a widespread small mammal species in North-America whose distribution range is rapidly shifting northward. We evaluated long-term stress level in several populations of P. leucopus in Quebec (Canada), from the northern edge of the species distribution to more core populations in Southern Quebec. We first tested the hypothesis that populations at the range margin are under higher stress than more established populations in the southern region of our study area. We then compared four measures of long-term stress level to evaluate the congruence between these commonly used methods. We did not detect any significant geographical trend in stress level across our study populations of P. leucopus. Most notably, we found no clear congruence between the four measures of stress level we used, and conclude that these four commonly used methods are not equivalent, thereby not comparable across studies.
Collapse
Affiliation(s)
- Adrien André
- Redpath Museum , McGill University , Montreal , QC H3A 0C4 , Canada
- Conservation Genetics Laboratory , University of Liège , Boulevard du rectorat 26 , 4000 Liège , Belgium
| | - Johan Michaux
- Conservation Genetics Laboratory , University of Liège , Boulevard du rectorat 26 , 4000 Liège , Belgium
- Animal Santé Territoire Risque Environnement, Institut National de la Recherche Agronomique , Unité Mixe de Recherche 117 (ASTRE) Univ. Montpellier, Centre International de Recherche Agronomique pour le Développement (CIRAD) , 34398 Montpellier , France
| | - Jorge Gaitan
- Redpath Museum , McGill University , Montreal , QC H3A 0C4 , Canada
| | - Virginie Millien
- Redpath Museum , McGill University , Montreal , QC H3A 0C4 , Canada
| |
Collapse
|
6
|
Mechai S, Margos G, Feil EJ, Lindsay LR, Michel P, Kotchi SO, Ogden NH. Evidence for an effect of landscape connectivity on Borrelia burgdorferi sensu stricto dispersion in a zone of range expansion. Ticks Tick Borne Dis 2018; 9:1407-1415. [PMID: 30006200 DOI: 10.1016/j.ttbdis.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022]
Abstract
In North America, different strains of the Lyme disease-causing bacterium Borrelia burgdorferi sensu stricto cluster into phylogenetic groups that are associated with different levels of pathogenicity and, for some, specific rodent reservoir hosts. Here we explore whether landscape connectivity, by impacting host dispersal, influences B. burgdorferi s.s. spread patterns. This question is central to modelling spatial patterns of the spread of Lyme disease risk in the zone of northward range-expansion of B. burgdorferi s.s. in southeastern Canada where the study was conducted. We used multi-locus sequence typing (MLST) to characterise B. burgdorferi s.s. in positive ticks collected at 13 sites in southern Quebec, Canada during the early stages of B. burgdorferi s.s. invasion. We used mixed effects logistic regression to investigate whether landscape connectivity (probability of connectivity; PC) affected the probability that samples collected at different sites were of the same strain (MLST sequence type: ST). PC was calculated from a habitat map based on high spatial resolution (15 m) Landsat 8 imagery to identify woodland habitat that are preferred by rodent hosts of B. burgdorferi s.s. There was a significant positive association between the likelihood that two samples were of the same ST and PC, when PC values were grouped into three categories of low, medium and high. When analysing data for individual STs, samples at different sites were significantly more likely to be the same when PC was higher for the rodent-associated ST1. These findings support the hypothesis that dispersion trajectories of B. burgdorferi s.s. in general, and some rodent-associated strains in particular, are at least partly determined by landscape connectivity. This may suggest that dispersion of B. burgdorferi s.s. is more common by terrestrial mammal hosts (which would likely disperse according to landscape connectivity) than by birds, the dispersal of which is likely less constrained by landscape. This study suggests that accounting for landscape connectivity may improve model-based predictions of spatial spread patterns of B. burgdorferi s.s. The findings are consistent with possible past dispersal patterns of B. burgdorferi s.s. as determined by phylogeographic studies.
Collapse
Affiliation(s)
- Samir Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Gabriele Margos
- Ludwig Maximilians Universität München, Department for Infectious Diseases and Zoonoses, Munich, Germany; National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Pascal Michel
- Office of the Chief Science Officer, Public Health Agency of Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Serge Olivier Kotchi
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Nick H Ogden
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| |
Collapse
|
7
|
Bouchard C, Aenishaenslin C, Rees EE, Koffi JK, Pelcat Y, Ripoche M, Milord F, Lindsay LR, Ogden NH, Leighton PA. Integrated Social-Behavioral and Ecological Risk Maps to Prioritize Local Public Health Responses to Lyme Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047008. [PMID: 29671475 PMCID: PMC6071748 DOI: 10.1289/ehp1943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND The risk of contracting Lyme disease (LD) can vary spatially because of spatial heterogeneity in risk factors such as social-behavior and exposure to ecological risk factors. Integrating these risk factors to inform decision-making should therefore increase the effectiveness of mitigation interventions. OBJECTIVES The objective of this study was to develop an integrated social-behavioral and ecological risk-mapping approach to identify priority areas for LD interventions. METHODS The study was conducted in the Montérégie region of Southern Quebec, Canada, where LD is a newly endemic disease. Spatial variation in LD knowledge, risk perceptions, and behaviors in the population were measured using web survey data collected in 2012. These data were used as a proxy for the social-behavioral component of risk. Tick vector population densities were measured in the environment during field surveillance from 2007 to 2012 to provide an index of the ecological component of risk. Social-behavioral and ecological components of risk were combined with human population density to create integrated risk maps. Map predictions were validated by testing the association between high-risk areas and the current spatial distribution of human LD cases. RESULTS Social-behavioral and ecological components of LD risk had markedly different distributions within the study region, suggesting that both factors should be considered for locally adapted interventions. The occurrence of human LD cases in a municipality was positively associated with tick density (p<0.01) but was not significantly associated with social-behavioral risk. CONCLUSION This study is an applied demonstration of how integrated social-behavioral and ecological risk maps can be created to assist decision-making. Social survey data are a valuable but underutilized source of information for understanding regional variation in LD exposure, and integrating this information into risk maps provides a novel approach for prioritizing and adapting interventions to the local characteristics of target populations. https://doi.org/10.1289/EHP1943.
Collapse
Affiliation(s)
- Catherine Bouchard
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Cécile Aenishaenslin
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Erin E Rees
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jules K Koffi
- Policy Integration and Zoonoses Division, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Yann Pelcat
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Marion Ripoche
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - François Milord
- Direction de santé publique de la Montérégie, Centre intégré de santé et de services sociaux Montérégie-Centre, Québec, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Patrick A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
8
|
Garcia-Elfring A, Barrett RDH, Combs M, Davies TJ, Munshi-South J, Millien V. Admixture on the northern front: population genomics of range expansion in the white-footed mouse (Peromyscus leucopus) and secondary contact with the deer mouse (Peromyscus maniculatus). Heredity (Edinb) 2017; 119:447-458. [PMID: 28902189 PMCID: PMC5677999 DOI: 10.1038/hdy.2017.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2023] Open
Abstract
Range expansion has genetic consequences expected to result in differentiated wave-front populations with low genetic variation and potentially introgression from a local species. The northern expansion of Peromyscus leucopus in southern Quebec provides an opportunity to test these predictions using population genomic tools. Our results show evidence of recent and post-glacial expansion. Genome-wide variation in P. leucopus indicates two post-glacial lineages are separated by the St. Lawrence River, with a more recent divergence of populations isolated by the Richelieu River. In two of three transects we documented northern populations with low diversity in at least one genetic measure, although most relationships were not significant. Consistent with bottlenecks and allele surfing during northward expansion, we document a northern-most population with low nucleotide diversity, divergent allele frequencies and the most private alleles, and observed heterozygosity indicates outcrossing. Ancestry proportions revealed putative hybrids of P. leucopus and P. maniculatus. A formal test for gene flow confirmed secondary contact, showing that a reticulate population phylogeny between P. maniculatus and P. leucopus was a better fit to the data than a bifurcating model without gene flow. Thus, we provide the first genomic evidence of gene flow between this pair of species in natural populations. Understanding the evolutionary consequences of secondary contact is an important conservation concern as climate-induced range expansions are expected to result in new hybrid zones between closely related species.
Collapse
Affiliation(s)
- A Garcia-Elfring
- Redpath Museum, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
| | - R D H Barrett
- Redpath Museum, McGill University, Montreal, QC, Canada
| | - M Combs
- Louis Calder Center, Biological Field Station, Fordham University, Armonk, NY, USA
| | - T J Davies
- Department of Biology, McGill University, Montreal, QC, Canada
| | - J Munshi-South
- Louis Calder Center, Biological Field Station, Fordham University, Armonk, NY, USA
| | - V Millien
- Redpath Museum, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Harris SE, Munshi-South J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol Ecol 2017; 26:6336-6350. [PMID: 28980357 DOI: 10.1111/mec.14369] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Urbanization significantly alters natural ecosystems and has accelerated globally. Urban wildlife populations are often highly fragmented by human infrastructure, and isolated populations may adapt in response to local urban pressures. However, relatively few studies have identified genomic signatures of adaptation in urban animals. We used a landscape genomic approach to examine signatures of selection in urban populations of white-footed mice (Peromyscus leucopus) in New York City. We analysed 154,770 SNPs identified from transcriptome data from 48 P. leucopus individuals from three urban and three rural populations and used outlier tests to identify evidence of urban adaptation. We accounted for demography by simulating a neutral SNP data set under an inferred demographic history as a null model for outlier analysis. We also tested whether candidate genes were associated with environmental variables related to urbanization. In total, we detected 381 outlier loci and after stringent filtering, identified and annotated 19 candidate loci. Many of the candidate genes were involved in metabolic processes and have well-established roles in metabolizing lipids and carbohydrates. Our results indicate that white-footed mice in New York City are adapting at the biomolecular level to local selective pressures in urban habitats. Annotation of outlier loci suggests selection is acting on metabolic pathways in urban populations, likely related to novel diets in cities that differ from diets in less disturbed areas.
Collapse
Affiliation(s)
- Stephen E Harris
- The Graduate Center, City University of New York (CUNY), New York, NY, USA
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, NY, USA
| |
Collapse
|
10
|
Rapid morphological divergence in two closely related and co-occurring species over the last 50 years. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9917-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
André A, Millien V, Galan M, Ribas A, Michaux JR. Effects of parasite and historic driven selection on the diversity and structure of a MHC-II gene in a small mammal species (Peromyscus leucopus) undergoing range expansion. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9898-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Harris SE, Xue AT, Alvarado-Serrano D, Boehm JT, Joseph T, Hickerson MJ, Munshi-South J. Urbanization shapes the demographic history of a native rodent (the white-footed mouse, Peromyscus leucopus) in New York City. Biol Lett 2017; 12:rsbl.2015.0983. [PMID: 27072402 DOI: 10.1098/rsbl.2015.0983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/14/2016] [Indexed: 01/25/2023] Open
Abstract
How urbanization shapes population genomic diversity and evolution of urban wildlife is largely unexplored. We investigated the impact of urbanization on white-footed mice,Peromyscus leucopus,in the New York City (NYC) metropolitan area using coalescent-based simulations to infer demographic history from the site-frequency spectrum. We assigned individuals to evolutionary clusters and then inferred recent divergence times, population size changes and migration using genome-wide single nucleotide polymorphisms genotyped in 23 populations sampled along an urban-to-rural gradient. Both prehistoric climatic events and recent urbanization impacted these populations. Our modelling indicates that post-glacial sea-level rise led to isolation of mainland and Long Island populations. These models also indicate that several urban parks represent recently isolated P. leucopus populations, and the estimated divergence times for these populations are consistent with the history of urbanization in NYC.
Collapse
Affiliation(s)
- Stephen E Harris
- The Graduate Center, City University of New York (CUNY), New York, NY 10016, USA
| | - Alexander T Xue
- The Graduate Center, City University of New York (CUNY), New York, NY 10016, USA The City College of New York, City University of New York, New York, NY 10031, USA
| | | | - Joel T Boehm
- The City College of New York, City University of New York, New York, NY 10031, USA
| | - Tyler Joseph
- The City College of New York, City University of New York, New York, NY 10031, USA
| | - Michael J Hickerson
- The Graduate Center, City University of New York (CUNY), New York, NY 10016, USA The City College of New York, City University of New York, New York, NY 10031, USA
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, NY 10504, USA
| |
Collapse
|
13
|
André A, Mouton A, Millien V, Michaux J. Liver microbiome of Peromyscus leucopus, a key reservoir host species for emerging infectious diseases in North America. INFECTION GENETICS AND EVOLUTION 2017; 52:10-18. [PMID: 28412525 DOI: 10.1016/j.meegid.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Microbiome studies generally focus on the gut microbiome, which is composed of a large proportion of commensal bacteria. Here we propose a first analysis of the liver microbiome using next generation sequencing as a tool to detect potentially pathogenic strains. We used Peromyscus leucopus, the main reservoir host species of Lyme disease in eastern North America, as a model and sequenced V5-V6 regions of the 16S gene from 18 populations in southern Quebec (Canada). The Lactobacillus genus was found to dominate the liver microbiome. We also detected a large proportion of individuals infected by Bartonella vinsonii arupensis, a human pathogenic bacteria responsible for endocarditis, as well as Borrelia burgdorferi, the pathogen responsible for Lyme disease in North America. We then compared the microbiomes among two P. leucopus genetic clusters occurring on either side of the St. Lawrence River, and did not detect any effect of the host genotype on their liver microbiome assemblage. Finally, we report, for the first time, the presence of B. burgdorferi in a small mammal host from the northern side of the St. Lawrence River, in support of models that have predicted the northern spread of Lyme disease in Canada.
Collapse
Affiliation(s)
- A André
- Conservation Genetics Laboratory, University of Liège, Boulevard du Rectorat 26, 4000 Liège, Belgium; Redpath Museum, McGill University, 859 Sherbrooke West, Montreal, QC H3A OC4, Canada.
| | - A Mouton
- Conservation Genetics Laboratory, University of Liège, Boulevard du Rectorat 26, 4000 Liège, Belgium
| | - V Millien
- Redpath Museum, McGill University, 859 Sherbrooke West, Montreal, QC H3A OC4, Canada
| | - J Michaux
- Conservation Genetics Laboratory, University of Liège, Boulevard du Rectorat 26, 4000 Liège, Belgium; CIRAD, UR AGIRs, F-34398 Montpellier, France
| |
Collapse
|
14
|
Munshi-South J, Richardson JL. Peromyscus transcriptomics: Understanding adaptation and gene expression plasticity within and between species of deer mice. Semin Cell Dev Biol 2017; 61:131-139. [PMID: 27531052 PMCID: PMC5235989 DOI: 10.1016/j.semcdb.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Deer mice in the genus Peromyscus occupy nearly every terrestrial habitat in North America, and have a long history as subjects of behavioral, ecological, evolutionary, and physiological study. Recent advances in transcriptomics, the study of the complete set of RNA transcripts produced by certain cell types or under certain conditions, have contributed to the development of Peromyscus as a model system. We review the recent use of transcriptomics to investigate how natural selection and gene expression plasticity contribute to the existence of deer mice in challenging environments such as highlands, deserts, and cities across North America. Transcriptomics also holds great promise for elucidating the genetic basis of mating systems and other behaviors in Peromyscus, but has to date been underutilized for developmental biology and disease studies. Future Peromyscus studies should apply robust comparative frameworks to analyze the transcriptomics of multiple populations of the same species across varying environmental conditions, as well as multiple species that vary in traits of interest.
Collapse
Affiliation(s)
- Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA.
| | | |
Collapse
|
15
|
Leo SST, Millien V. Microsatellite markers reveal low frequency of natural hybridization between the white-footed mouse (Peromyscus leucopus) and deer mouse (Peromyscus maniculatus) in southern Quebec, Canada. Genome 2016; 60:454-463. [PMID: 28177836 DOI: 10.1139/gen-2016-0163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In some parts of southern Quebec, two closely related rodent species - the white-footed mouse (Peromyscus leucopus) and the deer mouse (Peromyscus maniculatus) - have recently come in contact because of climate-driven changes in the distribution of the former. Both species share similar morphology, ecology, and life history traits, which suggests that natural hybridization may be possible. Hybridization among these two species can have important implications on the ecological roles these rodents play in disease transmission, yet few researchers have attempted to examine this phenomenon and results from previous hybridization experiments have remained inconclusive and conflicting. In this study, we attempt to investigate the occurrence of hybridization among white-footed mice and deer mice in southern Quebec by genotyping wild caught specimens with selectively neutral, polymorphic microsatellite markers. Our analyses suggest that hybridization may be occurring at extremely low frequency between both species in our study area. The presence of such hybridization events, even at low frequencies, may have implications on disease transmission risk in the region and further detailed studies are necessary.
Collapse
Affiliation(s)
- Sarah S T Leo
- a Department of Biology, McGill University, Stewart Biology Building, 1205 Docteur Penfield Ave., Montreal, QC H3A 1B1, Canada.,b Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC H3A 0C4, Canada
| | - Virginie Millien
- b Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC H3A 0C4, Canada
| |
Collapse
|
16
|
Gaitan J, Millien V. Stress level, parasite load, and movement pattern in a small-mammal reservoir host for Lyme disease. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Occurrence of Lyme disease has increased rapidly in Canada in the past 5 years. The emergence of Lyme disease coincides with the range expansion of the primary host, the white-footed mouse (Peromyscus leucopus (Rafinesque, 1818)), in the region. We evaluated the effects of stress level, parasite load, and forest-patch characteristics on P. leucopus movement pattern. We found negative relations between on the one hand the adrenal gland size, a proxy for stress level, and population density, and on the other hand, home-range area and movement rate of mouse individuals, suggesting that stressed mice cannot maintain a large home range. Population density was also related with excursion (outside the forest patch) and exploration (outside the home range) rates, either directly or through its effect on home-range area and movement rate. Finally, movement rate and excursion rate were lower in individuals infested with more black-legged ticks (Ixodes scapularis Say, 1821). Our results have implication for the mechanism of Lyme disease emergence in the region: individual hosts that carry more ticks and are thus more likely to be spreading the bacterium responsible for Lyme disease are dispersing less than tick-free individuals. Monitoring of Lyme disease should thus consider how the characteristics of host communities modulate the spread of the disease across the landscape.
Collapse
Affiliation(s)
- J. Gaitan
- Redpath Museum, McGill University, 859 Sherbrooke West, Montréal, QC H3A 0C4, Canada
- Redpath Museum, McGill University, 859 Sherbrooke West, Montréal, QC H3A 0C4, Canada
| | - V. Millien
- Redpath Museum, McGill University, 859 Sherbrooke West, Montréal, QC H3A 0C4, Canada
- Redpath Museum, McGill University, 859 Sherbrooke West, Montréal, QC H3A 0C4, Canada
| |
Collapse
|
17
|
Barros T, Ferreira E, Rocha RG, Gaubert P, Bandeira V, Souto L, Mira A, Fonseca C. Genetic signature of the northward expansion of the Egyptian mongoose Herpestes ichneumon(Herpestidae) in the Iberian Peninsula. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tânia Barros
- Departamento de Biologia & Centros de Estudos do Ambiente e do Mar (CESAM); Universidade de Aveiro; 3810-193 Aveiro Portugal
| | - Eduardo Ferreira
- Departamento de Biologia & Centros de Estudos do Ambiente e do Mar (CESAM); Universidade de Aveiro; 3810-193 Aveiro Portugal
| | - Rita Gomes Rocha
- Departamento de Biologia & Centros de Estudos do Ambiente e do Mar (CESAM); Universidade de Aveiro; 3810-193 Aveiro Portugal
- Departamento de Ciências Biológicas; Centro de Ciências Humanas e Naturais; Universidade Federal do Espírito Santo; Av. Fernando Ferrari 514, Goiabeiras 29075-910 Vitória ES Brazil
| | - Philippe Gaubert
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UM-CNRS-IRD-CIRAD-EPHE; Université de Montpellier; Place Eugène Bataillon - CC 64; 34095 Montpellier, Cedex 05 France
| | - Victor Bandeira
- Departamento de Biologia & Centros de Estudos do Ambiente e do Mar (CESAM); Universidade de Aveiro; 3810-193 Aveiro Portugal
| | - Luis Souto
- Departamento de Biologia & Centros de Estudos do Ambiente e do Mar (CESAM); Universidade de Aveiro; 3810-193 Aveiro Portugal
| | - António Mira
- Unidade de Biologia da Conservação; Universidade de Évora; 7002-554 Évora Portugal
| | - Carlos Fonseca
- Departamento de Biologia & Centros de Estudos do Ambiente e do Mar (CESAM); Universidade de Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
18
|
Seifert VA, Clarke BL, Crossland JP, Bemis LT. A method to distinguish morphologically similar Peromyscus species using extracellular RNA and high-resolution melt analysis. Anal Biochem 2016; 508:65-72. [PMID: 27349513 DOI: 10.1016/j.ab.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/11/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023]
Abstract
A method applying high-resolution melt (HRM) analysis to PCR products copied and amplified from extracellular RNA (exRNA) has been developed to distinguish two morphologically similar Peromyscus species: Peromyscus leucopus and Peromyscus maniculatus. P. leucopus is considered the primary reservoir host of Borrelia burgdorferi, the causative agent for Lyme disease in North America. In northern Minnesota the habitat ranges of P. leucopus overlaps with that of P. maniculatus. Serum samples from live mice of both species were collected from cheek bleeds, total extracellular RNA (exRNA) was extracted, copied using reverse transcription and amplified by PCR followed by HRM analysis. A circulating ribosomal RNA (rRNA) was identified which differed at seven nucleotides between the two species and a method of HRM analysis was developed allowing rapid species confirmation. In the future, this HRM based method may be adapted for additional species.
Collapse
Affiliation(s)
- Veronica A Seifert
- University of Minnesota, Integrated BioSciences, 1035 University Drive, SMed 223, Duluth, MN 55812-3031, USA; University of Minnesota Medical School - Duluth, 1035 University Drive, Duluth, MN 55812-3031, USA.
| | - Benjamin L Clarke
- University of Minnesota, Integrated BioSciences, 1035 University Drive, SMed 223, Duluth, MN 55812-3031, USA; University of Minnesota Medical School - Duluth, 1035 University Drive, Duluth, MN 55812-3031, USA.
| | - Janet P Crossland
- Peromyscus Genetic Stock Center University of South Carolina Office of Research, Columbia, SC 29208, USA.
| | - Lynne T Bemis
- University of Minnesota, Integrated BioSciences, 1035 University Drive, SMed 223, Duluth, MN 55812-3031, USA; University of Minnesota Medical School - Duluth, 1035 University Drive, Duluth, MN 55812-3031, USA.
| |
Collapse
|
19
|
Fiset J, Tessier N, Millien V, Lapointe FJ. Phylogeographic Structure of the White-Footed Mouse and the Deer Mouse, Two Lyme Disease Reservoir Hosts in Québec. PLoS One 2015; 10:e0144112. [PMID: 26633555 PMCID: PMC4669108 DOI: 10.1371/journal.pone.0144112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/13/2015] [Indexed: 12/01/2022] Open
Abstract
Modification of a species range is one of many consequences of climate change and is driving the emergence of Lyme disease in eastern Canada. The primary reservoir host of the bacteria responsible for Lyme disease, Borrelia burgdorferi, is the white-footed mouse (Peromyscus leucopus), whose range is rapidly shifting north into southern Québec. The deer mouse, P. maniculatus, is occurring over most Québec province and is a less competent host for B. burgdorferi. Here, we compared the phylogeographic structure of both Peromyscus species in Québec. Using a combination of multiple mitochondrial DNA markers and phylogeographic methods, we detected an ongoing and rapid expansion of P. leucopus, while P. maniculatus appears more stable. Haplotype and populations networks indicated that populations of P. maniculatus exhibit more genetic structure than P. leucopus across the study area. Furthermore, significant and consistent genetic divergences between populations of the two species on both sides of the St. Lawrence River suggest that distinct lineages of P. leucopus and P. maniculatus with different ancestral origins colonized Southern Québec following the Last Glacial Maximum. The phylogeographic structure of pathogens is expected to mirror the structure observed in their reservoir hosts. As different strains of Borrelia burgdorferi may be associated with different levels of pathogenicity and immune responses of their hosts, our results are helpful at better understanding the pattern of spread of Lyme disease in a zone of emergence, and associated risk for human populations.
Collapse
Affiliation(s)
- Jessica Fiset
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Tessier
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs, Longueuil, Québec, Canada
| | - Virginie Millien
- Redpath Museum, McGill University, Montréal, Québec, Canada
- * E-mail:
| | | |
Collapse
|
20
|
Bouchard C, Leonard E, Koffi JK, Pelcat Y, Peregrine A, Chilton N, Rochon K, Lysyk T, Lindsay LR, Ogden NH. The increasing risk of Lyme disease in Canada. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2015; 56:693-699. [PMID: 26130829 PMCID: PMC4466818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is an increasing risk of Lyme disease in Canada due to range expansion of the tick vector, Ixodes scapularis. The objectives of this article are to i) raise public awareness with the help of veterinarians on the emerging and expanding risk of Lyme disease across Canada, ii) review the key clinical features of Lyme disease in dogs, and iii) provide recommendations for veterinarians on the management of Lyme disease in dogs.
Collapse
|
21
|
Abstract
The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease.
Collapse
Affiliation(s)
- Richard S Ostfeld
- Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, NY 12545, USA
| | - Jesse L Brunner
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Marrotte RR, Gonzalez A, Millien V. Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Mol Ecol 2014; 23:3983-98. [DOI: 10.1111/mec.12847] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 02/05/2023]
Affiliation(s)
- R. R. Marrotte
- Redpath Museum; McGill University; 859 Sherbrooke Street W. Montréal Québec Canada H3A 0C4
- Department of Biology; McGill University; 1205 Ave Docteur Penfield Montréal Québec Canada H3A 1B1
| | - A. Gonzalez
- Department of Biology; McGill University; 1205 Ave Docteur Penfield Montréal Québec Canada H3A 1B1
| | - V. Millien
- Redpath Museum; McGill University; 859 Sherbrooke Street W. Montréal Québec Canada H3A 0C4
| |
Collapse
|
23
|
Harris SE, O'Neill RJ, Munshi-South J. Transcriptome resources for the white-footed mouse (Peromyscus leucopus): new genomic tools for investigating ecologically divergent urban and rural populations. Mol Ecol Resour 2014; 15:382-94. [PMID: 24980186 DOI: 10.1111/1755-0998.12301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/30/2022]
Abstract
Genomic resources are important and attainable for examining evolutionary change in divergent natural populations of nonmodel species. We utilized two next-generation sequencing (NGS) platforms, 454 and SOLiD 5500XL, to assemble low-coverage transcriptomes of the white-footed mouse (Peromyscus leucopus), a widespread and abundant native rodent in eastern North America. We sequenced liver mRNA transcripts from multiple individuals collected from urban populations in New York City and rural populations in undisturbed protected areas nearby and assembled a reference transcriptome using 1 080 065 954 SOLiD 5500XL (75 bp) reads and 3 052 640 454 GS FLX + reads. The reference contained 40 908 contigs with a N50 = 1044 bp and a total content of 30.06 Megabases (Mb). Contigs were annotated from Mus musculus (39.96% annotated) Uniprot databases. We identified 104 655 high-quality single nucleotide polymorphisms (SNPs) and 65 single sequence repeats (SSRs) with flanking primers. We also used normalized read counts to identify putative gene expression differences in 10 genes between populations. There were 19 contigs significantly differentially expressed in urban populations compared to rural populations, with gene function annotations generally related to the translation and modification of proteins and those involved in immune responses. The individual transcriptomes generated in this study will be used to investigate evolutionary responses to urbanization. The reference transcriptome provides a valuable resource for the scientific community using North American Peromyscus species as emerging model systems for ecological genetics and adaptation.
Collapse
Affiliation(s)
- Stephen E Harris
- Program in Ecology, Evolutionary Biology, & Behavior, The Graduate Center, City University of New York (CUNY), New York, NY, 10016, USA
| | | | | |
Collapse
|
24
|
Wiedmeyer CE, Crossland JP, Veres M, Dewey MJ, Felder MR, Barlow SC, Vrana PB, Szalai G. Hematologic and serum biochemical values of 4 species of Peromyscus mice and their hybrids. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2014; 53:336-343. [PMID: 25199088 PMCID: PMC4113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/21/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
Deer mice (Peromyscus maniculatus) and congeneric species are used in a wide variety of research applications, particularly studies of developmental, physiologic, and behavioral characteristics associated with habitat adaptation and speciation. Because peromyscine mice readily adapt to colony conditions, animals with traits of interest in the field are moved easily into the laboratory where they can be studied under controlled conditions. The purpose of this study was to determine the serum chemistry and hematologic parameters of 4 frequently used species from the Peromyscus Genetic Stock Center species (P. californicus, P. leucopus, P. maniculatus, and P. polionotus) and to determine quantitative differences in these parameters among species and between sexes. Triglyceride values were substantially higher in female compared with male mice in all 4 species. Similar cross-species differences in MCH were present. Overall there was considerable interspecific variation for most blood parameters, with little evidence for covariation of any 2 or more parameters. Because crosses of P. maniculatus and P. polionotus produce fertile offspring, segregation analyses can be applied to determine the genetic basis of any traits that differ between them, such as their 3.8- and 2.1-fold interspecific differences in cholesterol and triglyceride levels, respectively. The current data provide a set of baseline values useful for subsequent comparative studies of species experiencing different circumstances, whether due to natural variation or anthropogenic environmental degradation. To enable such comparisons, the raw data are downloadable from a site maintained by the Stock Center (http://ww2.biol.sc.edu/∼peromyscus).
Collapse
Affiliation(s)
- Charles E Wiedmeyer
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Janet P Crossland
- Peromyscus Genetic Stock Center, Office of the Vice President for Research
| | - Monika Veres
- Peromyscus Genetic Stock Center, Office of the Vice President for Research
| | - Michael J Dewey
- Peromyscus Genetic Stock Center, Office of the Vice President for Research
| | - Michael R Felder
- Peromyscus Genetic Stock Center, Office of the Vice President for Research
| | - Shayne C Barlow
- Department of Animal Resources, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Paul B Vrana
- Peromyscus Genetic Stock Center, Office of the Vice President for Research
| | - Gabor Szalai
- Peromyscus Genetic Stock Center, Office of the Vice President for Research
| |
Collapse
|
25
|
Taylor ZS, Hoffman SMG. Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus). Heredity (Edinb) 2014; 112:588-95. [PMID: 24448564 PMCID: PMC4023441 DOI: 10.1038/hdy.2013.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/12/2013] [Accepted: 10/30/2013] [Indexed: 11/09/2022] Open
Abstract
Dramatic changes in the North American landscape over the last 12 000 years have shaped the genomes of the small mammals, such as the white-footed mouse (Peromyscus leucopus), which currently inhabit the region. However, very recent interactions of populations with each other and the environment are expected to leave the most pronounced signature on rapidly evolving nuclear microsatellite loci. We analyzed landscape characteristics and microsatellite markers of P. leucopus populations along a transect from southern Ohio to northern Michigan, in order to evaluate hypotheses about the spatial distribution of genetic heterogeneity. Genetic diversity increased to the north and was best approximated by a single-variable model based on habitat availability within a 0.5-km radius of trapping sites. Interpopulation differentiation measured by clustering analysis was highly variable and not significantly related to latitude or habitat availability. Interpopulation differentiation measured as FST values and chord distance was correlated with the proportion of habitat intervening, but was best explained by agricultural distance and by latitude. The observed gradients in diversity and interpopulation differentiation were consistent with recent habitat availability being the major constraint on effective population size in this system, and contradicted the predictions of both the postglacial expansion and core-periphery hypotheses.
Collapse
Affiliation(s)
- Z S Taylor
- Department of Biology, Miami
University, Oxford, OH, USA
| | - S M G Hoffman
- Department of Biology, Miami
University, Oxford, OH, USA
| |
Collapse
|
26
|
Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, Koffi JK, Lapointe FJ, Leighton PA, Lindsay LR, Logan T, Milord F, Ogden NH, Rogic A, Roy-Dufresne E, Suter D, Tessier N, Millien V. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol Appl 2014; 7:750-64. [PMID: 25469157 PMCID: PMC4227856 DOI: 10.1111/eva.12165] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/05/2014] [Indexed: 12/15/2022] Open
Abstract
Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.
Collapse
Affiliation(s)
- Julie A Simon
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Robby R Marrotte
- Redpath Museum, McGill University Montreal, QC, Canada ; Department of Biology, McGill University Montreal, QC, Canada
| | - Nathalie Desrosiers
- Ministère du Développement Durable, de l'Environnement, de la Faune et des Parcs du Québec City, QC, Canada
| | - Jessica Fiset
- Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | - Jorge Gaitan
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University Montreal, QC, Canada
| | - Jules K Koffi
- Zoonoses Division, Centre for Food-Borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada Saint-Hyacinthe, QC, Canada
| | | | - Patrick A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Lindsay R Lindsay
- Zoonoses & Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada Winnipeg, MB, Canada
| | | | - Francois Milord
- Institut National de Santé Publique du Québec Longueuil, QC, Canada
| | - Nicholas H Ogden
- Groupe de recherche en épidémiologie des zoonoses et santé publique Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Anita Rogic
- Redpath Museum, McGill University Montreal, QC, Canada ; Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | | | - Daniel Suter
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Nathalie Tessier
- Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | | |
Collapse
|
27
|
Martínez JJ, Millien V, Simone I, Priotto JW. Ecological preference between generalist and specialist rodents: spatial and environmental correlates of phenotypic variation. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan J. Martínez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Departamento de Ciencias Naturales; Universidad Nacional de Río Cuarto; Agencia Postal N°3 5800 Río Cuarto Córdoba Argentina
- Redpath Museum; McGill University; 859 Sherbrooke Street West Montreal Québec H3A 0C4 Canada
| | - Virginie Millien
- Redpath Museum; McGill University; 859 Sherbrooke Street West Montreal Québec H3A 0C4 Canada
| | - Ivana Simone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Departamento de Ciencias Naturales; Universidad Nacional de Río Cuarto; Agencia Postal N°3 5800 Río Cuarto Córdoba Argentina
| | - José W. Priotto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Departamento de Ciencias Naturales; Universidad Nacional de Río Cuarto; Agencia Postal N°3 5800 Río Cuarto Córdoba Argentina
| |
Collapse
|
28
|
Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V. Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: implications for the spread of lyme disease. PLoS One 2013; 8:e80724. [PMID: 24260464 PMCID: PMC3832455 DOI: 10.1371/journal.pone.0080724] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022] Open
Abstract
The white-footed mouse (Peromyscus leucopus) is an important reservoir host for Borrelia burgdorferi, the pathogen responsible for Lyme disease, and its distribution is expanding northward. We used an Ecological Niche Factor Analysis to identify the climatic factors associated with the distribution shift of the white-footed mouse over the last 30 years at the northern edge of its range, and modeled its current and potential future (2050) distributions using the platform BIOMOD. A mild and shorter winter is favouring the northern expansion of the white-footed mouse in Québec. With more favorable winter conditions projected by 2050, the distribution range of the white-footed mouse is expected to expand further northward by 3° latitude. We also show that today in southern Québec, the occurrence of B. burgdorferi is associated with high probability of presence of the white-footed mouse. Changes in the distribution of the white-footed mouse will likely alter the geographical range of B. burgdorferi and impact the public health in northern regions that have yet to be exposed to Lyme disease.
Collapse
Affiliation(s)
- Emilie Roy-Dufresne
- Department of Geography, McGill University, Montreal, Canada
- Redpath Museum, McGill University, Montreal, Canada
| | | | | | - Gail L. Chmura
- Department of Geography, McGill University, Montreal, Canada
| | | |
Collapse
|
29
|
Ledevin R, Millien V. Congruent morphological and genetic differentiation as a signature of range expansion in a fragmented landscape. Ecol Evol 2013; 3:4172-82. [PMID: 24324868 PMCID: PMC3853562 DOI: 10.1002/ece3.787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/16/2022] Open
Abstract
Phenotypic differentiation is often interpreted as a result of local adaptation of individuals to their environment. Here, we investigated the skull morphological differentiation in 11 populations of the white-footed mouse (Peromyscus leucopus). These populations were sampled in an agricultural landscape in the Montérégie region (Québec, Canada), at the northern edge of the distribution of the white-footed mouse. We found a strong pattern of phenotypic differentiation matching the genetic structure across these populations. Landscape fragmentation and the presence of geographic barriers, in particular north-south oriented rivers, contribute to this differentiation and modulate the pattern of rapid ongoing northward range expansion of the white-footed mouse in response to climate warming. We conclude that while large rivers and postglacial recolonization routes have shaped the current pattern of distribution and differentiation of white-footed mouse populations, further local differentiation is occurring, at the scale of the landscape. We posit that the northern expansion of the white-footed mouse is achieved through successive independent founder events in a fragmented landscape at the northern range edge of the species. The phenotypic differentiation we observe is thus a result of a number of mechanisms operating at different spatial and temporal scales.
Collapse
Affiliation(s)
- Ronan Ledevin
- Redpath Museum, McGill University 859 Sherbrooke Street West, Montreal, H3A 0C4, QC, Canada
| | | |
Collapse
|