1
|
Fusi M, Barausse A, Booth JM, Chapman E, Daffonchio D, Sanderson W, Diele K, Giomi F. The predictability of fluctuating environments shapes the thermal tolerance of marine ectotherms and compensates narrow safety margins. Sci Rep 2024; 14:26174. [PMID: 39478107 PMCID: PMC11526141 DOI: 10.1038/s41598-024-77621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Aquatic species living in productive coastal habitats with abundant primary producers have evolved in highly dynamic diel and seasonally fluctuating environments in terms of, for example, water temperature and dissolved oxygen. However, how environmental fluctuations shape the thermal tolerance of marine species is still poorly understood. Here we hypothesize that the degree of predictability of the diel environmental fluctuations in the coastal area can explain the thermal response of marine species. To test this hypothesis, we measured the thermal tolerance of 17 species of marine ectotherm from tropical, warm temperate and cold temperate latitudes under two levels of oxygen (around saturation and at supersaturation), and relate the results to their site-specific temperature and oxygen fluctuation and their environmental predictability. We demonstrate that oxygen and temperature fluctuations at tropical latitudes have a higher predictability than those at warm and cold temperate latitudes. Further, we show that marine species that are adapted to high predictability have the potential to tune their thermal performance when exposed to oxygen supersaturation, despite being constrained within a narrow safety margin. We advocate that the predictability of the environmental fluctuation needs to be considered when measuring and forecasting the response of marine animals to global warming.
Collapse
Affiliation(s)
- Marco Fusi
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK.
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), 23955-6900, Thuwal, Saudi Arabia.
- Centre for Conservation and Restoration Science, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK.
| | - Alberto Barausse
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6/a, 35131, Padua, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Jenny Marie Booth
- Joint Nature Conservation Committee, Quay House, 2 East Station Road, Fletton Quays, Peterborough, PE2 8YY, UK
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| | | | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), 23955-6900, Thuwal, Saudi Arabia
| | - William Sanderson
- Centre for Marine Biodiversity and Biotechnology, ILES, EGIS, Heriot-Watt University, Edinburgh, UK
| | - Karen Diele
- Centre for Conservation and Restoration Science, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
- School of Applied Science, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Folco Giomi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Paraskevopoulos AW, Sanders NJ, Resasco J. Temperature-driven homogenization of an ant community over 60 years in a montane ecosystem. Ecology 2024; 105:e4302. [PMID: 38594213 DOI: 10.1002/ecy.4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Identifying the mechanisms underlying the changes in the distribution of species is critical to accurately predict how species have responded and will respond to climate change. Here, we take advantage of a late-1950s study on ant assemblages in a canyon near Boulder, Colorado, USA, to understand how and why species distributions have changed over a 60-year period. Community composition changed over 60 years with increasing compositional similarity among ant assemblages. Community composition differed significantly between the periods, with aspect and tree cover influencing composition. Species that foraged in broader temperature ranges became more widespread over the 60-year period. Our work highlights that shifts in community composition and biotic homogenization can occur even in undisturbed areas without strong habitat degradation. We also show the power of pairing historical and contemporary data and encourage more mechanistic studies to predict species changes under climate change.
Collapse
Affiliation(s)
- Anna W Paraskevopoulos
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julian Resasco
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
3
|
Khaliq I, Shahid MJ, Kamran H, Sheraz M, Awais M, Shabir M, Asghar M, Rehman A, Riaz M, Braschler B, Sanders NJ, Hof C. The role of thermal tolerance in determining elevational distributions of four arthropod taxa in mountain ranges of southern Asia. J Anim Ecol 2023; 92:2052-2066. [PMID: 37649274 DOI: 10.1111/1365-2656.13996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/04/2023] [Indexed: 09/01/2023]
Abstract
Understanding the role of thermal tolerances in determining species distributions is important for assessing species responses to climate change. Two hypotheses linking physiology with species distributions have been put forward-the climatic variability hypothesis and the climatic extreme hypothesis. The climatic variability hypothesis predicts the selection of individuals with broad thermal tolerance in more variable climatic conditions and the climatic extreme hypothesis predicts the selection of individuals with extreme thermal tolerance values under extreme climatic conditions. However, no study has tested the predictions of these hypotheses simultaneously for several taxonomic groups along elevational gradients. Here, we related experimentally measured critical thermal maxima, critical thermal minima and thermal tolerance breadths for 15,187 individuals belonging to 116 species of ants, beetles, grasshoppers, and spiders from mountain ranges in central and northern Pakistan to the limits and breadths of their geographic and temperature range. Across all species and taxonomic groups, we found strong relationships between thermal traits and elevational distributions both in terms of geography and temperature. The relationships were robust when repeating the analyses for ants, grasshoppers, and spiders but not for beetles. These results indicate a strong role of physiology in determining elevational distributions of arthropods in Southern Asia. Overall, we found strong support for the climatic variability hypothesis and the climatic extreme hypothesis. A close association between species' distributional limits and their thermal tolerances suggest that in case of a failure to adapt or acclimate to novel climatic conditions, species may be under pressure to track their preferred climatic conditions, potentially facing serious consequences under current and future climate change.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | | | - Haseeb Kamran
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Sheraz
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Awais
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Mehtab Shabir
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Asghar
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Abdul Rehman
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Maria Riaz
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Brigitte Braschler
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute fur Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christian Hof
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Corley RB, Dawson W, Bishop TR. A simple method to account for thermal boundary layers during the estimation of CTmax in small ectotherms. J Therm Biol 2023; 116:103673. [PMID: 37527565 DOI: 10.1016/j.jtherbio.2023.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
As temperatures rise, understanding how ectotherms will become impacted by thermal stress is of critical importance. In this context, many researchers quantify critical temperatures - these are the upper (CTmax) and lower (CTmin) thermal limits at which organisms can no longer function. Most studies estimate CTs using bath-based methods where organisms are submerged within a set thermal environment. Plate-based methods (i.e. hot plates), however, offer huge opportunity for automation and are readily available in many lab settings. Plates, however, generate a unidirectional thermal boundary layer above their surface which means that the temperatures experienced by organisms of different sizes is different. This boundary layer effect can bias estimates of critical temperatures. Here, we test the hypothesis that biases in critical temperature estimation on hot plates are driven by organism height. We also quantify the composition of the boundary layer in order to correct for these biases. We assayed four differently sized species of UK ants for their CTmax in dry baths (with no boundary layer) and on hot plates (with a boundary layer). We found that hot plates overestimated the CTmax values of the different ants, and that this overestimate was larger for taller species. By statistically modelling the thickness of the thermal boundary layer, and combining with estimates of species height, we were able to correct this overestimation and eliminate methodological differences. Our study provides two main findings. First, we provide evidence that organism height is positively related to the bias present in plate-based estimates of CTmax. Second, we show that a relatively simple statistical model can correct for this bias. By using simple corrections for boundary layer effects, as we have done here, researchers could open up a new possibility space in the design and implementation of thermal tolerance assays using plates rather than restrictive dry or water baths.
Collapse
Affiliation(s)
| | - Will Dawson
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
5
|
Li YJ, Chen SY, Jørgensen LB, Overgaard J, Renault D, Colinet H, Ma CS. Interspecific differences in thermal tolerance landscape explain aphid community abundance under climate change. J Therm Biol 2023; 114:103583. [PMID: 37270894 DOI: 10.1016/j.jtherbio.2023.103583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 04/29/2023] [Indexed: 06/06/2023]
Abstract
A single critical thermal limit is often used to explain and infer the impact of climate change on geographic range and population abundance. However, it has limited application in describing the temporal dynamic and cumulative impacts of extreme temperatures. Here, we used a thermal tolerance landscape approach to address the impacts of extreme thermal events on the survival of co-existing aphid species (Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi). Specifically, we built the thermal death time (TDT) models based on detailed survival datasets of three aphid species with three ages across a broad range of stressful high (34-40 °C) and low (-3∼-11 °C) temperatures to compare the interspecific and developmental stage variations in thermal tolerance. Using these TDT parameters, we performed a thermal risk assessment by calculating the potential daily thermal injury accumulation associated with the regional temperature variations in three wheat-growing sites along a latitude gradient. Results showed that M. dirhodum was the most vulnerable to heat but more tolerant to low temperatures than R. padi and S. avenae. R. padi survived better at high temperatures than Sitobion avenae and M. dirhodum but was sensitive to cold. R. padi was estimated to accumulate higher cold injury than the other two species during winter, while M. dirhodum accrued more heat injury during summer. The warmer site had higher risks of heat injury and the cooler site had higher risks of cold injury along a latitude gradient. These results support recent field observations that the proportion of R. padi increases with the increased frequency of heat waves. We also found that young nymphs generally had a lower thermal tolerance than old nymphs or adults. Our results provide a useful dataset and method for modelling and predicting the consequence of climate change on the population dynamics and community structure of small insects.
Collapse
Affiliation(s)
- Yuan-Jie Li
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China; UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Si-Yang Chen
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Hervé Colinet
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
6
|
Gonçalves‐Souza T, Chaves LS, Boldorini GX, Ferreira N, Gusmão RAF, Perônico PB, Sanders NJ, Teresa FB. Bringing light onto the Raunkiæran shortfall: A comprehensive review of traits used in functional animal ecology. Ecol Evol 2023; 13:e10016. [PMID: 37091571 PMCID: PMC10115901 DOI: 10.1002/ece3.10016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Trait-based approaches elucidate the mechanisms underlying biodiversity response to, or effects on, the environment. Nevertheless, the Raunkiæran shortfall-the dearth of knowledge on species traits and their functionality-presents a challenge in the application of these approaches. We conducted a systematic review to investigate the trends and gaps in trait-based animal ecology in terms of taxonomic resolution, trait selection, ecosystem type, and geographical region. In addition, we suggest a set of crucial steps to guide trait selection and aid future research to conduct within and cross-taxon comparisons. We identified 1655 articles using virtually all animal groups published from 1999 to 2020. Studies were concentrated in vertebrates, terrestrial habitats, the Palearctic realm, and mostly investigated trophic and habitat dimensions. Additionally, they focused on response traits (79.4%) and largely ignored intraspecific variation (94.6%). Almost 36% of the data sets did not provide the rationale behind the selection of morphological traits. The main limitations of trait-based animal ecology were the use of trait averages and a rare inclusion of intraspecific variability. Nearly one-fifth of the studies based only on response traits conclude that trait diversity impacts ecosystem processes or services without justifying the connection between them or measuring them. We propose a guide for standardizing trait collection that includes the following: (i) determining the type of trait and the mechanism linking the trait to the environment, ecosystem, or the correlation between the environment, trait, and ecosystem, (ii) using a "periodic table of niches" to select the appropriate niche dimension to support a mechanistic trait selection, and (iii) selecting the relevant traits for each retained niche dimension. By addressing these gaps, trait-based animal ecology can become more predictive. This implies that future research will likely focus on collaborating to understand how environmental changes impact animals and their capacity to provide ecosystem services and goods.
Collapse
Affiliation(s)
- Thiago Gonçalves‐Souza
- Department of Biology, Ecological Synthesis and Biodiversity Conservation LabFederal Rural University of PernambucoRecifeBrazil
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- School for Environment and Sustainability, Institute for Global Change BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Leonardo S. Chaves
- Graduate Program in Ethnobiology and Nature Conservation, Department of BiologyFederal Rural University of PernambucoRecifeBrazil
- Escola de Educação e HumanidadesUniversidade Católica de PernambucoRecifeBrazil
| | - Gabriel X. Boldorini
- Department of Biology, Ecological Synthesis and Biodiversity Conservation LabFederal Rural University of PernambucoRecifeBrazil
- Graduate Program in Ethnobiology and Nature Conservation, Department of BiologyFederal Rural University of PernambucoRecifeBrazil
| | - Natália Ferreira
- Graduate Program in Biodiversity, Department of BiologyFederal Rural University of PernambucoRecifeBrazil
| | - Reginaldo A. F. Gusmão
- Department of Biology, Ecological Synthesis and Biodiversity Conservation LabFederal Rural University of PernambucoRecifeBrazil
- Graduate Program in Ethnobiology and Nature Conservation, Department of BiologyFederal Rural University of PernambucoRecifeBrazil
| | - Phamela Bernardes Perônico
- Graduate Program in Natural Resources of CerradoState University of GoiásAnápolisBrazil
- Biogeography and Aquatic Ecology LabState University of GoiásAnápolisBrazil
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Fabrício B. Teresa
- Graduate Program in Natural Resources of CerradoState University of GoiásAnápolisBrazil
- Biogeography and Aquatic Ecology LabState University of GoiásAnápolisBrazil
| |
Collapse
|
7
|
Youngsteadt E, Prado SG, Keleher KJ, Kirchner M. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants. J Anim Ecol 2023; 92:568-579. [PMID: 36642830 DOI: 10.1111/1365-2656.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/21/2022] [Indexed: 01/17/2023]
Abstract
Global climate change is expected to have pervasive effects on the diversity and distribution of species, particularly ectotherms whose body temperatures depend on environmental temperatures. However, these impacts remain difficult to predict, in part because ectotherms may adapt or acclimate to novel conditions or may use behavioural thermoregulation to reduce their exposure to stressful microclimates. Here we examine the potential for physiological and behavioural changes to mitigate effects of environmental warming on five species of ants in a temperate forest habitat subject to urban warming. We worked in eight urban and eight non-urban forest sites in North Carolina, USA; sites experienced a 1.1°C range of mean summer air temperatures. At each site, we documented species-specific microclimates (ant operative temperatures, Te ) and ant activity on a transect of 14 bait stations at three times of day. In the laboratory, we measured upper thermal tolerance (CTmax ) and thermal preference (Tpref ) for each focal species. We then asked whether thermal traits shifted at hotter sites, and whether ants avoided non-preferred microclimates in the field. CTmax and Tpref did not increase at warmer sites, indicating that these populations did not adapt or acclimate to urban warming. Consistent with behavioural thermoregulation, four of the five species were less likely to occupy baits where Te departed from Tpref . Apparent thermoregulation resulted from fixed diel activity patterns that helped ants avoid the most inappropriate temperatures but did not compensate for daily or spatial temperature variation: Hotter sites had hotter ants. This study uses a novel approach to detect behavioural thermoregulation and sublethal warming in foraging insects. The results suggest that adaptation and behaviour may not protect common temperate forest ants from a warming climate, and highlight the need to evaluate effects of chronic, sublethal warming on small ectotherms.
Collapse
Affiliation(s)
- Elsa Youngsteadt
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Sara Guiti Prado
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kirsten Joanna Keleher
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Michelle Kirchner
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Nelson RA, MacArthur-Waltz DJ, Gordon DM. Critical thermal limits and temperature-dependent walking speed may mediate coexistence between the native winter ant (Prenolepis imparis) and the invasive Argentine ant (Linepithemahumile). J Therm Biol 2023; 111:103392. [PMID: 36585081 DOI: 10.1016/j.jtherbio.2022.103392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Comparing the thermal tolerance and performance of native and invasive species from varying climatic origins may explain why some native and invasive species can coexist. We compared the thermal niches of an invasive and native ant species. The Argentine ant (Linepithema humile) is an invasive species that has spread to Mediterranean climates worldwide, where it is associated with losses in native arthropod biodiversity. In northern California, long-term surveys of ant biodiversity have shown that the winter ant (Prenolepis imparis) is the native species best able to coexist with Argentine ants. Both species tend hemipteran scales for food, and previous research suggests that these species' coexistence may depend on seasonal partitioning: winter ants are active primarily in the colder winter months, while Argentine ants are active primarily in the warmer months in northern California. We investigated the physiological basis of seasonal partitioning in Argentine and winter ants by a) measuring critical thermal limits, and b) comparing how ant walking speed varies with temperature. While both species had similar CTmax values, we found differences between the two species' critical thermal minima that may allow winter ants to remain functional at ecologically relevant temperatures between 0 and 2.5 °C. We also found that winter ants' walking speeds are significantly less temperature-dependent than those of Argentine ants. Winter ants walk faster than Argentine ants at low temperatures, which may allow the winter ants to remain active and forage at lower winter temperatures. These results suggest that partitioning based on differences in temperature tolerance promotes the winter ant's continued occupation of areas invaded by the Argentine ant.
Collapse
Affiliation(s)
- Rebecca A Nelson
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA, 94305, United States.
| | - Dylan J MacArthur-Waltz
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA, 94305, United States.
| | - Deborah M Gordon
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA, 94305, United States.
| |
Collapse
|
9
|
Kaspari M, Weiser MD, Marshall KE, Siler CD, de Beurs K. Temperature-habitat interactions constrain seasonal activity in a continental array of pitfall traps. Ecology 2023; 104:e3855. [PMID: 36054605 DOI: 10.1002/ecy.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023]
Abstract
Activity density (AD), the rate at which animals collectively move through their environment, emerges as the product of a taxon's local abundance and its velocity. We analyze drivers of seasonal AD using 47 localities from the National Ecological Observatory Network (NEON) both to better understand variation in ecosystem rates like pollination and seed dispersal as well as the constraints of using AD to monitor invertebrate populations. AD was measured as volume from biweekly pitfall trap arrays (ml trap-1 14 days-1 ). Pooled samples from 2017 to 2018 revealed AD extrema at most temperatures but with a strongly positive overall slope. However, habitat types varied widely in AD's seasonal temperature sensitivity, from negative in wetlands to positive in mixed forest, grassland, and shrub habitats. The temperature of maximum AD varied threefold across the 47 localities; it tracked the threefold geographic variation in maximum growing season temperature with a consistent gap of ca. 3°C across habitats, a novel macroecological result. AD holds potential as an effective proxy for investigating ecosystem rates driven by activity. However, our results suggest that its use for monitoring insect abundance is complicated by the many ways that both abundance and velocity are constrained by a locality's temperature and plant physiognomy.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael D Weiser
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron D Siler
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA.,Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma, USA
| | - Kirsten de Beurs
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
10
|
Comparing Ant Assemblages and Functional Groups across Urban Habitats and Seasons in an East Asia Monsoon Climate Area. Animals (Basel) 2022; 13:ani13010040. [PMID: 36611650 PMCID: PMC9817932 DOI: 10.3390/ani13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
China's East Asia monsoon zone is undergoing rapid land-use conversion and urbanization. Safeguarding remaining biodiversity requires reducing, mitigating, and/or eliminating the negative impacts of human-induced landscape modification. In this study, we sampled ground-dwelling ants at 40 plots over 12 continuous months in a suburban area in southwestern China to examine whether and how vegetation composition and habitat fragmentation affected species richness and assemblage composition for the general ant community and, specifically, for principal functional groups (including Opportunists and Generalized Myrmicinae). Warmer seasons were associated with a higher capture rate for all functional groups. Patterns of ant species richness among Opportunists were more sensitive to vegetation and fragmentation than for Generalized Myrmicinae, and these effects generally varied with season. Patterns of ant assemblage composition for Opportunists were exclusively sensitive to vegetation, whereas Generalized Myrmicinae were sensitive to both vegetation and fragmentation with variation among seasons. Overall, our findings highlight the important role of seasonality, vegetation composition, and habitat fragmentation in mediating the impacts of human-induced landscape modification on urbanized ant communities, which make an essential functional contribution to biodiversity in the East Asia monsoon zone.
Collapse
|
11
|
Gonzalez VH, Oyen K, Vitale N, Ospina R. Neotropical stingless bees display a strong response in cold tolerance with changes in elevation. CONSERVATION PHYSIOLOGY 2022; 10:coac073. [PMID: 36570736 PMCID: PMC9773376 DOI: 10.1093/conphys/coac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Tropical pollinators are expected to experience substantial effects due to climate change, but aspects of their thermal biology remain largely unknown. We investigated the thermal tolerance of stingless honey-making bees, the most ecologically, economically and culturally important group of tropical pollinators. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of 17 species (12 genera) at two elevations (200 and 1500 m) in the Colombian Andes. In addition, we examined the influence of body size (intertegular distance, ITD), hairiness (thoracic hair length) and coloration (lightness value) on bees' thermal tolerance. Because stingless beekeepers often relocate their colonies across the altitudinal gradient, as an initial attempt to explore potential social responses to climatic variability, we also tracked for several weeks brood temperature and humidity in nests of three species at both elevations. We found that CTMin decreased with elevation while CTMax was similar between elevations. CTMin and CTMax increased (low cold tolerance and high heat tolerance) with increasing ITD, hair length and lightness value, but these relationships were weak and explained at most 10% of the variance. Neither CTMin nor CTMax displayed significant phylogenetic signal. Brood nest temperature tracked ambient diel variations more closely in the low-elevation site, but it was constant and higher at the high-elevation site. In contrast, brood nest humidity was uniform throughout the day regardless of elevation. The stronger response in CTMin, and a similar CTMax between elevations, follows a pattern of variation documented across a wide range of taxa that is commonly known as the Brett's heat-invariant hypothesis. Our results indicate differential thermal sensitivities and potential thermal adaptations to local climate, which support ongoing conservation policies to restrict the long-distance relocations of colonies. They also shed light on how malleable nest thermoregulation can be across elevations.
Collapse
Affiliation(s)
- Victor H Gonzalez
- Corresponding author: Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Kennan Oyen
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, USA
| | - Nydia Vitale
- Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, 5500, Argentina
| | - Rodulfo Ospina
- Laboratorio de Investigaciones en Abejas, Universidad Nacional de Colombia, Santa Fé de Bogotá, 111321, Colombia
| |
Collapse
|
12
|
Lawhorn KA, Yanoviak SP. Variation in Larval Thermal Tolerance of Three Saproxylic Beetle Species. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1218-1223. [PMID: 36346643 DOI: 10.1093/ee/nvac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 06/16/2023]
Abstract
Temperature is a key abiotic condition that limits the distributions of organisms, and forest insects are particularly sensitive to thermal extremes. Whereas winged adult insects generally are able to escape unfavorable temperatures, other less-vagile insects (e.g., larvae) must withstand local microclimatic conditions to survive. Here, we measured the thermal tolerance of the larvae of three saproxylic beetle species that are common inhabitants of coarse woody debris (CWD) in temperate forests of eastern North America: Lucanus elaphus Fabricius (Lucanidae), Dendroides canadensis Latreille (Pyrochroidae), and Odontotaenius disjunctus Illiger (Passalidae). We determined how their critical thermal maxima (CTmax) vary with body size (mass), and measured the thermal profiles of CWD representing the range of microhabitats occupied by these species. Average CTmax differed among the three species and increased with mass intraspecifically. However, mass was not a good predictor of thermal tolerance among species. Temperature ramp rate and time in captivity also influenced larval CTmax, but only for D. canadensis and L. elaphus respectively. Heating profiles within relatively dry CWD sometimes exceeded the CTmax of the beetle larvae, and deeper portions of CWD were generally cooler. Interspecific differences in CTmax were not fully explained by microhabitat association, but the results suggest that the distribution of some species within a forest can be affected by local thermal extremes. Understanding the responses of saproxylic beetle larvae to warming habitats will help predict shifts in community structure and ecosystem functioning in light of climate change and increasing habitat fragmentation.
Collapse
Affiliation(s)
- Kane A Lawhorn
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Stephen P Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| |
Collapse
|
13
|
Thermal limits of Africanized honey bees are influenced by temperature ramping rate but not by other experimental conditions. J Therm Biol 2022; 110:103369. [DOI: 10.1016/j.jtherbio.2022.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
14
|
Gonzalez VH, Oyen K, Aguilar ML, Herrera A, Martin RD, Ospina R. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees. Ecol Evol 2022; 12:e9560. [PMID: 36479027 PMCID: PMC9720000 DOI: 10.1002/ece3.9560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bumble bees are key pollinators with some species reared in captivity at a commercial scale, but with significant evidence of population declines and with alarming predictions of substantial impacts under climate change scenarios. While studies on the thermal biology of temperate bumble bees are still limited, they are entirely absent from the tropics where the effects of climate change are expected to be greater. Herein, we test whether bees' thermal tolerance decreases with elevation and whether the stable optimal conditions used in laboratory-reared colonies reduces their thermal tolerance. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of four species at two elevations (2600 and 3600 m) in the Colombian Andes, examined the effect of body size, and evaluated the thermal tolerance of wild-caught and laboratory-reared individuals of Bombus pauloensis. We also compiled information on bumble bees' thermal limits and assessed potential predictors for broadscale patterns of variation. We found that CTMin decreased with increasing elevation, while CTMax was similar between elevations. CTMax was slightly higher (0.84°C) in laboratory-reared than in wild-caught bees while CTMin was similar, and CTMin decreased with increasing body size while CTMax did not. Latitude is a good predictor for CTMin while annual mean temperature, maximum and minimum temperatures of the warmest and coldest months are good predictors for both CTMin and CTMax. The stronger response in CTMin with increasing elevation, and similar CTMax, supports Brett's heat-invariant hypothesis, which has been documented in other taxa. Andean bumble bees appear to be about as heat tolerant as those from temperate areas, suggesting that other aspects besides temperature (e.g., water balance) might be more determinant environmental factors for these species. Laboratory-reared colonies are adequate surrogates for addressing questions on thermal tolerance and global warming impacts.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Kennan Oyen
- Department of Biological Sciences, McMicken College of Arts and SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Andres Herrera
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | | | - Rodulfo Ospina
- Laboratorio de Investigaciones en AbejasUniversidad Nacional de ColombiaSanta Fé de BogotáColombia
| |
Collapse
|
15
|
Roeder KA, Daniels JD. Thermal tolerance of western corn rootworm: Critical thermal limits, knock-down resistance, and chill coma recovery. J Therm Biol 2022; 109:103338. [DOI: 10.1016/j.jtherbio.2022.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
16
|
Tonione MA, Bi K, Dunn RR, Lucky A, Portik DM, Tsutsui ND. Phylogeography and population genetics of a widespread cold-adapted ant, Prenolepis imparis. Mol Ecol 2022; 31:4884-4899. [PMID: 35866574 DOI: 10.1111/mec.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
As species arise, evolve, and diverge, they are shaped by forces that unfold across short and long time scales and at both local and vast geographic scales. It is rare, however, to be able document this history across broad sweeps of time and space in a single species. Here, we report the results of a continental-scale phylogenomic analysis across the entire range of a widespread species. We analyzed sequences of 1,402 orthologous Ultraconserved Element (UCE) loci from 75 individuals to identify population genetic structure and historical demographic patterns across the continent-wide range of a cold-adapted ant, the winter ant, Prenolepis imparis. We recovered five well-supported, genetically isolated clades representing lineages that diverged from 8.2-2.2 million years ago. These include: 1) an early diverging lineage located in Florida, 2) a lineage that spans the southern United States, 3) populations that extend across the midwestern and northeastern United States, 4) populations from the western United States, and 5) populations in southwestern Arizona and Mexico. Population genetic analyses revealed little or no gene flow among these lineages, but patterns consistent with more recent gene flow among populations within lineages, and localized structure with migration in the western United States. High support for five major geographic lineages and lack of evidence of contemporary gene flow indicate in situ diversification across the species' range, producing relatively ancient lineages that persisted through subsequent climate change and glaciation during the Quaternary.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California-, 94720-3114, Berkeley, CA, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA.,Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, David Clark Labs, Box 7617, Raleigh, NC 27695, USA
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, 32608, Gainesville, FL, USA
| | - Daniel M Portik
- California Academy of Sciences, 94118, San Francisco, CA, USA
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, 130 Mulford Hall, #3114, University of California-, 94720-3114, Berkeley, CA, USA
| |
Collapse
|
17
|
Parr CL, Bishop TR. The response of ants to climate change. GLOBAL CHANGE BIOLOGY 2022; 28:3188-3205. [PMID: 35274797 PMCID: PMC9314018 DOI: 10.1111/gcb.16140] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 06/12/2023]
Abstract
Ants (Hymenoptera: Formicidae) are one of the most dominant terrestrial organisms worldwide. They are hugely abundant, both in terms of sheer numbers and biomass, on every continent except Antarctica and are deeply embedded within a diversity of ecological networks and processes. Ants are also eusocial and colonial organisms-their lifecycle is built on the labor of sterile worker ants who support a small number of reproductive individuals. Given the climatic changes that our planet faces, we need to understand how various important taxonomic groups will respond; this includes the ants. In this review, we synthesize the available literature to tackle this question. The answer is complicated. The ant literature has focused on temperature, and we broadly understand the ways in which thermal changes may affect ant colonies, populations, and communities. In general, we expect that species living in the Tropics, and in thermally variable microhabitats, such as the canopy and leaf litter environments, will be negatively impacted by rising temperatures. Species living in the temperate zones and those able to thermally buffer their nests in the soil or behaviorally avoid higher temperatures, however, are likely to be unaffected or may even benefit from a changed climate. How ants will respond to changes to other abiotic drivers associated with climate change is largely unknown, as is the detail on how altered ant populations and communities will ramify through their wider ecological networks. We discuss how eusociality may allow ants to adapt to, or tolerate, climate change in ways that solitary organisms cannot and we identify key geographic and phylogenetic hotspots of climate vulnerability and resistance. We finish by emphasizing the key research questions that we need to address moving forward so that we may fully appreciate how this critical insect group will respond to the ongoing climate crisis.
Collapse
Affiliation(s)
- Catherine L. Parr
- Department of Earth, Ocean and Ecological SciencesUniversity of LiverpoolLiverpoolUK
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandWitsSouth Africa
| | - Tom R. Bishop
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
18
|
Jacquier L, Doums C, Molet M. Spring colonies of the ant Temnothorax nylanderi tolerate cadmium better than winter colonies, in both a city and a forest habitat. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:324-334. [PMID: 34994914 DOI: 10.1007/s10646-021-02515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A recent study showed that, in the ant Temnothorax nylanderi, city colonies are more tolerant to cadmium than forest colonies. However, because of annual variation in biological factors (e.g. body size, anti-stress protein production or trace metal accumulation rate), trace metal tolerance may vary over the year. We aimed at testing whether tolerance to cadmium of colonies of T. nylanderi differs between two different seasons within the same year (winter and spring). We also assessed whether the better cadmium tolerance of city colonies was constant over these two different time points. We collected colonies at the end of their hibernation period (winter colonies) and several weeks after (spring colonies) from two different habitats (forest and city) to assess whether response to cadmium was consistent regardless of the environment. We exposed colonies to a cadmium or a control treatment for 61 days. We compared tolerance to cadmium between spring/winter and city/forest colonies by measuring several life history traits. We found that spring colonies tolerates cadmium better than winter colonies, and that city colonies have a higher tolerance to cadmium but only in spring. Although further studies with replicated pairs of city/forest habitats and different years will be necessary to confirm those results, our study suggests that tolerance to trace metals can fluctuate along the yearly cycle.
Collapse
Affiliation(s)
- L Jacquier
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris, IEES-Paris, F-75005, Paris, France.
| | - C Doums
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005, Paris, France
- EPHE, PSL University, 75014, Paris, France
| | - M Molet
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris, IEES-Paris, F-75005, Paris, France
| |
Collapse
|
19
|
Zhao CL, Zhao T, Feng JY, Chang LM, Zheng PY, Fu SJ, Li XM, Yue BS, Jiang JP, Zhu W. Temperature and Diet Acclimation Modify the Acute Thermal Performance of the Largest Extant Amphibian. Animals (Basel) 2022; 12:ani12040531. [PMID: 35203239 PMCID: PMC8868240 DOI: 10.3390/ani12040531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
The Chinese giant salamander (Andrias davidianus), one of the largest extant amphibian species, has dramatically declined in the wild. As an ectotherm, it may be further threatened by climate change. Therefore, understanding the thermal physiology of this species should be the priority to formulate related conservation strategies. In this study, the plasticity in metabolic rate and thermal tolerance limits of A. davidianus larvae were studied. Specifically, the larvae were acclimated to three temperature levels (7 °C, cold stress; 15 °C, optimum; and 25 °C, heat stress) and two diet items (red worm or fish fray) for 20 days. Our results indicated that cold-acclimated larvae showed increased metabolic capacity, while warm-acclimated larvae showed a decrease in metabolic capacity. These results suggested the existence of thermal compensation. Moreover, the thermal tolerance windows of cold-acclimated and warm-acclimated larvae shifted to cooler and hotter ranges, respectively. Metabolic capacity is not affected by diet but fish-fed larvae showed superiority in both cold and heat tolerance, potentially due to the input of greater nutrient loads. Overall, our results suggested a plastic thermal tolerance of A. davidianus in response to temperature and diet variations. These results are meaningful in guiding the conservation of this species.
Collapse
Affiliation(s)
- Chun-Lin Zhao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China;
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; (T.Z.); (J.-Y.F.); (L.-M.C.); (P.-Y.Z.); (J.-P.J.)
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; (T.Z.); (J.-Y.F.); (L.-M.C.); (P.-Y.Z.); (J.-P.J.)
| | - Jian-Yi Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; (T.Z.); (J.-Y.F.); (L.-M.C.); (P.-Y.Z.); (J.-P.J.)
| | - Li-Ming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; (T.Z.); (J.-Y.F.); (L.-M.C.); (P.-Y.Z.); (J.-P.J.)
| | - Pu-Yang Zheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; (T.Z.); (J.-Y.F.); (L.-M.C.); (P.-Y.Z.); (J.-P.J.)
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China; (S.-J.F.); (X.-M.L.)
| | - Xiu-Ming Li
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China; (S.-J.F.); (X.-M.L.)
| | - Bi-Song Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China;
- Correspondence: (B.-S.Y.); (W.Z.); Tel.: +86-028-82890935 (B.-S.Y.)
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; (T.Z.); (J.-Y.F.); (L.-M.C.); (P.-Y.Z.); (J.-P.J.)
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu 610041, China; (T.Z.); (J.-Y.F.); (L.-M.C.); (P.-Y.Z.); (J.-P.J.)
- Correspondence: (B.-S.Y.); (W.Z.); Tel.: +86-028-82890935 (B.-S.Y.)
| |
Collapse
|
20
|
Nascimento G, Câmara T, Arnan X. Critical thermal limits in ants and their implications under climate change. Biol Rev Camb Philos Soc 2022; 97:1287-1305. [PMID: 35174946 DOI: 10.1111/brv.12843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
Critical thermal limits (CTLs) constrain the performance of organisms, shaping their abundance, current distributions, and future distributions. Consequently, CTLs may also determine the quality of ecosystem services as well as organismal and ecosystem vulnerability to climate change. As some of the most ubiquitous animals in terrestrial ecosystems, ants are important members of ecological communities. In recent years, an increasing body of research has explored ant physiological thermal limits. However, these CTL data tend to centre on a few species and biogeographical regions. To encourage an expansion of perspectives, we herein review the factors that determine ant CTLs and examine their effects on present and future species distributions and ecosystem processes. Special emphasis is placed on the implications of CTLs for safeguarding ant diversity and ant-mediated ecosystem services in the future. First, we compile, quantify, and categorise studies on ant CTLs based on study taxon, biogeographical region, methodology, and study question. Second, we use this comprehensive database to analyse the abiotic and biotic factors shaping ant CTLs. Our results highlight how CTLs may affect future distribution patterns and ecological performance in ants. Additionally, we identify the greatest remaining gaps in knowledge and create a research roadmap to promote rapid advances in this field of study.
Collapse
Affiliation(s)
- Geraldo Nascimento
- Universidade de Pernambuco - Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105 - São José, Garanhuns, 55294-902, Brazil.,Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade de Pernambuco - Campus Petrolina, BR 203, KM 2 - Vila Eduardo, Petrolina, 56328-900, Brazil
| | - Talita Câmara
- Universidade de Pernambuco - Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105 - São José, Garanhuns, 55294-902, Brazil.,Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade de Pernambuco - Campus Petrolina, BR 203, KM 2 - Vila Eduardo, Petrolina, 56328-900, Brazil
| | - Xavier Arnan
- Universidade de Pernambuco - Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105 - São José, Garanhuns, 55294-902, Brazil.,Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade de Pernambuco - Campus Petrolina, BR 203, KM 2 - Vila Eduardo, Petrolina, 56328-900, Brazil.,CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
21
|
Bolder MF, Jung K, Stern M. Seasonal variations of serotonin in the visual system of an ant revealed by immunofluorescence and a machine learning approach. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210932. [PMID: 35154789 PMCID: PMC8825996 DOI: 10.1098/rsos.210932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Hibernation, as an adaptation to seasonal environmental changes in temperate or boreal regions, has profound effects on mammalian brains. Social insects of temperate regions hibernate as well, but despite abundant knowledge on structural and functional plasticity in insect brains, the question of how seasonal activity variations affect insect central nervous systems has not yet been thoroughly addressed. Here, we studied potential variations of serotonin-immunoreactivity in visual information processing centres in the brain of the long-lived ant species Lasius niger. Quantitative immunofluorescence analysis revealed stronger serotonergic signals in the lamina and medulla of the optic lobes of wild or active laboratory workers than in hibernating animals. Instead of statistical inference by testing, differentiability of seasonal serotonin-immunoreactivity was confirmed by a machine learning analysis using convolutional artificial neuronal networks (ANNs) with the digital immunofluorescence images as input information. Machine learning models revealed additional differences in the third visual processing centre, the lobula. We further investigated these results by gradient-weighted class activation mapping. We conclude that seasonal activity variations are represented in the ant brain, and that machine learning by ANNs can contribute to the discovery of such variations.
Collapse
Affiliation(s)
- Maximilian F. Bolder
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Stern
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Rivi V, Batabyal A, Benatti C, Blom JM, Lukowiak K. Nature versus nurture in heat stress induced learning between inbred and outbred populations of Lymnaea stagnalis. J Therm Biol 2022; 103:103170. [PMID: 35027189 DOI: 10.1016/j.jtherbio.2021.103170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
Changing environmental conditions often lead to microevolution of traits that are adaptive under the current selection pressure. Currently, one of the major selection pressures is the rise in temperatures globally that has a severe impact on the behavioral ecology of animals. However, the role of thermal stress on neuronal plasticity and memory formation is not well understood. Thermal tolerance and sensitivity to heat stress show variation across populations of the same species experiencing different thermal regimes. We used two populations of the pond snail Lymnaea stagnalis: one lab-bred W-snails and the other wild Delta snails to test heat shock induced learning and memory formation for the Garcia effect learning paradigm. In Garcia effect, a single pairing of a heat stressor (30 °C for 1h) with a novel taste results in a taste-specific negative hedonic shift lasting 24h as long-term memory (LTM) in lab bred W-snails. In this study we used a repeated heat stress procedure to test for increased or decreased sensitivity to the heat before testing for the Garcia effect. We found that lab-bred W-snails show increased sensitivity to heat stress after repeated heat exposure for 7days, leading to enhanced LTM for Garcia effect with only 15min of heat exposure instead of standard 1h. Surprisingly, the freshly collected wild snails do not show Garcia effect. Additionally, F1 generation of wild snails raised and maintained under laboratory conditions still retain their heat stress tolerance similar to their parents and do not show a Garcia effect under standard learning paradigm or even after repeated heat stressor. Thus, we found a differential effect of heat stress on memory formation in wild and lab bred snails. Most interestingly we also show that local environmental (temperature) conditions for one generation is not enough to alter thermal sensitivity in a wild population of L. stagnalis.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Mc Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
23
|
Castillo-Pérez EU, Suárez-Tovar CM, González-Tokman D, Schondube JE, Córdoba-Aguilar A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J Therm Biol 2022; 103:103164. [PMID: 35027186 DOI: 10.1016/j.jtherbio.2021.103164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Disturbance (e.g. loss of plant cover) increases ambient temperature which can be lethal for ectotherm insects especially in hot places. We compared the thorax temperatures of 26 odonate species as a function of body size, habitat quality ("conserved" and cooler vs "perturbed" and warmer) and suborder (Anisoptera vs Zygoptera), as well as critical thermal maximum (CTmax) and as a function of habitat quality in Argia pulla (Zygoptera) and Orthemis ferruginea (Anisoptera). We expected thorax temperatures to differ between suborders based on their differences in body size and habitat quality status, and that populations in perturbed sites would have higher critical thermal maxima compared to those in conserved sites. This study was done in a tropical region with high ambient temperatures. Anisopterans had a higher body temperature than zygopterans, with no difference between habitats. Thoracic and air temperature were positively related, yet body temperatures were higher than the ambient temperature. A. pulla had higher CTmax in the perturbed sites, while O. ferruginea showed the opposite trend. Microenvironmental changes increase the ambient temperature, perhaps filtering insect species. The apparent resilience of odonates to disturbance should be examined more closely (using more species), especially in small species like the zygopterans which appear to be more strongly affected by ambient temperature.
Collapse
Affiliation(s)
- E Ulises Castillo-Pérez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, México City, Mexico; Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México City, Mexico
| | - Catalina M Suárez-Tovar
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, México City, Mexico; Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México City, Mexico
| | - Daniel González-Tokman
- CONACyT, Red de Ecoetología, Instituto de Ecología A.C, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Jorge E Schondube
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México City, Mexico.
| |
Collapse
|
24
|
Helms JA, Smith J, Clark S, Knupp K, Haddad NM. Ant Communities and Ecosystem Services in Organic Versus Conventional Agriculture in the U.S. Corn Belt. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1276-1285. [PMID: 34554252 DOI: 10.1093/ee/nvab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Reducing the use of synthetic fertilizers and pesticides can limit negative impacts of agriculture on insects and is a crucial step towards sustainable agriculture. In the United States, organic agriculture has the potential to reduce greenhouse gas emissions, pollutant runoff, and biodiversity loss in the Midwestern Corn Belt-an area extending over 500,000 km2 devoted to intensive production of corn Zea mays (Linnaeus 1753) (Poales: Poaceae), often in rotation with soy Glycine max (Linnaeus 1753) (Fabales: Fabaceae) or wheat Triticum aestivum (Linnaeus 1753) (Poales: Poaceae). Working in 30-yr-long landscape experiments in this region, we tested for impacts of conventional versus organic agriculture on ant communities (Hymenoptera: Formicidae) and potential ecosystem services they provide. Organic fields supported higher ant diversity and a slightly more species-rich ant assemblage than conventionally managed fields but did not otherwise differ in community composition. Despite similar community composition, organic and conventional fields differed in seasonal patterns of ant foraging activity and potential for natural pest suppression. Conventional plots experienced higher overall ant foraging activity, but with the timing skewed towards late in the growing season such that 75% of ant foraging occurred after crop harvest in a wheat year and was therefore unavailable for pest suppression. Organic fields, in contrast, experienced moderate levels of ant foraging activity throughout the growing season, with most foraging occurring during crop growth. Organic fields thus supported twice as much pest suppression potential as conventional fields. Our results highlight the importance of timing in mediating ecosystem services in croplands and emphasize the value of managing landscapes for multiple services rather than yield alone.
Collapse
Affiliation(s)
- Jackson A Helms
- USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Jamie Smith
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USAand
| | - Stephanie Clark
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USAand
| | - Kathleen Knupp
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USAand
| | - Nick M Haddad
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USAand
| |
Collapse
|
25
|
Gippet JMW, George L, Bertelsmeier C. Local coexistence of native and invasive ant species is associated with micro-spatial shifts in foraging activity. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02678-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Leahy L, Scheffers BR, Williams SE, Andersen AN. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Ecology 2021; 103:e03549. [PMID: 34618920 DOI: 10.1002/ecy.3549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023]
Abstract
Determining how species thermal limits correlate with climate is important for understanding biogeographic patterns and assessing vulnerability to climate change. Such analyses need to consider thermal gradients at multiple spatial scales. Here we relate thermal traits of rainforest ants to microclimate conditions from ground to canopy (microgeographic scale) along an elevation gradient (mesogeographic scale) and calculate warming tolerance to assess climate change vulnerability in the Australian Wet Tropics Bioregion. We test the thermal adaptation and thermal niche asymmetry hypotheses to explain interspecific patterns of thermal tolerance at these two spatial scales. We tested cold tolerance (CTmin ), heat tolerance (CTmax ), and calculated thermal tolerance range (CTrange ), using ramping assays for 74 colonies of 40 ant species collected from terrestrial and arboreal habitats at lowland and upland elevation sites and recorded microclimatic conditions for one year. Within sites, arboreal ants were exposed to hotter microclimates and on average had a 4.2°C (95% CI: 2.7-5.6°C) higher CTmax and 5.3°C (95% CI: 3.5-7°C) broader CTrange than ground-dwelling ants. This pattern was consistent across the elevation gradient, whether it be the hotter lowlands or the cooler uplands. Across elevation, upland ants could tolerate significantly colder temperatures than lowland ants, whereas the change in CTmax was less pronounced, and CTrange did not change over elevation. Differential exposure to microclimates, due to localized niche preferences, drives divergence in CTmax , while environmental temperatures along the elevation gradient drive divergence in CTmin . Our results suggest that both processes of thermal adaptation and thermal niche asymmetry are at play, depending on the spatial scale of observation, and we discuss potential mechanisms underlying these patterns. Despite the broad thermal tolerance range of arboreal rainforest ants, lowland arboreal ants had the lowest warming tolerance and may be most vulnerable to climate change.
Collapse
Affiliation(s)
- Lily Leahy
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 32611, USA
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Alan N Andersen
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
27
|
Maebe K, De Baets A, Vandamme P, Vereecken NJ, Michez D, Smagghe G. Impact of intraspecific variation on measurements of thermal tolerance in bumble bees. J Therm Biol 2021; 99:103002. [PMID: 34420633 DOI: 10.1016/j.jtherbio.2021.103002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/09/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Climate change is an important driver of bee decline despite the fact that many species might respond to climate change differently. One method to predict how a species will respond to climate change is to identify its thermal tolerance limits. However, differences in thermal tolerance might also occur among distant populations of the same species based on their local environment or even among castes of social insects. Here, we investigated intraspecific differences in thermal tolerance among subspecies of the large earth bumble bee, Bombus terrestris (Apidae). We determined the critical thermal minima and maxima (CTmin and CTmax, respectively) of workers and queens from three lab-reared B. terrestris subspecies (B. t. terrestris, B. t. audax, and B. t. canariensis) which originated from different thermal environments. Our results showed that caste has an influence on critical thermal minima, with queens being most cold-tolerant, but the values of critical thermal maxima were not correlated to caste or size. The thermal tolerance of workers did not differ among the subspecies. Although heat tolerance was similar in queens, B. t. canariensis queens (originating from the warmest environments) were the least cold tolerant. Overall, we showed that B. terrestris may be generally robust against climate warming, but that particular subspecies and/or populations may be more vulnerable to extreme temperature variability. Future research should focus on responses of B. terrestris populations to short, extreme thermal events.
Collapse
Affiliation(s)
- Kevin Maebe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Annelien De Baets
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Nicolas J Vereecken
- Agroecology Lab, Université libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, 1050, Brussels, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
28
|
Menzel F, Feldmeyer B. How does climate change affect social insects? CURRENT OPINION IN INSECT SCIENCE 2021; 46:10-15. [PMID: 33545433 DOI: 10.1016/j.cois.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Climate change poses a major threat to global biodiversity, already causing sharp declines of populations and species. In some social insect species we already see advanced phenologies, changes in distribution ranges, and changes in abundance Rafferty (2017) and Diamond et al. (2017). Physiologically, social insects are no different from solitary insects, but they possess a number of characteristics that distinguish their response to climate change. Here, we examine these traits, which might enable them to cope better with climate change than solitary insects, but only in the short term. In addition, we discuss how climate change will alter biotic interactions and ecosystem functions, and how it will affect invasive social insects.
Collapse
Affiliation(s)
- Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Roeder KA, Bujan J, Beurs KM, Weiser MD, Kaspari M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere 2021. [DOI: 10.1002/ecs2.3645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Karl A. Roeder
- Agricultural Research Service North Central Agricultural Research Laboratory USDA Brookings South Dakota57006USA
- Department of Biology Geographical Ecology Group University of Oklahoma Norman Oklahoma73019USA
| | - Jelena Bujan
- Department of Biology Geographical Ecology Group University of Oklahoma Norman Oklahoma73019USA
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Kirsten M. Beurs
- Department of Geography and Environmental Sustainability University of Oklahoma Norman Oklahoma73019USA
| | - Michael D. Weiser
- Department of Biology Geographical Ecology Group University of Oklahoma Norman Oklahoma73019USA
| | - Michael Kaspari
- Department of Biology Geographical Ecology Group University of Oklahoma Norman Oklahoma73019USA
| |
Collapse
|
30
|
Oliveira BF, Yogo WIG, Hahn DA, Yongxing J, Scheffers BR. Community-wide seasonal shifts in thermal tolerances of mosquitoes. Ecology 2021; 102:e03368. [PMID: 33866546 DOI: 10.1002/ecy.3368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
The broadening in species' thermal tolerance limits and breadth from tropical to temperate latitudes is proposed to reflect spatial gradients in temperature seasonality, but the importance of seasonal shifts in thermal tolerances within and across locations is much less appreciated. We performed thermal assays to examine the maximum and minimum critical temperatures (CTmax and CTmin , respectively) of a mosquito community across their active seasons. Mosquito CTmin tracked seasonal shifts in temperature, whereas CTmax tracked a countergradient pattern with lowest heat tolerances in summer. Mosquito thermal breadth decreased from spring to summer and then increased from summer to autumn. We show a temporal dichotomy in thermal tolerances with thermal breadths of temperate organisms in summer reflecting those of the tropics ("tropicalization") that is sandwiched between a spring and autumn "temperatization." Therefore, our tolerance patterns at a single temperate latitude recapitulate classical patterns across latitude. These findings highlight the need to understand the temporal and spatial components of thermotolerance variation better, including plasticity and rapid seasonal selection, and the potential for this variation to affect species responses to climate change. With summers becoming longer and increasing winter nighttime temperatures, we expect increasing tropicalization of species thermal tolerances in both space and time.
Collapse
Affiliation(s)
- Brunno F Oliveira
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, Florida, 32611, USA.,Department of Environmental Science and Policy, University of California-Davis, Davis, California, 95616, USA
| | - Wendtwoin I G Yogo
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, Florida, 32611, USA.,AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 91190, France
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida/IFAS, Gainesville, Florida, 32611, USA
| | - Jiang Yongxing
- Mosquito Control Services, City of Gainesville, 405 Northwest 39th Avenue, Gainesville, Florida, 32609, USA
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville, Florida, 32611, USA
| |
Collapse
|
31
|
Fitzgerald JL, Stuble KL, Nichols LM, Diamond SE, Wentworth TR, Pelini SL, Gotelli NJ, Sanders NJ, Dunn RR, Penick CA. Abundance of spring‐ and winter‐active arthropods declines with warming. Ecosphere 2021. [DOI: 10.1002/ecs2.3473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jacquelyn L. Fitzgerald
- Plant Biology and Conservation Northwestern University Evanston Illinois60201USA
- Negaunee Institute for Plant Conservation Science & Action Chicago Botanic Garden Glencoe Illinois60022USA
- Department of Applied Ecology North Carolina State University Raleigh North Carolina27695USA
| | | | - Lauren M. Nichols
- Department of Applied Ecology North Carolina State University Raleigh North Carolina27695USA
| | - Sarah E. Diamond
- Department of Biology Case Western Reserve University Cleveland Ohio44106USA
| | - Thomas R. Wentworth
- Department of Plant and Microbial Biology North Carolina State University Raleigh North Carolina27695USA
| | - Shannon L. Pelini
- Department of Biological Sciences Bowling Green State University Bowling Green Ohio43403USA
| | | | - Nathan J. Sanders
- Environmental Program Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont05405USA
| | - Robert R. Dunn
- Department of Applied Ecology North Carolina State University Raleigh North Carolina27695USA
- Center for Evolutionary Hologenomics University of Copenhagen CopenhagenDK‐2100Denmark
| | - Clint A. Penick
- Department of Ecology, Evolution & Organismal Biology Kennesaw State University Kennesaw Georgia30144USA
| |
Collapse
|
32
|
Neves FS, Antoniazzi R, Camarota F, Pacelhe FT, Powell S. Spatiotemporal dynamics of the ant community in a dry forest differ by vertical strata but not by successional stage. Biotropica 2021. [DOI: 10.1111/btp.12918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Frederico S. Neves
- Departamento de Genética Universidade Federal de Minas Gerais Belo Horizonte Brazil
- Programa de Pós‐Graduação em Ecologia Conservação e Manejo da Vida Silvestre Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | - Reuber Antoniazzi
- Red de Ecoetología Instituto de Ecología A.C. Xalapa, Veracruz Mexico
| | - Flávio Camarota
- Departamento de Biologia Geral Universidade Federal de Viçosa Viçosa, Minas Gerais Brazil
- Department of Biological Sciences The George Washington University Washington DC USA
| | - Fábio T. Pacelhe
- Programa de Pós‐Graduação em Ecologia Conservação e Manejo da Vida Silvestre Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | - Scott Powell
- Department of Biological Sciences The George Washington University Washington DC USA
| |
Collapse
|
33
|
Bujan J, Charavel E, Bates OK, Gippet JMW, Darras H, Lebas C, Bertelsmeier C. Increased acclimation ability accompanies a thermal niche shift of a recent invasion. J Anim Ecol 2020; 90:483-491. [PMID: 33131068 DOI: 10.1111/1365-2656.13381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Globalization is removing dispersal barriers for the establishment of invasive species and enabling their spread to novel climates. New thermal environments in the invaded range will be particularly challenging for ectotherms, as their metabolism directly depends on environmental temperature. However, we know little about the role climatic niche shifts play in the invasion process, and the underlining physiological mechanisms. We tested if a thermal niche shift accompanies an invasion, and if native and introduced populations differ in their ability to acclimate thermal limits. We used an alien ant species-Tapinoma magnum-which recently started to spread across Europe. Using occurrence data and accompanying climatic variables, we measured the amount of overlap between thermal niches in the native and invaded range. We then experimentally tested the acclimation ability in native and introduced populations by incubating T. magnum at 18, 25 and 30°C. We measured upper and lower critical thermal limits after 7 and 21 days. We found that T. magnum occupies a distinct thermal niche in its introduced range, which is on average 3.5°C colder than its native range. Critical thermal minimum did not differ between populations from the two ranges when colonies were maintained at 25 or 30°C, but did differ after colony acclimation at a lower temperature. We found twofold greater acclimation ability of introduced populations to lower temperatures, after prolonged incubation at 18°C. Increased acclimation ability of lower thermal limits could explain the expansion of the realized thermal niche in the invaded range, and likely contributed to the spread of this species to cooler climates. Such thermal plasticity could be an important, yet so far understudied, factor underlying the expansion of invasive insects into novel climates.
Collapse
Affiliation(s)
- Jelena Bujan
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ellouène Charavel
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Olivia K Bates
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Jérôme M W Gippet
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Hugo Darras
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claude Lebas
- Antarea (www.antarea.fr), Association pour l'étude et la cartographie des fourmis de France métropolitaine, Canohès, France
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Sasaki MC, Dam HG. Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short-lived copepod. Ecol Evol 2020; 10:12200-12210. [PMID: 33209281 PMCID: PMC7663071 DOI: 10.1002/ece3.6851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/03/2023] Open
Abstract
Organisms experience variation in the thermal environment on several different temporal scales, with seasonality being particularly prominent in temperate regions. For organisms with short generation times, seasonal variation is experienced across, rather than within, generations. How this affects the seasonal evolution of thermal tolerance and phenotypic plasticity is understudied, but has direct implications for the thermal ecology of these organisms. Here we document intra-annual patterns of thermal tolerance in two species of Acartia copepods (Crustacea) from a highly seasonal estuary, showing strong variation across the annual temperature cycle. Common garden, split-brood experiments indicate that this seasonal variation in thermal tolerance, along with seasonal variation in body size and phenotypic plasticity, is likely affected by genetic polymorphism. Our results show that adaptation to seasonal variation is important to consider when predicting how populations may respond to ongoing climate change.
Collapse
Affiliation(s)
| | - Hans G. Dam
- Department of Marine SciencesUniversity of ConnecticutGrotonCTUSA
| |
Collapse
|
35
|
Bates OK, Ollier S, Bertelsmeier C. Smaller climatic niche shifts in invasive than non-invasive alien ant species. Nat Commun 2020; 11:5213. [PMID: 33060612 PMCID: PMC7567077 DOI: 10.1038/s41467-020-19031-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
The globalization of trade and human movement has resulted in the accidental dispersal of thousands of alien species worldwide at an unprecedented scale. Some of these species are considered invasive because of their extensive spatial spread or negative impacts on native biodiversity. Explaining which alien species become invasive is a major challenge of invasion biology, and it is often assumed that invasiveness is linked to a greater ability to establish in novel climates. To test whether invasive species have expanded more into novel climates than non-invasive alien species, we quantified niche shifts of 82 ant species. Surprisingly, invasive species showed smaller niche shifts than non-invasive alien species. Independent of their invasiveness, the species with the smallest native niches and range sizes, experienced the greatest niche shifts. Overall, our results challenge the assumption that invasive species are particularly good pioneers of novel climates.
Collapse
Affiliation(s)
- Olivia K Bates
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Sébastien Ollier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
36
|
Braschler B, Duffy GA, Nortje E, Kritzinger-Klopper S, du Plessis D, Karenyi N, Leihy RI, Chown SL. Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. J Anim Ecol 2020; 89:2863-2875. [PMID: 32981063 DOI: 10.1111/1365-2656.13358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Thermal performance traits are regularly used to make forecasts of the responses of ectotherms to anthropogenic environmental change, but such forecasts do not always differentiate between fundamental and realised thermal niches. Here we determine the relative extents to which variation in the fundamental and realised thermal niches accounts for current variation in species abundance and occupancy and assess the effects of niche-choice on future-climate response estimations. We investigated microclimate and macroclimate temperatures alongside abundance, occupancy, critical thermal limits and foraging activity of 52 ant species (accounting for >95% individuals collected) from a regional assemblage from across the Western Cape Province, South Africa, between 2003 and 2014. Capability of a species to occupy sites experiencing the most extreme temperatures, coupled with breadth of realised niche, explained most deviance in occupancy (up to 75%), while foraging temperature range and body mass explained up to 50.5% of observed variation in mean species abundance. When realised niches are used to forecast responses to climate change, large positive and negative effects among species are predicted under future conditions, in contrast to the forecasts of minimal impacts on all species that are indicated by fundamental niche predictions.
Collapse
Affiliation(s)
- Brigitte Braschler
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa.,Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Grant A Duffy
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Erika Nortje
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Suzaan Kritzinger-Klopper
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Dorette du Plessis
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Natasha Karenyi
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Rachel I Leihy
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Steven L Chown
- DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|