1
|
Li Y, Xu C, Qin Z, Ge L. Relationship Between the Hemoglobin-to-Red Cell Distribution Width Ratio and in-Hospital Mortality in Patients with Chronic Heart Failure. Vasc Health Risk Manag 2024; 20:553-565. [PMID: 39678128 PMCID: PMC11645964 DOI: 10.2147/vhrm.s486075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Hemoglobin (Hb) levels and red cell distribution width (RDW) are standard and widely used parameters that predict clinical outcomes in patients with chronic heart failure (CHF). The Hb to RDW ratio (HRR) provides an incremental clinical prediction, as it reflects the various clinical characteristics of patients. No published data exists in the Medical Information Mart for Intensive Care (MIMIC-IV) and eICU Collaborative Research Database (eICU-CRD) databases on HRR and its association with in-hospital mortality among patients with CHF. The aim of this study was to evaluate the relationship between the HRR and in-hospital mortality in two large real-world cohorts of patients with chronic CHF. Patients and Methods Data from the MIMIC-IV and eICU-CRD databases were used to explore the association between HRR and in-hospital mortality. Multivariate logistic regression, stratified analysis with interaction, and restricted cubic splines were used to investigate the association between HRR and in-hospital mortality. Results A total of 30,411 patients with CHF were enrolled based on the MIMIC-IV and multicenter eICU-CRD databases (15,983 and 14,428, respectively), including 16,295 men and 14,116 women with a median age of 73 years. The mean HRR was 0.69 ± 0.20. The overall in-hospital mortality rate was 12.63%. Increasing quantiles of HRR were associated with reduced in-hospital mortality rates. After adjusting for significant predictors, multivariate logistic regression analysis demonstrated that a low HRR was a significant predictor of in-hospital mortality, with a graded reduction in risk as HRR increased. Sensitivity analysis using restricted cubic splines demonstrated a continuous increase in in-hospital mortality risk with decreasing HRR (P = 0.262 for the non-linear model). Conclusion A linear relationship was observed between baseline HRR levels and in-hospital mortality. Lower HRR levels were associated with higher in-hospital mortality in patients with CHF. HRR could be a reliable clinical metric for assessing in-hospital mortality risk.
Collapse
Affiliation(s)
- Ying Li
- Department of Science and Education, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, 415003, People’s Republic of China
| | - Chunlin Xu
- Department of Hospital Pharmacy, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, 415003, People’s Republic of China
| | - Zuoan Qin
- Department of Cardiovascular Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, 415003, People’s Republic of China
| | - Liangqing Ge
- Department of Cardiovascular Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, 415003, People’s Republic of China
| |
Collapse
|
2
|
Gajewski P, Zymlinski R, Biegus J. The Critical Role of Comorbidities in Managing Heart Failure with Preserved Ejection Fraction (HFpEF). ESC Heart Fail 2024. [PMID: 39548848 DOI: 10.1002/ehf2.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Affiliation(s)
- Piotr Gajewski
- Institute of Heart Diseases, Wroclaw Medical University, Wrocław, Poland
| | - Robert Zymlinski
- Institute of Heart Diseases, Wroclaw Medical University, Wrocław, Poland
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
3
|
Qin Z, Bäck M, Franco-Cereceda A, Pawelzik SC. Increased calcification by erythrophagocytosis in aortic valvular interstitial cells. ESC Heart Fail 2024. [PMID: 39462174 DOI: 10.1002/ehf2.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) progresses over time to severe aortic stenosis and eventually heart failure. Recent evidence indicates that intraleaflet haemorrhage (ILH) strongly promotes CAVD progression. However, it remains poorly understood how it mechanistically contributes to valvular calcification. METHOD ILH was identified as iron deposition by morphological analysis. To elucidate the underlying mechanism, human valvular interstitial cells (VIC) were cultured in the presence of fresh or senescent red blood cells (RBC), simulating ILH in vivo conditions. RESULT ILH was common in aortic valves derived from patients with severe aortic stenosis. VIC undergo erythrophagocytosis of senescent RBC, leading to intracellular iron accumulation analogous to observed following exposure to extracellular iron. The presence of senescent RBC significantly intensified VIC calcification, which was significantly mitigated by ferroptosis inhibition. CONCLUSIONS Our results identify erythrophagocytosis by VIC, leading to iron accumulation and enhanced calcification through ferroptosis. This may be a crucial component of the pathophysiological mechanisms that links ILH to valvular calcification and accelerated aortic stenosis progression.
Collapse
Affiliation(s)
- Zihan Qin
- Translational Cardiology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Translational Cardiology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Christian Pawelzik
- Translational Cardiology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Hou L, Wang X, Li P, Zhang H, Yao Y, Liu Z, Wang J, Liu W. Adiposity modifies the association between heart failure risk and glucose metabolic disorder in older individuals: a community-based prospective cohort study. Cardiovasc Diabetol 2024; 23:318. [PMID: 39192249 DOI: 10.1186/s12933-024-02418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Glucose metabolic disorder is associated with the risk of heart failure (HF). Adiposity is a comorbidity that is inextricably linked with abnormal glucose metabolism in older individuals. However, the effect of adiposity on the association between glucose metabolic disorder and HF risk, and the underlying mechanism remain unclear. METHODS A total of 13,251 participants aged ≥ 60 years from a cohort study were categorized into euglycemia, prediabetes, uncontrolled diabetes, and well-controlled diabetes. Adiposity was assessed using body mass index (BMI), waist-to-hip ratio (WHR), and visceral fat area (VFA). Adiposity-associated metabolic activities were evaluated using adiponectin-to-leptin ratio (ALR), homeostatic model assessment of insulin resistance (HOMA-IR), and triglyceride-glucose index (TyG). The first occurrence of HF served as the outcome during the follow-up period. RESULTS A total of 1,138 participants developed HF over the course of an average follow-up period of 10.9 years. The rate of incident HF occurrence was higher in prediabetes, uncontrolled diabetes, and well-controlled diabetes participants compared to that in euglycemia participants. However, the high rates were significantly attenuated by BMI, VFA, and WHR. For WHR in particular, the hazard ratio for incident HF was 1.18 (95% confidence interval (CI): 1.03, 1.35, Padj.=0.017) in prediabetes, 1.59 (95% CI: 1.34, 1.90, Padj.<0.001) in uncontrolled diabetes, and 1.10 (95% CI: 0.85, 1.43, Padj.=0.466) in well-controlled diabetes. The population attributable risk percentage for central obesity classified by WHR for incident HF was 30.3% in euglycemia, 50.0% in prediabetes, 48.5% in uncontrolled diabetes, and 54.4% in well-controlled diabetes. Adiposity measures, especially WHR, showed a significant interaction with glucose metabolic disorder in incident HF (all Padj.<0.001). ALR was negatively associated and HOMA-IR and TyG were positively associated with BMI, WHR, VFA, and incident HF (all Padj.<0.05). ALR, HOMA-IR, and TyG mediated the associations for BMI, WHR and VFA with incident HF (all Padj.<0.05). CONCLUSIONS Adiposity attenuated the association of glucose metabolic disorder with incident HF. The results also showed that WHR may be an appropriate indicator for evaluating adiposity in older individuals. Adiposity-associated metabolic activities may have a bridging role in the process of adiposity attenuating the association between glucose metabolic disorder and incident HF. TRIAL REGISTRATION retrospectively registered number: ChiCTR-EOC-17,013,598.
Collapse
Affiliation(s)
- Liming Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
- Cardio-Cerebrovascular Control and Research Center, Clinical and Basic Medicine College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xin Wang
- Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250012, Shandong, China
| | - Peilin Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
| | - Hua Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
- Cardio-Cerebrovascular Control and Research Center, Clinical and Basic Medicine College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yanli Yao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China
- Cardio-Cerebrovascular Control and Research Center, Clinical and Basic Medicine College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhendong Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan, 250014, Shandong, China.
- Cardio-Cerebrovascular Control and Research Center, Clinical and Basic Medicine College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250012, Shandong, China.
| | - Weike Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Bäck M, von Haehling S, Papp Z, Piepoli MF. Editors' highlight picks from 2023 in ESC heart failure. ESC Heart Fail 2024; 11:1283-1289. [PMID: 38409954 PMCID: PMC11098658 DOI: 10.1002/ehf2.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Heart failure is a devastating syndrome affecting an increasingly high number of patients worldwide. Its aetiology and pathogenesis are complex with the involvement of factors ranging from the genetic material through valvular dysfunctions to numerous organs beyond the entire cardiovascular system. Based on continuous efforts of the heart failure scientific community we have witnessed major advances in many related disciplines during the last year. For example, epidemiological aspects-paving the road for improved risk prevention-have been thoroughly analysed for various geographical regions. Additionally, evidence-based approaches now allow the introduction of novel guideline recommended medical therapies (i.e. sodium-glucose transporter 2 inhibitors, and iron supplementation) while basic and translational research aim to explore additional molecular targets for future heart failure diagnostics and medications. All above aspects are addressed in this article, where a selection of articles published in the ESC Heart Failure journal in 2023 are highlighted. The editors are confident that the scientific contributions of ESC Heart Failure effectively served a highly relevant area of cardiovascular research last year.
Collapse
Affiliation(s)
- Magnus Bäck
- Translational Cardiology, Center for Molecular Medicine, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
- Department of CardiologyKarolinska University HospitalStockholmSweden
- Institut National de la Sante et de la Recherche Medicale U1116Université de LorraineNancyFrance
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
| | - Zoltán Papp
- Department of Cardiology, Division of Clinical Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Massimo F. Piepoli
- Department of Clinical CardiologyIRCCS Policlinico San DonatoMilanItaly
- Department of Preventive CardiologyWroclaw Medical UniversityWrocławPoland
| |
Collapse
|
6
|
Medhi D, Kamidi SR, Mamatha Sree KP, Shaikh S, Rasheed S, Thengu Murichathil AH, Nazir Z. Artificial Intelligence and Its Role in Diagnosing Heart Failure: A Narrative Review. Cureus 2024; 16:e59661. [PMID: 38836155 PMCID: PMC11148729 DOI: 10.7759/cureus.59661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Heart failure (HF) is prevalent globally. It is a dynamic disease with varying definitions and classifications due to multiple pathophysiologies and etiologies. The diagnosis, clinical staging, and treatment of HF become complex and subjective, impacting patient prognosis and mortality. Technological advancements, like artificial intelligence (AI), have been significant roleplays in medicine and are increasingly used in cardiovascular medicine to transform drug discovery, clinical care, risk prediction, diagnosis, and treatment. Medical and surgical interventions specific to HF patients rely significantly on early identification of HF. Hospitalization and treatment costs for HF are high, with readmissions increasing the burden. AI can help improve diagnostic accuracy by recognizing patterns and using them in multiple areas of HF management. AI has shown promise in offering early detection and precise diagnoses with the help of ECG analysis, advanced cardiac imaging, leveraging biomarkers, and cardiopulmonary stress testing. However, its challenges include data access, model interpretability, ethical concerns, and generalizability across diverse populations. Despite these ongoing efforts to refine AI models, it suggests a promising future for HF diagnosis. After applying exclusion and inclusion criteria, we searched for data available on PubMed, Google Scholar, and the Cochrane Library and found 150 relevant papers. This review focuses on AI's significant contribution to HF diagnosis in recent years, drastically altering HF treatment and outcomes.
Collapse
Affiliation(s)
- Diptiman Medhi
- Internal Medicine, Gauhati Medical College and Hospital, Guwahati, Guwahati, IND
| | | | | | - Shifa Shaikh
- Cardiology, SMBT Institute of Medical Sciences and Research Centre, Igatpuri, IND
| | - Shanida Rasheed
- Emergency Medicine, East Sussex Healthcare NHS Trust, Eastbourne, GBR
| | | | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, Quetta, PAK
| |
Collapse
|
7
|
Piccirillo G, Moscucci F, Mezzadri M, Caltabiano C, Cisaria G, Vizza G, De Santis V, Giuffrè M, Stefano S, Scinicariello C, Carnovale M, Corrao A, Lospinuso I, Sciomer S, Rossi P. Artificial Intelligence Applied to Electrical and Non-Invasive Hemodynamic Markers in Elderly Decompensated Chronic Heart Failure Patients. Biomedicines 2024; 12:716. [PMID: 38672072 PMCID: PMC11048014 DOI: 10.3390/biomedicines12040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES The first aim of this study was to assess the predictive power of Tend interval (Te) and non-invasive hemodynamic markers, based on bioimpedance in decompensated chronic heart failure (CHF). The second one was to verify the possible differences in repolarization and hemodynamic data between CHF patients grouped by level of left ventricular ejection fraction (LVEF). Finally, we wanted to check if repolarization and hemodynamic data changed with clinical improvement or worsening in CHF patients. METHODS Two hundred and forty-three decompensated CHF patients were studied by 5 min ECG recordings to determine the mean and standard deviation (TeSD) of Te (first study). In a subgroup of 129 patients (second study), non-invasive hemodynamic and repolarization data were recorded for further evaluation. RESULTS Total in-hospital and cardiovascular mortality rates were respectively 19 and 9%. Te was higher in the deceased than in surviving subjects (Te: 120 ± 28 vs. 100 ± 25 ms) and multivariable logistic regression analysis reported that Te was related to an increase of total (χ2: 35.45, odds ratio: 1.03, 95% confidence limit: 1.02-1.05, p < 0.001) and cardiovascular mortality (χ2: 32.58, odds ratio: 1.04, 95% confidence limit: 1.02-1.06, p < 0.001). Subjects with heart failure with reduced ejection fraction (HFrEF) reported higher levels of repolarization and lower non-invasive systolic hemodynamic data in comparison to those with preserved ejection fraction (HFpEF). In the subgroup, patients with the NT-proBNP reduction after therapy showed a lower rate of Te, heart rate, blood pressures, contractility index, and left ventricular ejection time in comparison with the patients without NT-proBNP reduction. CONCLUSION Electrical signals from ECG and bioimpedance were capable of monitoring the patients with advanced decompensated CHF. These simple, inexpensive, non-invasive, easily repeatable, and transmissible markers could represent a tool to remotely monitor and to intercept the possible worsening of these patients early by machine learning and artificial intelligence tools.
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Federica Moscucci
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Martina Mezzadri
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Cristina Caltabiano
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Giovanni Cisaria
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Guendalina Vizza
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Valerio De Santis
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Marco Giuffrè
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Sara Stefano
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Claudia Scinicariello
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Myriam Carnovale
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Andrea Corrao
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Ilaria Lospinuso
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Susanna Sciomer
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Pietro Rossi
- Arrhythmology Unit, Fatebenefratelli Hospital, Isola Tiberina-Gemelli Isola, 00186 Rome, Italy;
| |
Collapse
|
8
|
Bäck M, von Haehling S, Papp Z, Piepoli MF. A year in heart failure: updates of clinical and preclinical findings. ESC Heart Fail 2023; 10:2150-2158. [PMID: 37072681 PMCID: PMC10375102 DOI: 10.1002/ehf2.14377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
We witnessed major advances in the management of heart failure (HF) in 2022. Results of recent clinical and preclinical investigations aid preventive strategies, diagnostic efforts, and therapeutic interventions, and collectively, they hold promises for a more effective HF care for the near future. Accordingly, currently available information extends the 2021 European Society of Cardiology guidelines and provides a solid background for the introduction of improved clinical approaches in the number of HF-related cases. Elaboration on the relationships between epidemiological data and risk factors lead to better understanding of the pathophysiology of HF with reduced ejection fraction and HF with preserved ejection fraction. The clinical consequences of valvular dysfunctions are increasingly interpreted not only in their haemodynamic consequences but also in association with their pathogenetic factors and modern corrective treatment possibilities. The influence of coronavirus disease 2019 pandemic on the clinical care of HF appeared to be less intense in 2022 than before; hence, this period allowed to refine coronavirus disease 2019 management options for HF patients. Moreover, cardio-oncology emerges as a new subdiscipline providing significant improvements in clinical outcomes for oncology patients. Furthermore, the introduction of state-of-the-art molecular biologic methods, multi-omic approaches forecast improved phenotyping and precision medicine for HF. All above aspects are addressed in this article that highlights a selection of papers published in ESC Heart Failure in 2022.
Collapse
Affiliation(s)
- Magnus Bäck
- Translational Cardiology, Center for Molecular Medicine, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
- Department of CardiologyKarolinska University HospitalStockholmSweden
- Institut National de laSante et de la Recherche Medicale U1116Université de LorraineNancyFrance
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), Partner Site GöttingenGöttingenGermany
| | - Zoltán Papp
- Department of Cardiology, Division of Clinical Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Massimo F. Piepoli
- Clinical CardiologyIRCCS Policlinico San DonatoS. Donato MilaneseMilan20097Italy
- Department of Preventive CardiologyWroclaw Medical UniversityWrocławPoland
| |
Collapse
|
9
|
Pethő ÁG, Tapolyai M, Browne M, Fülöp T, Orosz P, Szabó RP. The Importance of the Nephrologist in the Treatment of the Diuretic-Resistant Heart Failure. Life (Basel) 2023; 13:1328. [PMID: 37374112 PMCID: PMC10303045 DOI: 10.3390/life13061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Heart failure is not only a global problem but also significantly limits the life prospects of these patients. The epidemiology and presentation of heart failure are intensively researched topics in cardiology. The risk factors leading to heart failure are well known; however, the real challenge is to provide effective treatments. A vicious cycle develops in heart failure of all etiologies, sooner or later compromising both cardiac and kidney functions simultaneously. This can explain the repeated hospital admissions due to decompensation and the significantly reduced quality of life. Moreover, diuretic-refractory heart failure represents a distinct challenge due to repeated hospital admissions and increased mortality. In our narrative review, we wanted to draw attention to nephrology treatment options for severe diuretic-resistant heart failure. The incremental value of peritoneal dialysis in severe heart failure and the feasibility of percutaneous peritoneal dialysis catheter insertion have been well known for many years. In contrast, the science and narrative of acute peritoneal dialysis in diuretic-resistant heart failure remains underrepresented. We believe that nephrologists are uniquely positioned to help these patients by providing acute peritoneal dialysis to reduce hospitalization dependency and increase their quality of life.
Collapse
Affiliation(s)
- Ákos Géza Pethő
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Mihály Tapolyai
- Department of Nephrology, Szent Margit Kórhaz, 1032 Budapest, Hungary
- Medicine Service, Ralph H. Jonson VA Medical Center, Charleston, SC 29401, USA
| | - Maria Browne
- Department of Medicine, Division of Nephrology, University of Maryland Medical Center, Baltimore, MD 21201, USA
- Medicine Service, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Tibor Fülöp
- Medicine Service, Ralph H. Jonson VA Medical Center, Charleston, SC 29401, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Petronella Orosz
- Bethesda Children's Hospital, 1146 Budapest, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Réka P Szabó
- Department of Nephrology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|