1
|
Xu W, Rhemtulla JM, Luo D, Wang T. Common drivers shaping niche distribution and climate change responses of one hundred tree species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123074. [PMID: 39490022 DOI: 10.1016/j.jenvman.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Climate change is increasingly contributing to climatic mismatches, in which habitat suitability changes outpace the dispersal abilities of species. Climate niche models (CNM) have been widely used to assess such impacts on tree species. However, most studies have focused on either a single or a limited number of species, or have employed a fixed set of climate variables for multiple species. These limitations are largely due to the constraints of data availability, the complexity of the modeling algorithms, and integration approaches for the projections of diverse species. Therefore, whether specific climatic drivers determine the climatic niches of multiple tree species remains unclear. In this study, CNMs were developed for 100 economically and ecologically important tree species in China and were used to project their future distribution individually and collectively. Continentality was the predominant climate variable, affecting 71 species, followed by seasonal precipitation, which also significantly influenced over 50 species. Of the 100 tree species, the climate niche extent was projected to expand for 29 ("winners"), contract for 36 ("losers"), be stable for 27, and fluctuate for the remaining eight species. Principal component analysis showed that winners and losers were differentiated by geographic variables and the top five climatic variables, however, not by species type (deciduous vs. evergreen or conifer vs. broadleaf). The regions with the highest species richness were mainly distributed in the Hengduan Mountains, a global biodiversity hotspot, and were predicted to increase from 5.2% to 7.5% of the total area. Areas with low species richness were projected to increase from 33.0% to 42.4%. Significant shifts in species composition were anticipated in these biodiversity-rich areas, suggesting potential disruption owing to species reshuffling. This study highlights the urgent need for proactive forest management and conservation strategies to address the impacts of climate change on tree species and preserve ecological functions by mitigating climatic mismatches. In addition, this study establishes a framework to identify the common environmental drivers affecting niche distribution and evaluates the collective patterns of multiple tree species, thereby providing a scientific reference for enhanced forestry management and climate change mitigation.
Collapse
Affiliation(s)
- Wenhuan Xu
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jeanine M Rhemtulla
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dawei Luo
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
2
|
Wang W, Peng S, Shu H, Fu X, Ye X. Potential adaptive habitats for the narrowly distributed and rare bamboo species Chimonobambusa tumidissinoda J. R. Xue & T. P. Yi ex Ohrnb. under future climate change in China. Ecol Evol 2024; 14:e70314. [PMID: 39279795 PMCID: PMC11402478 DOI: 10.1002/ece3.70314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024] Open
Abstract
The global climate change has resulted in substantial modifications to the distribution patterns of narrowly distributed species across different time periods, leading to an imminent threat to the survival of some vulnerable species. Chimonobambusa tumidissinoda J. R. Xue & T. P. Yi ex Ohrnb., a bamboo species endemic to the transition zone from the Yunnan-Guizhou Plateau to the Sichuan Basin with high economic and ecological value, exhibits a limited range and rarity. Utilizing eight environmental variables and 56 occurrence records, we employed the MaxEnt model to predict the potential distribution range of C. tumidissinoda under current and future climate scenarios. The findings revealed that precipitation of the driest month (Bio14), elevation and isothermality (Bio3) were the crucial factors determining the species' distribution, accounting for 31.24%, 28.27% and 17.24% of data variability, respectively. The distribution centroid of C. tumidissinoda is anticipated to shift towards higher latitudes in response to future climate change, and the projected habitat suitability is expected to expand under ssp245 and ssp585 scenarios while remaining unchanged or contracting under the ssp126 scenario. Despite these expansions, the suitable habitats remain limited, with the largest being approximately 2.08 × 104 km2, indicating a significant threat to its survival. Our study provides insights into the adaptive responses of C. tumidissinoda to climate change, enriching scientific knowledge for developing effective conservation measurements as well as sustainable utilization.
Collapse
Affiliation(s)
- Wei‐Hua Wang
- Agronomy and Life Science DepartmentZhaotong UniversityZhaotongYunnanChina
| | - Shu‐Lei Peng
- Agronomy and Life Science DepartmentZhaotong UniversityZhaotongYunnanChina
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Hua Shu
- Agronomy and Life Science DepartmentZhaotong UniversityZhaotongYunnanChina
| | - Xi Fu
- Agronomy and Life Science DepartmentZhaotong UniversityZhaotongYunnanChina
| | - Xia‐Ying Ye
- Agronomy and Life Science DepartmentZhaotong UniversityZhaotongYunnanChina
| |
Collapse
|
3
|
Li F, Mu Q, Ma D, Wu Q. Predicting the potential global distribution of Ixodes pacificus under climate change. PLoS One 2024; 19:e0309367. [PMID: 39190767 DOI: 10.1371/journal.pone.0309367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
In order to predict the global potential distribution range of Ixodes pacificus (I. pacificus) under different climate scenario models in the future, analyze the major climate factors affecting its distribution, and provide references for the transformation of passive vector surveillance into active vector surveillance, the maximum entropy model (MaxEnt) was used in this study to estimate the global potential distribution range of I. pacificus under historical climate scenarios and different future climate scenarios. The global distribution data of I. pacificus were screened by ENMtools and ArcGIS 10.8 software, and a total of 563 distribution data of I. pacificus were obtained. Maxent 3.4.1 and R 4.0.3 were used to screen climate variables according to the contribution rate of environmental variables, knife cutting method and correlation analysis of variables. R 4.0.3 was used to calculate model regulation frequency doubling and feature combination to adjust MaxEnt parameters. The model results showed that the training omission rate was in good agreement with the theoretical omission rate, and the area under ROC curve (AUC) value of the model was 0.978. Among the included environmental variables, the Tmin2 (minimum temperature in February) and Prec1 (precipitation in January) contributed the most to the model, providing more effective information for the distribution of I. pacificus. MaxEnt model revealed that the distribution range of I. pacificus was dynamically changing. The main potential suitable areas are distributed in North America, South America, Europe, Oceania and Asia. Under the future climate scenario model, the potential suitable areas show a downward trend, but the countries and regions ieeeeeeenvolved in the suitable areas do not change much. Therefore, the invasion risk of the potential suitable area of I. pacificus should be paid attention to.
Collapse
Affiliation(s)
- Fengfeng Li
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Qunzheng Mu
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Delong Ma
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qunhong Wu
- Department of Social Medicine, Health Management College, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Duan J, Liu J, Huang Z. Predicting the distribution pattern changes of dye plant habitats caused by climate change. FRONTIERS IN PLANT SCIENCE 2024; 15:1364481. [PMID: 38938635 PMCID: PMC11210319 DOI: 10.3389/fpls.2024.1364481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Climate change has accelerated the habitat loss and fragmentation of wildlife. Dye plants of "Fengxiang dyeing" are important indigenous natural resources for traditional printing and dyeing craft in southwest China, is of practical and cultural importance for dozens of ethnic minorities. However, lack of the spatial distribution information of these plants has hampered holistic and efficient conservation management measures. We analyzed the potentially suitable areas of four dye plants (Liquidambar formosana, Strobilanthes cusia, Persicaria tinctoria and Indigofera tinctoria) necessary for "Fengxiang dyeing" based on their geographical distribution sites under different climatic situations using the maximum entropy (MaxEnt) model. The results showed that temperature, precipitation and elevation were the most important factors affecting the suitable geographical areas of the four dye plants. Under the current climate conditions, the overlapping suitable habitat areas of the four plants were mainly in the four southern provinces of China, including Guizhou, Guangxi, Guangdong and Hainan. L. formosana was used as the base plant for combination with the other three plants under the two future climate scenarios (SSP126 and SSP585), and the overlapping suitable habitat areas of the obtained seven combination patterns were considered suitable for potential craft development. Five patterns showed an increase, while two patterns showed a decreasing trend with the increasing carbon emission. The prediction results showed that the overlapping suitable habitat center of the four plants will gradually move to the northeast, indicating that the overlapping suitable habitat area and craft distribution area will be changed. These results provide the basis for understanding the spatial distribution pattern changes of dye plants caused by climate change and establishing measures for protecting and developing printing and dyeing craft.
Collapse
Affiliation(s)
- Jingpeng Duan
- College of Architecture and Design, University of South China, Hengyang, China
| | - Jing Liu
- College of Architecture and Design, University of South China, Hengyang, China
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihuan Huang
- College of Architecture and Design, University of South China, Hengyang, China
| |
Collapse
|
5
|
Chen C, Wang B, Li J, Xiao Y, Chen K, Liu N, Zhou G. Predicting potential and quality distribution of Anisodus tanguticus (Maxim.) Pascher under different climatic conditions in the Qinghai-Tibet plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1369641. [PMID: 38887466 PMCID: PMC11180894 DOI: 10.3389/fpls.2024.1369641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Anisodus tanguticus (Maxim.) Pascher, a distinctive medicinal plant native to the Qinghai-Tibet Plateau, China, has garnered attention due to increasing market demand. This study explores the impact of environmental factors on the distribution and levels of active compounds namely anisodamine, anisodine, and atropine within A. tanguticus. Our goal was to identify suitable cultivation areas for this plant. This study employs the maximum entropy model to simulate the suitable area of A. tanguticus under current conditions and three climate change scenarios during the 2050s and 2070s. The finding revealed that altitude, precipitation in the warmest season (Bio 18), the average annual temperature (Bio 1) exerted significant influences on the distribution of A. tanguticus. Among the environmental factors considered, temperature difference between day and night (Bio 2) had the most substantial impact on the distribution of anisodamine, temperature seasonal variation variance (Bio 4) predominantly influenced anisodine distribution, and Bio 1 had the greatest effected on the distribution of atropine. The suitable areas primarily exist in the eastern Qinghai-Tibet Plateau in China, encompassing a total area of 30.78 × 104 km2. Under the climate scenarios for the future, the suitable areas exhibit increasing trends of approximately 30.2%, 30.3%, and 39.8% by the 2050s, and 25.1%, 48.8%, and 60.1% by the 2070s. This research would provide theoretical suggestions for the protection, and cultivation management of A. tanguticus resources to face the challenge of global climate change.
Collapse
Affiliation(s)
- Chen Chen
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Bo Wang
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Jianan Li
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuanming Xiao
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Kaiyang Chen
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Na Liu
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Guoying Zhou
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| |
Collapse
|
6
|
Zhang X, Nizamani MM, Jiang C, Fang F, Zhao K. Potential planting regions of Pterocarpus santalinus (Fabaceae) under current and future climate in China based on MaxEnt modeling. Ecol Evol 2024; 14:e11409. [PMID: 38826162 PMCID: PMC11139971 DOI: 10.1002/ece3.11409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
This study modeled the habitat distribution of Pterocarpus santalinus, a valuable rosewood species, across China under current and future climate scenarios (SSPs126, SSPs245, and SSPs585) using MaxEnt. Our findings reveal that the current suitable habitat, spanning approximately 409,600 km2, is primarily located in the central and southern parts of Guangdong, Guangxi, Fujian, and Yunnan, as well as in the Hainan provinces, along with the coastal regions of Taiwan, and the Sichuan-Chongqing border. The habitat's distribution is significantly influenced by climatic factors such as temperature seasonality (bio4), mean temperature of the wettest quarter (bio8), annual mean temperature (bio1), and annual precipitation (bio12), while terrain and soil factors play a lesser role. Under future climate scenarios, the suitable habitat for P. santalinus is projected to expand, with a northeastward shift in its distribution center. This research not only sheds light on the geoecological characteristics and geographical distribution of P. santalinus in China but also offers a scientific basis for planning its cultivation areas and enhancing cultivation efficiency under changing climate conditions.
Collapse
Affiliation(s)
- Xiao‐Feng Zhang
- Hainan Academy of Forestry (Hainan Academy of Mangrove)HaikouChina
| | | | - Chao Jiang
- Jinxian County No. 3 Middle SchoolNanchangChina
| | - Fa‐Zhi Fang
- Hainan Academy of Forestry (Hainan Academy of Mangrove)HaikouChina
| | - Kun‐Kun Zhao
- Tropical Crops Genetic Resources InstituteChinese Academy of Tropical Agricultural SciencesHaikouChina
| |
Collapse
|
7
|
Wang Z, Li N, Xu R, Ying Z, Ruan X, Wang T, Liao W, Su Y. Distribution model and prediction of the tree fern Alsophila costularis Baker (Cyatheaceae) in China. Ecol Evol 2024; 14:e11594. [PMID: 38911490 PMCID: PMC11192646 DOI: 10.1002/ece3.11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Climatic change is a challenge for plant conservation due to plants' limited dispersal abilities. The survival and sustainable development of plants directly depend on the availability of suitable habitats. In this study, we employed an optimized MaxEnt model to evaluate the relative contribution of each environmental variable and predict the suitable habitat for Alsophila costularis under past, current, and future periods, which is an endangered relict tree fern known as a living fossil. For the Last Glacial Maximum (LGM) and Mid-Holocene scenarios, we adopted two atmosphere-ocean general circulation models: CCSM4 and MIROC-ESM. The BCC-CSM2-MR model was used for future projections. The results revealed that temperature annual range (Bio7) contributed most to the model construction with an optimal range of 13.74-22.44°C. Species distribution modeling showed that current suitable areas were mainly located in most areas of Yunnan, most areas of Hainan, most areas of Taiwan, southeastern Tibet, southwestern Guizhou, western Guangxi, southern Sichuan, and southern Guangdong, with an area of 35.90 × 104 km2. The suitable habitat area expanded northward in Yunnan from the Last Interglacial to the LGM under the CCSM4 model, while a significant contraction toward southwestern Yunnan was found under the MIROC-ESM model. Furthermore, the potential distributions during the Mid-Holocene were more widespread in Yunnan compared to those under current period. It is predicted that in the future, the range will significantly expand to northern Yunnan and western Guizhou. Almost all centroids of suitable habitats were distributed in southeastern Yunnan under different periods. The stable areas were located in southwestern Yunnan in all scenarios. The simulation results could provide a theoretical basis for the formulation of reasonable conservation and management measures to mitigate the effects of future climate change for A. costularis.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ning Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ruixiang Xu
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhanming Ying
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- College of Chemistry, Xiangtan UniversityXiangtanChina
| | - Xiaoxian Ruan
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
- College of Life Sciences, South China Agricultural UniversityGuangzhouChina
| | - Wenbo Liao
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| |
Collapse
|
8
|
Hosseini N, Ghorbanpour M, Mostafavi H. The influence of climate change on the future distribution of two Thymus species in Iran: MaxEnt model-based prediction. BMC PLANT BIOLOGY 2024; 24:269. [PMID: 38605338 PMCID: PMC11007882 DOI: 10.1186/s12870-024-04965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
Within a few decades, the species habitat was reshaped at an alarming rate followed by climate change, leading to mass extinction, especially for sensitive species. Species distribution models (SDMs), which estimate both present and future species distribution, have been extensively developed to investigate the impacts of climate change on species distribution and assess habitat suitability. In the West Asia essential oils of T. daenensis and T. kotschyanus include high amounts of thymol and carvacrol and are commonly used as herbal tea, spice, flavoring agents and medicinal plants. Therefore, this study aimed to model these Thymus species in Iran using the MaxEnt model under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The findings revealed that the mean temperature of the warmest quarter (bio10) was the most significant variable affecting the distribution of T. daenensis. In the case of T. kotschyanus, slope percentage was the primary influencing factor. The MaxEnt modeling also demonstrated excellent performance, as indicated by all the Area Under the Curve (AUC) values exceeding 0.9. Moreover, based on the projections, the two mentioned species are expected to undergo negative area changes in the coming years. These results can serve as a valuable achievement for developing adaptive management strategies aimed at enhancing protection and sustainable utilization in the context of global climate change.
Collapse
Affiliation(s)
- Naser Hosseini
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Hossein Mostafavi
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
9
|
Wang X, Wang X, Li Y, Wu C, Zhao B, Peng M, Chen W, Wang C. Response of Extremely Small Populations to Climate Change-A Case of Trachycarpus nanus in Yunnan, China. BIOLOGY 2024; 13:240. [PMID: 38666852 PMCID: PMC11048604 DOI: 10.3390/biology13040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Climate change affects the geographical distribution of plant species. Rare Trachycarpus nanus with a narrow distribution range, high medicinal value and extremely small population is facing increasing extinction risks under global climate change. In this study, 96 recorded occurrences and 23 environmental factors are used to predict the potential suitable area of T. nanus based on the optimized MaxEnt (3.4.4) model and ArcGIS (10.7) software. The results show that when the parameters are FC = LQ and RM = 1, the MaxEnt model is optimal and AUC = 0.946. The distribution patterns were predicted in the past, present, and four future phases, i.e., 2021-2040 (2030), 2041-2060 (2050), 2061-2080 (2070), and 2081-2100 (2090). The main factors are the annual precipitation (bio12), mean temperature of the coldest quarter (bio11), temperature seasonality (bio4), precipitation of the wettest quarter (bio16), and isothermality (bio3). The potential distribution of T. nanus is primarily concentrated in central Chuxiong, encompassing a total potential suitable area of 5.65 × 104 km2. In historical periods, the total habitat area is smaller than that in the present. In the future, the potential suitable area is generally increased. The centroid analysis shows that T. nanus will move to a high-altitude area and to the southeast. But its dispersal capacity may not keep up with the climate change rate. Therefore, additional protection sites for this species should be appropriately established and the habitat connectivity should be enhanced.
Collapse
Affiliation(s)
- Xiaofan Wang
- Institute of Ecology and Geobotany, Yunnan University, Kunming 650504, China; (X.W.); (Y.L.); (B.Z.); (M.P.)
- College of Ecology and Environment, Yunnan University, Kunming 650504, China;
- Southwest United Graduate School, Yunnan University, Kunming 650092, China; (C.W.); (W.C.)
| | - Xuhong Wang
- College of Ecology and Environment, Yunnan University, Kunming 650504, China;
| | - Yun Li
- Institute of Ecology and Geobotany, Yunnan University, Kunming 650504, China; (X.W.); (Y.L.); (B.Z.); (M.P.)
- College of Ecology and Environment, Yunnan University, Kunming 650504, China;
| | - Changhao Wu
- Southwest United Graduate School, Yunnan University, Kunming 650092, China; (C.W.); (W.C.)
| | - Biao Zhao
- Institute of Ecology and Geobotany, Yunnan University, Kunming 650504, China; (X.W.); (Y.L.); (B.Z.); (M.P.)
- College of Ecology and Environment, Yunnan University, Kunming 650504, China;
| | - Mingchun Peng
- Institute of Ecology and Geobotany, Yunnan University, Kunming 650504, China; (X.W.); (Y.L.); (B.Z.); (M.P.)
- College of Ecology and Environment, Yunnan University, Kunming 650504, China;
| | - Wen Chen
- Southwest United Graduate School, Yunnan University, Kunming 650092, China; (C.W.); (W.C.)
| | - Chongyun Wang
- Institute of Ecology and Geobotany, Yunnan University, Kunming 650504, China; (X.W.); (Y.L.); (B.Z.); (M.P.)
- College of Ecology and Environment, Yunnan University, Kunming 650504, China;
| |
Collapse
|
10
|
Yang L, Zhu X, Song W, Shi X, Huang X. Predicting the potential distribution of 12 threatened medicinal plants on the Qinghai-Tibet Plateau, with a maximum entropy model. Ecol Evol 2024; 14:e11042. [PMID: 38362168 PMCID: PMC10867876 DOI: 10.1002/ece3.11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Climate change is a vital driver of biodiversity patterns and species distributions, understanding how organisms respond to climate change will shed light on the conservation of endangered species. In this study, the MaxEnt model was used to predict the potential suitable area of 12 threatened medicinal plants in the QTP (Qinghai-Tibet Plateau) under the current and future (2050s, 2070s) three climate scenarios (RCP2.6, RCP4.5, RCP8.5). The results showed that the climatically suitable habitats for the threatened medicinal plants were primarily found in the eastern, southeast, southern, and some parts of the central regions on the QTP. Moreover, 25% of the threatened medicinal plants would have reduced suitable habitat areas within the next 30-50 years in the different future global warming scenarios. Among these medicinal plants, RT (Rheum tanguticum) would miss the most habitat (98.97%), while the RAN (Rhododendron anthopogonoides) would miss the least habitat (10.15%). Nevertheless, 33.3% of the threatened medicinal plants showed an increase in their future habitat area because of their physiological characteristics which are more adaptable to a wide range of climates. The climatic suitable habitat for 50% of the threatened medicinal plants would migrate to higher altitudes or higher latitudes regions. This study provides a data foundation for the conservation of biodiversity and wild medicinal plants on the QTP.
Collapse
Affiliation(s)
- Lucun Yang
- Qinghai Province Key Laboratory of Qinghai‐Tibet Plateau Biological Resources, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Xiaofeng Zhu
- Gande County Animal Disease Prevention and Control CenterGandeQinghaiChina
| | - Wenzhu Song
- Qinghai Province Key Laboratory of Qinghai‐Tibet Plateau Biological Resources, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | | | - Xiaotao Huang
- School of Geographical Sciences and TourismZhaotong UniversityZhaotongYunnanChina
| |
Collapse
|
11
|
Velázquez-Hernández JM, Ruíz-Corral JA, Durán-Puga N, Macías MÁ, González-Eguiarte DR, Santacruz-Ruvalcaba F, García-Romero GE, Gallegos-Rodríguez A. Ecogeography of Dioscorea remotiflora Kunth: An Endemic Species from Mexico. PLANTS (BASEL, SWITZERLAND) 2023; 12:3654. [PMID: 37896117 PMCID: PMC10610169 DOI: 10.3390/plants12203654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Dioscorea remotiflora, a perennial climbing herbaceous plant native to Mexico, produces tubers with great nutritional and ethnobotanical value. However, most ecological aspects of this plant remain unknown, which limits its cultivation and use. This is why the objective of this research was to characterize the ecogeography of D. remotiflora as a source to determine its edaphoclimatic adaptability and current and potential distribution. A comprehensive database encompassing 480 geo-referenced accessions was assembled from different data sources. Using the Agroclimatic Information System for México and Central America (SIAMEXCA), 42 environmental variables were formulated. The MaxEnt model within the Kuenm R package was employed to predict the species distribution. The findings reveal a greater presence of D. remotiflora in harsh environments, characterized by arid to semiarid conditions, poor soils, and hot climates with long dry periods. Niche modeling revealed that seven key variables determine the geographical distribution of D. remotiflora: precipitation of the warmest quarter, precipitation of the driest month, minimum temperature of the coldest month, November-April solar radiation, annual mean relative humidity, annual moisture availability index, and May-October mean temperature. The current potential distribution of D. remotiflora is 428,747.68 km2. Favorable regions for D. remotiflora coincide with its current presence sites, while other suitable areas, such as the Yucatán Peninsula, northeast region, and Gulf of Mexico, offer potential expansion opportunities for the species distribution. The comprehensive characterization of Dioscorea remotiflora, encompassing aspects such as its soil habitats and climate adaptation, becomes essential not only for understanding its ecology but also for maximizing its economic potential. This will enable not only its sustainable use but also the exploration of commercial applications in sectors such as the pharmaceutical and food industries, thus providing a broader approach for its conservation and optimal utilization in the near future.
Collapse
Affiliation(s)
- Jocelyn Maira Velázquez-Hernández
- Department of Agricultural Production, CUCBA, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Las Agujas, Zapopan 45110, Jalisco, Mexico; (J.M.V.-H.); (N.D.-P.); (D.R.G.-E.); (F.S.-R.)
| | - José Ariel Ruíz-Corral
- Department of Environmental Sciences, CUCBA, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Las Agujas, Zapopan 45110, Jalisco, Mexico;
| | - Noé Durán-Puga
- Department of Agricultural Production, CUCBA, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Las Agujas, Zapopan 45110, Jalisco, Mexico; (J.M.V.-H.); (N.D.-P.); (D.R.G.-E.); (F.S.-R.)
| | - Miguel Ángel Macías
- Department of Environmental Sciences, CUCBA, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Las Agujas, Zapopan 45110, Jalisco, Mexico;
| | - Diego Raymundo González-Eguiarte
- Department of Agricultural Production, CUCBA, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Las Agujas, Zapopan 45110, Jalisco, Mexico; (J.M.V.-H.); (N.D.-P.); (D.R.G.-E.); (F.S.-R.)
| | - Fernando Santacruz-Ruvalcaba
- Department of Agricultural Production, CUCBA, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Las Agujas, Zapopan 45110, Jalisco, Mexico; (J.M.V.-H.); (N.D.-P.); (D.R.G.-E.); (F.S.-R.)
| | - Giovanni Emmanuel García-Romero
- Environment Department of the Municipality of Guadalajara, Av. Miguel Hidalgo y Costilla 426, Downtown, Guadalajara 44100, Jalisco, Mexico;
| | - Agustín Gallegos-Rodríguez
- Departmento de Producción Forestal, CUCBA, University of Guadalajara, Cam. Ramón Padilla Sánchez 2100, Las Agujas, Zapopan 45110, Jalisco, Mexico;
| |
Collapse
|
12
|
Zheng Y, Yuan C, Matsushita N, Lian C, Geng Q. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecol Evol 2023; 13:e10565. [PMID: 37753310 PMCID: PMC10518754 DOI: 10.1002/ece3.10565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cenococcum geophilum (C. geophilum) is a widely distributed ectomycorrhizal fungus that plays a crucial role in forest ecosystems worldwide. However, the specific ecological factors influencing its global distribution and how climate change will affect its range are still relatively unknown. In this study, we used the MaxEnt model optimized with the kuenm package to simulate changes in the distribution pattern of C. geophilum from the Last Glacial Maximum to the future based on 164 global distribution records and 17 environmental variables and investigated the key environmental factors influencing its distribution. We employed the optimal parameter combination of RM = 4 and FC = QPH, resulting in a highly accurate predictive model. Our study clearly shows that the mean temperature of the coldest quarter and annual precipitation are the key environmental factors influencing the suitable habitats of C. geophilum. Currently, appropriate habitats of C. geophilum are mainly distributed in eastern Asia, west-central Europe, the western seaboard and eastern regions of North America, and southeastern Australia, covering a total area of approximately 36,578,300 km2 globally. During the Last Glacial Maximum and the mid-Holocene, C. geophilum had a much smaller distribution area, being mainly concentrated in the Qinling-Huaihe Line region of China and eastern Peninsular Malaysia. As global warming continues, the future suitable habitat for C. geophilum is projected to shift northward, leading to an expected expansion of the suitable area from 9.21% to 21.02%. This study provides a theoretical foundation for global conservation efforts and biogeographic understanding of C. geophilum, offering new insights into its distribution patterns and evolutionary trends.
Collapse
Affiliation(s)
- Yexu Zheng
- College of ForestryShandong Agricultural UniversityTai'anChina
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chao Yuan
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| | - Qifang Geng
- College of ForestryShandong Agricultural UniversityTai'anChina
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| |
Collapse
|
13
|
Xia C, Zuo Y, Xue T, Kang M, Zhang H, Zhang X, Wang B, Zhang J, Deng H. The genetic structure and demographic history revealed by whole-genome resequencing provide insights into conservation of critically endangered Artocarpus nanchuanensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1224308. [PMID: 37575939 PMCID: PMC10415164 DOI: 10.3389/fpls.2023.1224308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Introduction Whole-genome resequencing technology covers almost all nucleotide variations in the genome, which makes it possible to carry out conservation genomics research on endangered species at the whole-genome level. Methods In this study, based on the whole-genome resequencing data of 101 critically endangered Artocarpus nanchuanensis individuals, we evaluated the genetic diversity and population structure, inferred the demographic history and genetic load, predicted the potential distributions in the past, present and future, and classified conservation units to propose targeted suggestions for the conservation of this critically endangered species. Results Whole-genome resequencing for A. nanchuanensis generated approximately 2 Tb of data. Based on abundant mutation sites (25,312,571 single nucleotide polymorphisms sites), we revealed that the average genetic diversity (nucleotide diversity, π) of different populations of A. nanchuanensis was relatively low compared with other trees that have been studied. And we also revealed that the NHZ and QJT populations harboured unique genetic backgrounds and were significantly separated from the other five populations. In addition, positive genetic selective signals, significantly enriched in biological processes related to terpene synthesis, were identified in the NHZ population. The analysis of demographic history of A. nanchuanensis revealed the existence of three genetic bottleneck events. Moreover, abundant genetic loads (48.56% protein-coding genes) were identified in Artocarpus nanchuanensis, especially in genes related to early development and immune function of plants. The predication analysis of suitable habitat areas indicated that the past suitable habitat areas shifted from the north to the south due to global temperature decline. However, in the future, the actual distribution area of A. nanchuanensis will still maintain high suitability. Discussion Based on total analyses, we divided the populations of A. nanchuanensis into four conservation units and proposed a number of practical management suggestions for each conservation unit. Overall, our study provides meaningful guidance for the protection of A. nanchuanensis and important insight into conservation genomics research.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Tiantian Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiabin Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, Chongqing, China
| |
Collapse
|
14
|
Jameel MA, Nadeem MS, Haq SM, Mubeen I, Shabbir A, Aslam S, Ahmad R, Gaafar ARZ, Al-Munqedhi BMA, Bussmann RW. Shifts in the Distribution Range and Niche Dynamics of the Globally Threatened Western Tragopan ( Tragopan melanocephalus) Due to Climate Change and Human Population Pressure. BIOLOGY 2023; 12:1015. [PMID: 37508444 PMCID: PMC10376776 DOI: 10.3390/biology12071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The impact of a changing climate, particularly global warming, often harms the distribution of pheasants, particularly those with limited endemic ranges. To effectively create plans of action aimed at conserving species facing threats such as the Western Tragopan, (Tragopan melanocephalus; Gray, 1829; Galliformes, found in the western Himalayas), it is crucial to understand how future distributions may be affected by anticipated climate change. This study utilized MaxEnt modeling to assess how suitable the habitat of the targeted species is likely to be under different climate scenarios. While similar studies have been conducted regionally, there has been no research on this particular endemic animal species found in the western Himalayas throughout the entire distribution range. The study utilized a total of 200 occurrence points; 19 bioclimatic, four anthropogenic, three topographic, and a vegetation variable were also used. To determine the most fitting model, species distribution modeling (SDM) was employed, and the MaxEnt calibration and optimization techniques were utilized. Data for projected climate scenarios of the 2050s and 2070s were obtained from SSPs 245 and SSPs 585. Among all the variables analyzed; aspect, precipitation of coldest quarter, mean diurnal range, enhanced vegetation index, precipitation of driest month, temperature seasonality, annual precipitation, human footprint, precipitation of driest quarter, and temperature annual range were recognized as the most influential drivers, in that order. The predicted scenarios had high accuracy values (AUC-ROC > 0.9). Based on the feedback provided by the inhabitants, it was observed that the livability of the selected species could potentially rise (between 3.7 to 13%) in all projected scenarios of climate change, because this species is relocating towards the northern regions of the elevation gradient, which is farther from the residential areas, and their habitats are shrinking. The suitable habitats of the Tragopan melanocephalus in the Himalayan region will move significantly by 725 m upwards, because of predicted climate change. However, the fact that the species is considered extinct in most areas and only found in small patches suggests that further research is required to avert a further population decline and delineate the reasons leading to the regional extinction of the species. The results of this study can serve as a foundation for devising conservation strategies for Tragopan melanocephalus under the changing climate and provide a framework for subsequent surveillance efforts aimed at protecting the species.
Collapse
Affiliation(s)
- Muhammad Azhar Jameel
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Sajid Nadeem
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
| | - Iqra Mubeen
- Department of Zoology, Government College University, Lahore 54300, Pakistan
| | - Arifa Shabbir
- Department of Zoology, Government College University, Lahore 54300, Pakistan
| | - Shahzad Aslam
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Riyaz Ahmad
- National Center for Wildlife, Riyadh 11575, Saudi Arabia
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rainer W Bussmann
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
- Department of Botany, Institute of Life Sciences, State Museum of Natural History, 76133 Karlsruhe, Germany
| |
Collapse
|
15
|
Haq SM, Waheed M, Ahmad R, Bussmann RW, Arshad F, Khan AM, Casini R, Alataway A, Dewidar AZ, Elansary HO. Climate Change and Human Activities, the Significant Dynamic Drivers of Himalayan Goral Distribution ( Naemorhedus goral). BIOLOGY 2023; 12:biology12040610. [PMID: 37106810 PMCID: PMC10135808 DOI: 10.3390/biology12040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
The distribution of large ungulates is more often negatively impacted by the changing climate, especially global warming and species with limited distributional zones. While developing conservation action plans for the threatened species such as the Himalayan goral (Naemorhedus goral Hardwicke 1825; a mountain goat that mostly inhabits rocky cliffs), it is imperative to comprehend how future distributions might vary based on predicted climate change. In this work, MaxEnt modeling was employed to assess the habitat suitability of the target species under varying climate scenarios. Such studies have provided highly useful information but to date no such research work has been conducted that considers this endemic animal species of the Himalayas. A total of 81 species presence points, 19 bioclimatic and 3 topographic variables were employed in the species distribution modeling (SDM), and MaxEnt calibration and optimization were performed to select the best candidate model. For predicted climate scenarios, the future data is drawn from SSPs 245 and SSPs 585 of the 2050s and 2070s. Out of total 20 variables, annual precipitation, elevation, precipitation of driest month, slope aspect, minimum temperature of coldest month, slope, precipitation of warmest quarter, and temperature annual range (in order) were detected as the most influential drivers. A high accuracy value (AUC-ROC > 0.9) was observed for all the predicted scenarios. The habitat suitability of the targeted species might expand (about 3.7 to 13%) under all the future climate change scenarios. The same is evident according to local residents as species which are locally considered extinct in most of the area, might be shifting northwards along the elevation gradient away from human settlements. This study recommends additional research is conducted to prevent potential population collapses, and to identify other possible causes of local extinction events. Our findings will aid in formulating conservation plans for the Himalayan goral in a changing climate and serve as a basis for future monitoring of the species.
Collapse
Affiliation(s)
- Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
| | - Muhammad Waheed
- Department of Botany, University of Okara, Okara 56300, Pakistan
| | - Riyaz Ahmad
- National Center for Wildlife, Riyadh 11575, Saudi Arabia
| | - Rainer W Bussmann
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
- Department of Botany, Institute of Life Sciences, State Museum of Natural History, 76133 Karlsruhe, Germany
| | - Fahim Arshad
- Department of Botany, University of Okara, Okara 56300, Pakistan
| | - Arshad Mahmood Khan
- Department of Botany, Government Hashmat Ali Islamia Associate College Rawalpindi, Rawalpindi 46300, Pakistan
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Ryan Casini
- School of Public Health, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|