1
|
Ahmad F, Qaisar R. Nicotinamide riboside kinase 2: A unique target for skeletal muscle and cardiometabolic diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167487. [PMID: 39216649 DOI: 10.1016/j.bbadis.2024.167487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Myopathy leads to skeletal and cardiac muscle degeneration which is a major cause of physical disability and heart failure. Despite the therapeutic advancement the prevalence of particularly cardiac diseases is rising at an alarming rate and novel therapeutic targets are required. Nicotinamide riboside kinase-2 (NRK-2 or NMRK2) is a muscle-specific β1-integrin binding protein abundantly expressed in the skeletal muscle while only a trace amount is detected in the healthy cardiac muscle. The level in cardiac tissue is profoundly upregulated under pathogenic conditions such as ischemia and hypertension. NRK-2 was initially identified to regulate myoblast differentiation and to enhance the levels of NAD+, an important coenzyme that potentiates cellular energy production and stress resilience. Recent advancement has shown that NRK-2 critically regulates numerous cellular and molecular processes under pathogenic conditions to modulate the disease severity. Therefore, given its restricted expression in the cardiac and skeletal muscle, NRK-2 may serve as a unique therapeutic target. In this review, we provided a comprehensive overview of the diverse roles of NRK-2 played in different cardiac and muscular diseases and discussed the underlying molecular mechanisms in detail. Moreover, this review precisely examined how NRK-2 regulates metabolism in cardiac muscle, and how dysfunctional NRK-2 is associated with energetic deficit and impaired muscle function, manifesting various cardiac and skeletal muscle disease conditions.
Collapse
Affiliation(s)
- Firdos Ahmad
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rizwan Qaisar
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
2
|
Grahn O, Holmgren K, Jonsson P, Borgmästars E, Lundin C, Sund M, Rutegård M. Peritoneal infection after colorectal cancer surgery induces substantial alterations in postoperative protein levels: an exploratory study. Langenbecks Arch Surg 2024; 409:257. [PMID: 39167197 PMCID: PMC11339184 DOI: 10.1007/s00423-024-03451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Peritoneal infection, due to anastomotic leakage, after resection for colorectal cancer have been shown to associate with increased cancer recurrence and mortality, as well as cardiovascsular morbidity. Alterations in circulating protein levels could help shed light on the underlying mechanisms, prompting this exploratory study of 64 patients operated for colorectal cancer with anastomosis. METHODS Thirty-two cases who suffered a postoperative peritoneal infection were matched with 32 controls who had a complication-free postoperative stay. Proteins in serum samples at their first postoperative visit and at one year after surgery were analysed using proximity extension assays and enzyme-linked immunosorbent assays. Multivariate projection methods, adjusted for multiple testing, were used to compare levels between groups, and enrichment and network analyses were performed. RESULTS Seventy-seven proteins, out of 270 tested, were differentially expressed at a median sampling time of 41 days postoperatively. These proteins were all normalised one year after surgery. Many of the differentially expressed top hub proteins have known involvement in cancer progression, survival, invasiveness and metastasis. Over-represented pathways were related to cardiomyopathy, cell-adhesion, extracellular matrix, phosphatidylinositol-3-kinase/Akt (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling. CONCLUSION These affected proteins and pathways could provide clues as to why patients with peritoneal infection might suffer increased cancer recurrence, mortality and cardiovascular morbidity.
Collapse
Affiliation(s)
- Oskar Grahn
- Department of Diagnostics and Intervention, Surgery, Umeå University, Umeå, SE-901 85, Sweden.
| | - Klas Holmgren
- Department of Diagnostics and Intervention, Surgery, Umeå University, Umeå, SE-901 85, Sweden
| | - Pär Jonsson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Emmy Borgmästars
- Department of Diagnostics and Intervention, Surgery, Umeå University, Umeå, SE-901 85, Sweden
| | - Christina Lundin
- Department of Diagnostics and Intervention, Surgery, Umeå University, Umeå, SE-901 85, Sweden
| | - Malin Sund
- Department of Diagnostics and Intervention, Surgery, Umeå University, Umeå, SE-901 85, Sweden
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Martin Rutegård
- Department of Diagnostics and Intervention, Surgery, Umeå University, Umeå, SE-901 85, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Stratmann B, Eggers B, Mattern Y, de Carvalho TS, Marcus-Alic K, Tschoepe D. Maladaptive response following glucose overload in GLUT4-overexpressing H9C2 cardiomyoblasts. Diabetes Obes Metab 2024; 26:2379-2389. [PMID: 38528822 DOI: 10.1111/dom.15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Glucose overload drives diabetic cardiomyopathy by affecting the tricarboxylic acid pathway. However, it is still unknown how cells could overcome massive chronic glucose influx on cellular and structural level. METHODS/MATERIALS Expression profiles of hyperglycemic, glucose transporter-4 (GLUT4) overexpressing H9C2 (KE2) cardiomyoblasts loaded with 30 mM glucose (KE230L) and wild type (WT) cardiomyoblasts loaded with 30 mM glucose (WT30L) were compared using proteomics, real-time polymerase quantitative chain reaction analysis, or Western blotting, and immunocytochemistry. RESULTS The findings suggest that hyperglycemic insulin-sensitive cells at the onset of diabetic cardiomyopathy present complex changes in levels of structural cell-related proteins like tissue inhibitor of metalloproteases-1 (1.3 fold), intercellular adhesion molecule 1 (1.8 fold), type-IV-collagen (3.2 fold), chaperones (Glucose-Regulated Protein 78: 1.8 fold), autophagy (Autophagosome Proteins LC3A, LC3B: 1.3 fold), and in unfolded protein response (UPR; activating transcription factor 6α expression: 2.3 fold and processing: 2.4 fold). Increased f-actin levels were detectable with glucose overload by immnocytochemistry. Effects on energy balance (1.6 fold), sirtuin expression profile (Sirtuin 1: 0.7 fold, sirtuin 3: 1.9 fold, and sirtuin 6: 4.2 fold), and antioxidant enzymes (Catalase: 0.8 fold and Superoxide dismutase 2: 1.5 fold) were detected. CONCLUSION In conclusion, these findings implicate induction of chronic cell distress by sustained glucose accumulation with a non-compensatory repair reaction not preventing final cell death. This might explain the chronic long lasting pathogenesis observed in developing heart failure in diabetes mellitus.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Yvonne Mattern
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tayana Silva de Carvalho
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Katrin Marcus-Alic
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Diethelm Tschoepe
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Stiftung DHD (Der herzkranke Diabetiker) Stiftung in der Deutschen Diabetes-Stiftung, Bad Oeynhausen, Germany
| |
Collapse
|
4
|
Lemay SE, Montesinos MS, Grobs Y, Yokokawa T, Shimauchi T, Romanet C, Sauvaget M, Breuils-Bonnet S, Bourgeois A, Théberge C, Pelletier A, El Kabbout R, Martineau S, Yamamoto K, Ray AS, Lippa B, Goodwin B, Lin FY, Wang H, Dowling JE, Lu M, Qiao Q, McTeague TA, Moy TI, Potus F, Provencher S, Boucherat O, Bonnet S. Exploring Integrin α5β1 as a Potential Therapeutic Target for Pulmonary Arterial Hypertension: Insights from Comprehensive Multicenter Preclinical Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596052. [PMID: 38854025 PMCID: PMC11160677 DOI: 10.1101/2024.05.27.596052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PA) and progressive increase in pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Although several drugs are approved for the treatment of PAH, mortality remains high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets. However, their role in PAH remains largely unexplored. We found that the arginine-glycine-aspartate (RGD)-binding integrin α5β1 is upregulated in PA endothelial cells (PAEC) and PA smooth muscle cells (PASMC) from PAH patients and remodeled PAs from animal models. Blockade of the integrin α5β1 or depletion of the α5 subunit resulted in mitotic defects and inhibition of the pro-proliferative and apoptosis-resistant phenotype of PAH cells. Using a novel small molecule integrin inhibitor and neutralizing antibodies, we demonstrated that α5β1 integrin blockade attenuates pulmonary vascular remodeling and improves hemodynamics and RV function in multiple preclinical models. Our results provide converging evidence to consider α5β1 integrin inhibition as a promising therapy for pulmonary hypertension. One sentence summary The α5β1 integrin plays a crucial role in pulmonary vascular remodeling.
Collapse
|
5
|
Montecillo J, Pirker T, Pemberton C, Chew-Harris J. suPAR in cardiovascular disease. Adv Clin Chem 2024; 121:89-131. [PMID: 38797545 DOI: 10.1016/bs.acc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR), the soluble counterpart of urokinase plasminogen activator receptor, is found in the circulation at various levels. suPAR and its parent molecule, cell surface uPAR, exhibit similar structure and extracellular functional roles facilitating fibrinolysis, cellular adhesion, and migration. Studies have assessed the correlation between suPAR in cardiovascular disease (CVD). It is postulated that suPAR may serve as an indicator of inflammatory activation and burden during CVD progression. Increased suPAR independently predicts poorer outcomes in acute coronary syndromes, in heart failure, as well as in coronary artery disease and atherosclerosis. To guide translation into clinical utization, suPAR has been assessed in numerous CVD settings for improved risk discrimination independently or in association with established traditional risk factors. Whilst the involvement of suPAR has been explored in other diseases such as kidney diseases and cancer, there is only emerging evidence of suPAR's mechanistic involvement in cardiovascular disease. In this review, we provide a background into suPAR and its potential role as a biomarker in CVD.
Collapse
Affiliation(s)
- Jaya Montecillo
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Thomas Pirker
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | | | - Janice Chew-Harris
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
6
|
Clouthier KL, Taylor AC, Xuhuai J, Liu Y, Parker S, Van Eyk J, Reddy S. A Noninvasive Circulating Signature of Combined Right Ventricular Pressure and Volume Overload in Tetralogy of Fallot/Pulmonary Atresia/Major Aortopulmonary Collateral Arteries. World J Pediatr Congenit Heart Surg 2024; 15:162-173. [PMID: 38128927 DOI: 10.1177/21501351231213626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background: Despite surgical advances, children with tetralogy of Fallot/pulmonary atresia/major aortopulmonary collaterals (TOF/PA/MAPCAs) are subject to chronic right ventricular (RV) pressure and volume overload. Current diagnostic tools do not identify adverse myocardial remodeling and cannot predict progression to RV failure. We sought to identify a noninvasive, circulating signature of the systemic response to right heart stress to follow disease progression. Methods: Longitudinal data were collected from patients with TOF/PA/MAPCAs (N = 5) at the time of (1) early RV pressure overload and (2) late RV pressure and volume overload. Plasma protein and microRNA expression were evaluated using high-throughput data-independent mass spectroscopy and Agilent miR Microarray, respectively. Results: At the time of early RV pressure overload, median patient age was 0.34 years (0.02-9.37), with systemic RV pressures, moderate-severe hypertrophy, and preserved systolic function. Late RV pressure and volume overload occurred at a median age of 4.08 years (1.51-10.83), with moderate RV hypertrophy and dilation, and low normal RV function; 277 proteins were significantly dysregulated (log2FC ≥0.6/≤-0.6, FDR≤0.05), predicting downregulation in lipid transport (apolipoproteins), fibrinolytic system, and extracellular matrix structural proteins (talin 1, profilin 1); and upregulation in the respiratory burst. Increasing RV size and decreasing RV function correlated with decreasing structural protein expression. Similarly, miR expression predicted downregulation of extracellular matrix-receptor interactions and upregulation in collagen synthesis. Conclusion: To our knowledge, we show for the first time a noninvasive protein and miR signature reflecting the systemic response to adverse RV myocardial remodeling in TOF/PA/MAPCAs which could be used to follow disease progression.
Collapse
Affiliation(s)
- Katie L Clouthier
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Anne C Taylor
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Ji Xuhuai
- Human Immune Monitoring Center and Functional Genomics Facility, Stanford University, Palo Alto, CA, USA
| | - Yuhan Liu
- Department of Medicine (Quantitative Science Unit), Stanford University, Palo Alto, CA, USA
| | - Sarah Parker
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Van Eyk
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
- Cardiovascular Institute, Stanford University, Los Angeles, CA, USA
| |
Collapse
|
7
|
Uscategui Calderon M, Gonzalez BA, Yutzey KE. Cardiomyocyte-fibroblast crosstalk in the postnatal heart. Front Cell Dev Biol 2023; 11:1163331. [PMID: 37077417 PMCID: PMC10106698 DOI: 10.3389/fcell.2023.1163331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling in response to increased circulatory demands. In the days after birth, cardiac cells, including cardiomyocytes and fibroblasts, progressively lose embryonic characteristics concomitant with the loss of the heart’s ability to regenerate. Moreover, postnatal cardiomyocytes undergo binucleation and cell cycle arrest with induction of hypertrophic growth, while cardiac fibroblasts proliferate and produce extracellular matrix (ECM) that transitions from components that support cellular maturation to production of the mature fibrous skeleton of the heart. Recent studies have implicated interactions of cardiac fibroblasts and cardiomyocytes within the maturing ECM environment to promote heart maturation in the postnatal period. Here, we review the relationships of different cardiac cell types and the ECM as the heart undergoes both structural and functional changes during development. Recent advances in the field, particularly in several recently published transcriptomic datasets, have highlighted specific signaling mechanisms that underlie cellular maturation and demonstrated the biomechanical interdependence of cardiac fibroblast and cardiomyocyte maturation. There is increasing evidence that postnatal heart development in mammals is dependent on particular ECM components and that resulting changes in biomechanics influence cell maturation. These advances, in definition of cardiac fibroblast heterogeneity and function in relation to cardiomyocyte maturation and the extracellular environment provide, support for complex cell crosstalk in the postnatal heart with implications for heart regeneration and disease mechanisms.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine E. Yutzey,
| |
Collapse
|
8
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Aujla PK, Hu M, Hartley B, Kranrod JW, Viveiros A, Kilic T, Owen CA, Oudit GY, Seubert JM, Julien O, Kassiri Z. Loss of ADAM15 Exacerbates Transition to Decompensated Myocardial Hypertrophy and Dilation Through Activation of the Calcineurin Pathway. Hypertension 2023; 80:97-110. [PMID: 36330793 DOI: 10.1161/hypertensionaha.122.19411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Myocardial hypertrophy and dilation are key features of cardiomyopathies and involve several cellular and molecular events. ADAMs (a disintegrin and metalloproteinases) are membrane-bound proteinases with diverse functions whose role in heart disease remains underexplored. ADAM15 is expressed in the heart and is downregulated in the failing human heart. We investigated the role ADAM15 in pressure overload cardiomyopathy. METHODS We assessed ADAM15 levels in myocardial specimens from patients. Its direct role in pressure overload was investigated by subjecting wildtype and Adam15-deficient mice to transverse aortic constriction (TAC). RESULTS ADAM15 levels did not change in patients with concentric hypertrophy, but markedly decreased in eccentric hypertrophy and heart failure. Loss of ADAM15 alone did not cause cardiomyopathy in mice (1 year old). After TAC, Adam15-/- mice exhibited worsened eccentric hypertrophy and dilation with greater increase in hypertrophy markers (pJNK, pERK1/2; Nppb, Nppa, Myh7, Acta1) compared with wildtype-TAC. Expression of integrin-α7 (but not integrin β1) increased significantly more in Adam15-/--TAC hearts, while the interaction of these integrins with basement membrane (laminin), decreased consistent with worsened left ventricle dilation. In vitro, ADAM15 knockdown increased cardiomyocyte hypertrophy in response to mechanical stretch. Adam15-/--TAC hearts exhibited increased calcineurin activity and de-phosphorylation of nuclear factor of activated T cells. Calcineurin inhibition (cyclosporin-A) blocked the excess hypertrophy and dilation in Adam15-/--TAC mice. Proteome profiling demonstrated the increased abundance of the key proteins linked to worsened DCM in Adam15-/--TAC. CONCLUSION This is the first report demonstrating that ADAM15 can suppress hypertrophy through regulating the integrin-laminin interaction and the calcineurin pathway.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Mei Hu
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Bridgette Hartley
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (B.H., O.J.)
| | - Joshua W Kranrod
- Department of Pharmacology, Faculty of Medicine and Dentistry; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada (J.W.K., J.M.S.)
| | - Anissa Viveiros
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Caroline A Owen
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA (C.A.O.)
| | - Gavin Y Oudit
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.).,Department of Medicine, Cardiovascular Research Center, Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada (G.Y.O.)
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada (J.W.K., J.M.S.)
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (B.H., O.J.)
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| |
Collapse
|
10
|
Yu ZY, Gong H, Kesteven S, Guo Y, Wu J, Li JV, Cheng D, Zhou Z, Iismaa SE, Kaidonis X, Graham RM, Cox CD, Feneley MP, Martinac B. Piezo1 is the cardiac mechanosensor that initiates the cardiomyocyte hypertrophic response to pressure overload in adult mice. NATURE CARDIOVASCULAR RESEARCH 2022; 1:577-591. [PMID: 39195867 PMCID: PMC11358016 DOI: 10.1038/s44161-022-00082-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/06/2022] [Indexed: 08/29/2024]
Abstract
Pressure overload-induced cardiac hypertrophy is a maladaptive response with poor outcomes and limited treatment options. The transient receptor potential melastatin 4 (TRPM4) ion channel is key to activation of a Ca2+/calmodulin-dependent kinase II (CaMKII)-reliant hypertrophic signaling pathway after pressure overload, but TRPM4 is neither stretch-activated nor Ca2+-permeable. Here we show that Piezo1, which is both stretch-activated and Ca2+-permeable, is the mechanosensor that transduces increased myocardial forces into the chemical signal that initiates hypertrophic signaling via a close physical interaction with TRPM4. Cardiomyocyte-specific deletion of Piezo1 in adult mice prevented activation of CaMKII and inhibited the hypertrophic response: residual hypertrophy was associated with calcineurin activation in the absence of its usual inhibition by activated CaMKII. Piezo1 deletion prevented upregulation of the sodium-calcium exchanger and changes in other Ca2+ handling proteins after pressure overload. These findings establish Piezo1 as the cardiomyocyte mechanosensor that instigates the maladaptive hypertrophic response to pressure overload, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Hutao Gong
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott Kesteven
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jianxin Wu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Delfine Cheng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Xenia Kaidonis
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
- Department of Cardiology, St Vincent's Hospital, Sydney, New South Wales, Australia.
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|