1
|
Mao Q, Zhang X, Yang J, Kong Q, Cheng H, Yu W, Cao X, Li Y, Li C, Liu L, Ding Z. HSPA12A acts as a scaffolding protein to inhibit cardiac fibroblast activation and cardiac fibrosis. J Adv Res 2025; 67:217-229. [PMID: 38219869 DOI: 10.1016/j.jare.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION Cardiac fibrosis is the main driver for adverse remodeling and progressive functional decline in nearly all types of heart disease including myocardial infarction (MI). The activation of cardiac fibroblasts (CF) into myofibroblasts is responsible for cardiac fibrosis. Unfortunately, no ideal approach for controlling CF activation currently exists. OBJECTIVES This study investigated the role of Heat shock protein A12A (HSPA12A), an atypical member of the HSP70 family, in CF activation and MI-induced cardiac fibrosis. METHODS Primary CF and Hspa12a knockout mice were used in the experiments. CF activation was indicated by the upregulation of myofibroblast characters including alpha-Smooth muscle actin (αSMA), Collagen, and Fibronectin. Cardiac fibrosis was illustrated by Masson's trichrome and picrosirius staining. Cardiac function was examined using echocardiography. Glycolytic activity was indicated by levels of extracellular lactate and the related protein expression. Protein stability was examined following cycloheximide and MG132 treatment. Protein-protein interaction was examined by immunoprecipitation-immunoblotting analysis. RESULTS HSPA12A displayed a high expression level in quiescent CF but showed a decreased expression in activated CF, while ablation of HSPA12A in mice promoted CF activation and cardiac fibrosis following MI. HSPA12A overexpression inhibited the activation of primary CF through inhibiting glycolysis, while HSPA12A knockdown showed the opposite effects. Moreover, HSPA12A upregulated the protein expression of transcription factor p53, by which mediated the HSPA12A-induced inhibition of glycolysis and CF activation. Mechanistically, this action of HSPA12A was achieved by acting as a scaffolding protein to bind p53 and ubiquitin specific protease 10 (USP10), thereby promoting the USP10-mediated p53 protein stability and the p53-medicated glycolysis inhibition. CONCLUSION The present study provided clear evidence that HSPA12A is a novel endogenous inhibitor of CF activation and cardiac fibrosis. Targeting HSPA12A in CF could represent a promising strategy for the management of cardiac fibrosis in patients.
Collapse
Affiliation(s)
- Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinna Yang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital with Wannan Medical College, Wuhu, China
| | - Wansu Yu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
4
|
Zhuang Z, Liu A, Zhang J, Han S, Tang L, Yu T, Shi Y, Li H, Yang H, Bai P, Tang Y. Hyperuricemia suppresses lumican, exacerbating adverse remodeling after myocardial infarction by promoting fibroblast phenotype transition. J Transl Med 2024; 22:983. [PMID: 39482719 PMCID: PMC11526644 DOI: 10.1186/s12967-024-05778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Hyperuricemia is independently associated with a poor prognosis in patients with myocardial infarction (MI). Furthermore, MI induces activation of the repair response in local fibroblasts, resulting in extracellular matrix accumulation that generates a stable fibrotic scar in the infarcted area. However, researchers have not determined whether hyperuricemia affects fibroblast activation and its involvement in postinfarction cardiac remodeling. OBJECTIVES We aimed to trigger hyperuricemia by administering potassium oxonate in a mouse model of MI to evaluate the role of hyperuricemia in MI pathogenesis. METHODS Microarray datasets and single-cell sequencing data from gout patients, heart failure patients, and model mice were used to identify the underlying mechanisms responsible for the effect of hyperuricemia on MI progression. A hyperuricemia-related MI mouse model was established. Cardiac function was assessed, followed by sample collection and a uric acid assay. We conducted an enzyme-linked immunosorbent assay, histological detection, immunofluorescence, sequencing data processing, single-cell RNA-seq, and functional enrichment analysis. We then isolated and cultured cardiac fibroblasts and performed Western blotting, quantitative real-time polymerase chain reaction, and shRNA-mediated lumican knockdown assays. RESULTS Hyperuricemia decreased cardiac function, increased mortality, and aggravated adverse fibrosis remodeling in mice after MI. These outcomes were closely related to reduced levels of fibroblast-derived lumican. This reduction activated the TGF-β/SMAD signaling pathway to induce aberrant myofibroblast activation and extracellular matrix deposition in the infarcted area. Furthermore, lumican supplementation or uric acid-lowering therapy with allopurinol alleviated hyperuricemia-mediated abnormal cardiac remodeling. CONCLUSION Hyperuricemia aggravates postinfarction cardiac remodeling by reducing lumican expression and promoting fibroblast phenotype transition. We highlight the clinical importance of lowering uric acid levels in hyperuricemia-related MI to prevent adverse ventricular remodeling.
Collapse
Affiliation(s)
- Zehao Zhuang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Ao Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinghong Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shuangjian Han
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lu Tang
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Tingting Yu
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai, China
| | - Yiping Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
5
|
Liu X, Wen Y, Lu Y. Targeting MuRF1 to Combat Skeletal Muscle Wasting in Cardiac Cachexia: Mechanisms and Therapeutic Prospects. Med Sci Monit 2024; 30:e945211. [PMID: 39434377 PMCID: PMC11512513 DOI: 10.12659/msm.945211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Cardiac cachexia, the terminal stage of chronic heart failure, is characterized by severe systemic metabolic imbalances and significant weight loss, primarily resulting from skeletal muscle mass depletion. Despite the detrimental consequences, there is no standardized and clinically-approved intervention currently available for cardiac cachexia. In the context of cardiac cachexia, accelerated protein turnover, that is, inhibited protein synthesis and enhanced protein degradation, plays a crucial role in skeletal muscle wasting. This process is primarily mediated by various proteins encoded by atrogenes. Among them, the atrogene Trim63 (tripartite motif family 63) and its encoded protein MuRF1 have been extensively studied. This review article aims to elucidate the pathogenic mechanisms underlying skeletal muscle wasting in cardiac cachexia, describe the biochemical characteristics of MuRF1, and provide an overview of the investigation into MuRF1-targeting inhibitors. The ultimate goal is to offer novel strategies for the clinical treatment for skeletal muscle wasting associated with cardiac cachexia.
Collapse
Affiliation(s)
- Xiaotong Liu
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yanmei Lu
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
6
|
Ran Q, Chen L. Eniluracil blocks AREG signalling-induced pro-inflammatory fibroblasts of melanoma in heart failure. ESC Heart Fail 2024. [PMID: 39364781 DOI: 10.1002/ehf2.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
AIMS Heart failure (HF) is characterized by a heightened risk of melanoma, which often metastasizes to the heart. The overlap pathology between HF and melanoma includes chronic low-grade inflammation and dysregulation of inflammatory cancer-associated fibroblasts (iCAFs). The impact of HF on iCAF-driven tumour inflammation remains obscure. METHODS AND RESULTS To identify critical genes for HF development, transcriptomic data (GSE57338) containing 313 clinical HF samples [136 healthy controls, 95 ischaemia (ISCH) and 82 dilated cardiomyopathy (DCM)] were analysed to screen differentially expressed genes (DEGs) and perform enrichment analysis. Fifty-one DEGs in ISCH and 62 DEGs in DCM were identified with log2|fold change (FC)| ≥ 1 and P value ≤0.05. All these genes are involved in extracellular matrix organization, immune/inflammatory responses and Wnt signalling pathways. Then, the overall survival curves and prognostic models of DEGs in melanoma were evaluated. The correlation of gene expression with lymphocyte infiltration levels was assessed. Only aldehyde oxidase 1 (AOX1) and amphiregulin (AREG) maintained the same trend in melanoma as in HF, negatively affecting prognosis by regulating lymphocyte infiltration (log-rank P value = 0.0017 and 0.0019). The potential drug molecules were screened, and the binding energies were calculated via molecular docking. Eniluracil, a known AOX1 targeting drug, was found to stably bind with AREG (hydrogen bond binding energies: -65.633, -63.592 and -62.813 kcal/mol). CONCLUSIONS The increased prevalence of melanoma in HF patients and its propensity for cardiac metastasis may be due to AREG-mediated systemic low-grade inflammation. Eniluracil holds promise as a therapeutic agent that may block AREG signalling, inhibiting the activation of iCAF mediated by regulatory T cell (Treg) and neutrophil.
Collapse
Affiliation(s)
- Qin Ran
- Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Long Chen
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Yoon JJ, Tai AL, Kim HY, Han BH, Shin S, Lee HS, Kang DG. TongGuanWan Alleviates Doxorubicin- and Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis by Modulating Apoptotic and Fibrotic Pathways. Int J Mol Sci 2024; 25:10573. [PMID: 39408900 PMCID: PMC11476530 DOI: 10.3390/ijms251910573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Heart failure, a major public health issue, often stems from prolonged stress or damage to the heart muscle, leading to cardiac hypertrophy. This can progress to heart failure and other cardiovascular problems. Doxorubicin (DOX), a common chemotherapy drug, and isoproterenol (ISO), a β-adrenergic agonist, both induce cardiac hypertrophy through different mechanisms. This study investigates TongGuanWan (TGW,), a traditional herbal remedy, for its effects on cardiac hypertrophy and fibrosis in DOX-induced H9c2 cells and ISO-induced mouse models. TGW was found to counteract DOX-induced increases in H9c2 cell surface area (n = 8, p < 0.01) and improve biomarkers like ANP (n = 3, p < 0.01)) and BNP (n = 3, p < 0.01). It inhibited the MAPK pathway (n = 4, p < 0.01) and GATA-4/calcineurin/NFAT-3 signaling, reduced inflammation by decreasing NF-κB p65 translocation, and enhanced apoptosis-related factors such as caspase-3 (n = 3, p < 0.01), caspase-9 (n = 3, p < 0.01), Bax (n = 3, p < 0.01), and Bcl-2 (n = 3, p < 0.01). Flow cytometry showed TGW reduced apoptotic cell populations. In vivo, TGW reduced heart (n = 8~10, p < 0.01), and left ventricle weights (n = 6~7), cardiac hypertrophy markers (n = 3, p < 0.01), and perivascular fibrosis in ISO-induced mice, with Western blot analysis confirming decreased levels of fibrosis-related factors like fibronectin, α-SMA (n = 3, p < 0.05), and collagen type I (n = 3, p < 0.05). These findings suggest TGW has potential as a therapeutic option for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Jung-Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Ai-Lin Tai
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Byung-Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672, Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Dae-Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea
| |
Collapse
|
8
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
9
|
Saraste A, Ståhle M, Roivainen A, Knuuti J. Molecular Imaging of Heart Failure: An Update and Future Trends. Semin Nucl Med 2024; 54:674-685. [PMID: 38609753 DOI: 10.1053/j.semnuclmed.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Molecular imaging can detect and quantify pathophysiological processes underlying heart failure, complementing evaluation of cardiac structure and function with other imaging modalities. Targeted tracers have enabled assessment of various cellular and subcellular mechanisms of heart failure aiming for improved phenotyping, risk stratification, and personalized therapy. This review outlines the current status of molecular imaging in heart failure, accompanied with discussion on novel developments. The focus is on radionuclide methods with data from clinical studies. Imaging of myocardial metabolism can identify left ventricle dysfunction caused by myocardial ischemia that may be reversible after revascularization in the presence of viable myocardium. In vivo imaging of active inflammation and amyloid deposition have an established role in the detection of cardiac sarcoidosis and transthyretin amyloidosis. Innervation imaging has well documented prognostic value in predicting heart failure progression and arrhythmias. Tracers specific for inflammation, angiogenesis and myocardial fibrotic activity are in earlier stages of development, but have demonstrated potential value in early characterization of the response to myocardial injury and prediction of cardiac function over time. Early detection of disease activity is a key for transition from medical treatment of clinically overt heart failure towards a personalized approach aimed at supporting repair and preventing progressive cardiac dysfunction.
Collapse
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Heart Center, Turku University Hospital and University of Turku, Turku, Finland.
| | - Mia Ståhle
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
10
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
11
|
Telli T, Hosseini A, Settelmeier S, Kersting D, Kessler L, Weber WA, Rassaf T, Herrmann K, Varasteh Z. Imaging of Cardiac Fibrosis: How Far Have We Moved From Extracellular to Cellular? Semin Nucl Med 2024; 54:686-700. [PMID: 38493001 DOI: 10.1053/j.semnuclmed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Myocardial fibrosis plays an important role in adverse outcomes such as heart failure and arrhythmias. As the pathological response and degree of scarring, and therefore clinical presentation varies from patient to patient, early detection of fibrosis is crucial for identifying the appropriate treatment approach and forecasting the progression of a disease along with the likelihood of disease-related mortality. Current imaging modalities provides information about either decreased function or extracellular signs of fibrosis. Targeting activated fibroblasts represents a burgeoning approach that could offer insights prior to observable functional alterations, presenting a promising focus for potential anti-fibrotic therapeutic interventions at cellular level. In this article, we provide an overview of imaging cardiac fibrosis and discuss the role of different advanced imaging modalities with the focus on novel non-invasive imaging of activated fibroblasts.
Collapse
Affiliation(s)
- Tugce Telli
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Atefeh Hosseini
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Stephan Settelmeier
- Westgerman Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Tienush Rassaf
- Westgerman Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Zohreh Varasteh
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
12
|
Fenski M, Abazi E, Gröschel J, Hadler T, Kappelmayer D, Kolligs F, Prieto C, Botnar R, Kunze KP, Schulz-Menger J. Cardiovascular magnetic resonance reveals myocardial involvement in patients with active stage of inflammatory bowel disease. Clin Res Cardiol 2024:10.1007/s00392-024-02503-5. [PMID: 39102000 DOI: 10.1007/s00392-024-02503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Active inflammatory bowel disease (A-IBD) but not remission (R-IBD) has been associated with an increased risk of cardiovascular death and hospitalization for heart failure. OBJECTIVES Using cardiovascular magnetic resonance (CMR), this study aims to assess adverse myocardial remodeling in patients with IBD in correlation with disease activity. METHODS Forty-four IBD patients without cardiovascular disease (24 female, median-age: 39.5 years, 26 A-IBD, 18 R-IBD) and 44 matched healthy volunteers (HV) were prospectively enrolled. The disease stage was determined by endoscopic and patient-reported criteria. Participants underwent CMR for cardiac phenotyping: cine imaging and strain analysis were performed to assess ventricular function. T1 mapping, extracellular volume and late-gadolinium enhanced images were obtained to assess focal and diffuse myocardial fibrosis. Simultaneous T1 and T2 elevation (T1 > 1049.3 ms, T2 > 54 ms) was considered to indicate a myocardial segment was inflamed. RESULTS 16/44 (16.4%) IBD patients described dyspnea on exertion and 10/44 (22.7%) reported chest pain. A-IBD patients showed impaired ventricular function, indicated by reduced global circumferential and radial strain despite preserved left-ventricular ejection fraction. 16% of all IBD patients had focal fibrosis in a non-ischemic pattern. A-IDB patients had increased markers of diffuse left ventricular fibrosis (T1-values: A-IBD: 1022.0 ± 34.83 ms, R-IBD: 1010.10 ± 32.88 ms, HV: 990.61 ± 29.35 ms, p < .01). Significantly more participants with A-IDB (8/26, 30.8%) had at least one inflamed myocardial segment than patients in remission (0/18) and HV (1/44, 2.3%, p < .01). Markers of diffuse fibrosis correlated with disease activity. CONCLUSION This study, using CMR, provides evidence of myocardial involvement and patterns of adverse left ventricular remodeling in patients with IBD. CLINICAL TRIAL REGISTRATION ISRCTN30941346.
Collapse
Affiliation(s)
- Maximilian Fenski
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research CenterMax-Delbrück Center for Molecular MedicineDepartment of Cardiology and Nephrology, Charité Medical Faculty, HELIOS Klinikum Berlin Buch, Charité - Universitätsmedizin Berlin Lindenberger Weg 80, 13125, Berlin, Germany
| | - Endri Abazi
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research CenterMax-Delbrück Center for Molecular MedicineDepartment of Cardiology and Nephrology, Charité Medical Faculty, HELIOS Klinikum Berlin Buch, Charité - Universitätsmedizin Berlin Lindenberger Weg 80, 13125, Berlin, Germany
| | - Jan Gröschel
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research CenterMax-Delbrück Center for Molecular MedicineDepartment of Cardiology and Nephrology, Charité Medical Faculty, HELIOS Klinikum Berlin Buch, Charité - Universitätsmedizin Berlin Lindenberger Weg 80, 13125, Berlin, Germany
| | - Thomas Hadler
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research CenterMax-Delbrück Center for Molecular MedicineDepartment of Cardiology and Nephrology, Charité Medical Faculty, HELIOS Klinikum Berlin Buch, Charité - Universitätsmedizin Berlin Lindenberger Weg 80, 13125, Berlin, Germany
| | - Diane Kappelmayer
- Department of Internal Medicine and Gastroenterology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Frank Kolligs
- Department of Internal Medicine and Gastroenterology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karl-Philipp Kunze
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Jeanette Schulz-Menger
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research CenterMax-Delbrück Center for Molecular MedicineDepartment of Cardiology and Nephrology, Charité Medical Faculty, HELIOS Klinikum Berlin Buch, Charité - Universitätsmedizin Berlin Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Kruithof BPT, Mousavi Gourabi B, van de Merbel AF, DeRuiter MC, Goumans MJ. A New Ex Vivo Model to Study Cardiac Fibrosis in Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1005-1022. [PMID: 39297130 PMCID: PMC11405901 DOI: 10.1016/j.jacbts.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 09/21/2024]
Abstract
Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts. The extent of fibrosis was flow rate dependent, and pharmacological inhibition of the transforming growth factor beta signaling pathway prevented fibrosis. Therefore, in this powerful system, the cellular and molecular mechanisms underlying cardiac fibrosis can be studied. In addition, new targets can be tested on organ level for their ability to inhibit fibrosis.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
de Boer RA, Ardehali R. Exploring Cardiac Fibrosis: A Novel Ex Vivo Model Using Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1023-1025. [PMID: 39297131 PMCID: PMC11405892 DOI: 10.1016/j.jacbts.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Affiliation(s)
- Rudolf A de Boer
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Reza Ardehali
- Department of Medicine-Cardiology, Baylor College of Medicine, Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
15
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse cardiac events of hypercholesterolemia are enhanced by sitagliptin in sprague dawley rats. Nutr Metab (Lond) 2024; 21:54. [PMID: 39080769 PMCID: PMC11290187 DOI: 10.1186/s12986-024-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. Therefore, studies on the combined effects of Cho and Met were carried out using male Sprague Dawley rats. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. We hypothesized that feeding a dietary combination of Cho and Met would result in adverse cardiac effects and would be attenuated upon administration of sitagliptin. METHODS Adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with an aqueous preparation of sitagliptin (100 mg/kg/d) or vehicle (water) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. RESULTS Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. CONCLUSIONS Adverse cardiac outcomes in HChol were enhanced by the administration of sitagliptin, and such effects were alleviated by Met. Our findings could be significant for understanding or revisiting the risk-benefit evaluation of sitagliptin in type 2 diabetics, and especially those who are known to consume atherogenic diets.
Collapse
Affiliation(s)
- Henry A Palfrey
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Avinash Kumar
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rashmi Pathak
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Kirsten P Stone
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Thomas W Gettys
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Subramanyam N Murthy
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
16
|
Rubiś P, Banyś P, Krupiński M, Mielnik M, Wiśniowska-Śmiałek S, Dziewięcka E, Urbańczyk-Zawadzka M. Temporal progression of replacement and interstitial fibrosis in optimally managed dilated cardiomyopathy patients: A prospective study. Int J Cardiol 2024; 407:131988. [PMID: 38547964 DOI: 10.1016/j.ijcard.2024.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND To prospectively examine the dynamic evolution of fibrotic processes within a one-year in patients with dilated cardiomyopathy (DCM). METHODS Between May 2019 and September 2020, 102 DCM patients (mean age 45.2 ± 11.8 years, EF 29.9 ± 11.6%) underwent cardiac magnetic resonance (CMR-1). After 13.9 ± 2.9 months, 92 of these patients underwent a follow-up CMR (CMR-2). Replacement fibrosis was assessed via late gadolinium enhancement (LGE), quantified in terms of LGE mass and extent. Interstitial fibrosis was evaluated via T1-mapping and expressed as extracellular volume fraction (ECV). This data, along with left ventricular (LV) mass, facilitated the calculation of LV matrix and cellular volumes. RESULTS At CMR-1, LGE was present in 45 patients (48.9%), whereas at CMR-2 LGE was detected in 46 (50%) (p = 0.88). Although LGE mass remained stable, LGE extent increased from 2.18 ± 4.1% to 2.7 ± 4.6% (p < 0.01). Conversely, ECV remained unchanged [27.7% (25.5-31.3) vs. 26.7% (24.5-29.9); p = 0.19]; however, LV matrix and cell volumes exhibited a noteworthy regression. During a subsequent follow-up of 19.2 ± 9 months (spanning from CMR-2 to April 30th, 2023), the composite primary outcome (all-cause mortality, HTX, LVAD or heart failure worsening) was evident in 18 patients. Only the LV matrix volume index at follow-up was an independent predictor of outcome (OR 1.094; 95%CI 1.004-1.192; p < 0.05). CONCLUSIONS In optimally managed DCM patients, both replacement and interstitial fibrosis remained stable over the course of one year. In contrast, LV matrix and cell volumes displayed significant regression. LV matrix volume index at 12-month follow-up was found to be an independent predictor of outcome in DCM.
Collapse
Affiliation(s)
- Pawel Rubiś
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland.
| | - Paweł Banyś
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Maciej Krupiński
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Małgorzata Mielnik
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Sylwia Wiśniowska-Śmiałek
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland
| | - Ewa Dziewięcka
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland
| | - Małgorzata Urbańczyk-Zawadzka
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| |
Collapse
|
17
|
Wang J, Lv ZY, Li P, Zhang Y, Li X, Shen DF. Lnc PVT1 facilitates TGF-β1-induced human cardiac fibroblast activation in vitro and ISO-induced myocardial fibrosis in vivo through regulating MYC. Mol Cell Biochem 2024:10.1007/s11010-024-05060-7. [PMID: 38997507 DOI: 10.1007/s11010-024-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown. Human cardiac fibroblasts (HCFs) were stimulated with TGF-β1 to induce myofibroblast; Immunofluorescent staining, Immunoblotting, and fluorescence in situ hybridization were used to detect the myofibroblasts phenotypes and lnc PVT1 expression. Cell biological phenotypes induced by lnc PVT1 knockdown or overexpression were detected by CCK-8, flow cytometry, and Immunoblotting. A mouse model of myocardial fibrosis was induced using isoproterenol (ISO), and the cardiac functions were examined by echocardiography measurements, cardiac tissues by H&E, and Masson trichrome staining. In this study, TGF-β1 induced HCF transformation into myofibroblasts, as manifested as significantly increased levels of α-SMA, vimentin, collagen I, and collagen III; the expression level of lnc PVT1 expression showed to be significantly increased by TGF-β1 stimulation. The protein levels of TGF-β1, TGFBR1, and TGFBR2 were also decreased by lnc PVT1 knockdown. Under TGF-β1 stimulation, lnc PVT1 knockdown decreased FN1, α-SMA, collagen I, and collagen III protein contents, inhibited HCF cell viability and enhanced cell apoptosis, and inhibited Smad2/3 phosphorylation. Lnc PVT1 positively regulated MYC expression with or without TGF-β1 stimulation; MYC overexpression in TGF-β1-stimulated HCFs significantly attenuated the effects of lnc PVT1 knockdown on HCF proliferation and trans-differentiation to MFs. In the ISO-induced myocardial fibrosis model, lnc PVT1 knockdown partially reduced fibrotic area, improved cardiac functions, and decreased the levels of fibrotic markers. In addition, lnc PVT1 knockdown decreased MYC and CDK4 levels but increased E-cadherin in mice heart tissues. lnc PVT1 is up-regulated in cardiac fibrosis and TGF-β1-stimulated HCFs. Lnc PVT1 knockdown partially ameliorates TGF-β1-induced HCF activation and trans-differentiation into MFs in vitro and ISO-induced myocardial fibrosis in vivo, potentially through interacting with MYC and up-regulating MYC.
Collapse
Affiliation(s)
- Juan Wang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Zhong-Yin Lv
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Peng Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Yin Zhang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Xia Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China.
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, 830001, Xinjiang, China.
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
18
|
Han C, Xu H, Gao H, Liu F, Wu J, Liu Y, Cheng Y, Deng W, Yue X, Wu Z, Yu Y, Zhao R, Han Y, Li X. Effect of spin-lock frequency on quantitative myocardial T1ρ mapping. Insights Imaging 2024; 15:176. [PMID: 38992330 PMCID: PMC11239636 DOI: 10.1186/s13244-024-01762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES To use T1ρ mapping to assess myocardial fibrosis and to provide a reference for future clinical application, it is necessary to understand the factors influencing T1ρ values. This study explored the influence of different spin-locking frequencies on T1ρ values under a 3.0-T MR system. METHODS Fifty-seven healthy subjects were prospectively and consecutively included in this study, and T1ρ mapping was performed on them in 3 short-axis slices with three spin-lock frequencies at the amplitude of 300 Hz, 400 Hz, and 500 Hz, then nine T1ρ images were acquired per subject. Four T1ρ-weighted images were acquired using a spin-lock preparation pulse with varying durations (0 msec, 13.3 msec, 26.6 msec, 40 msec). T1ρ relaxation times were quantified for each slice and each myocardial segment. The results were analyzed using Student's t-test and one-way analysis of variance (ANOVA) methods. RESULTS Mean T1ρ relaxation times were 43.5 ± 2.8 msec at 300 Hz, 44.9 ± 3.6 msec at 400 Hz, and 46.2 ± 3.1 msec at 500 Hz, showing a significant progressive increase from low to high spin-lock frequency (300 Hz vs. 400 Hz, p = 0.046; 300 Hz vs. 500 Hz, p < 0.001; 400 Hz vs. 500 Hz, p = 0.043). In addition, The T1ρ values of females were significantly higher than those of males (300 Hz, p = 0.049; 400 Hz, p = 0.01; 500 Hz, p = 0.002). CONCLUSION In this prospective study, myocardial T1ρ values for the specific CMR setting are provided, and we found that gender and spin-lock frequency can affect the T1ρ values. CRITICAL RELEVANCE STATEMENT T1ρ mapping could supersede late gadolinium enhancement for detection of myocardial fibrosis. Establishing reference mean values that take key technical elements into account will facilitate interpretation of data in disease states. KEY POINTS This study established myocardial T1ρ reference values for different spin-lock frequencies. T1ρ values increased with spin-lock frequency, but numerical differences were minimal. Females had higher T1ρ values than males at all frequencies.
Collapse
Affiliation(s)
- Caiyun Han
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Fang Liu
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China
| | - Jian Wu
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Yong Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | | | | | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China.
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China.
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, the Ohio State University Medical Center, Columbus, Ohio, USA
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
19
|
Rubiś PP, Dziewięcka E, González A, Cleland JGF. High variability in assays of blood markers of collagen turnover in cardiovascular disease: Implications for research and clinical practice. Eur J Heart Fail 2024. [PMID: 38980205 DOI: 10.1002/ejhf.3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024] Open
Abstract
AIMS Fibrosis is a common feature of many chronic diseases, including heart failure, which can have deleterious effects on cardiac structure and function that are associated with adverse outcomes. By-products of collagen synthesis and degradation, such as carboxy- and amino-terminal pro- or telo-peptides of collagen type I and III (PICP, PINP, PIIINP, and CITP) have been extensively investigated as markers of fibrosis. Although the majority of studies report on the reproducibility of their assay results, there is no a comparison of biomarker assays across studies. Therefore, we conducted a systematic review adhering to PRISMA guidelines. METHODS AND RESULTS The search terms employed in Medline were: 'collagen AND cardiac' or 'collagen AND heart'. This query yielded a total of 1049 articles. Thereafter, specific search criteria were applied: (i) original English-language papers; (ii) human studies; (iii) in-vivo investigations; and (iv) blood/serum/plasma samples. Overall, 89 studies were identified (42 on PIIINP, 32 on PICP, 29 on CITP, and 17 on PINP). The range of reported values for PIIINP was between 0.06 to 11 800 μg/l; for PICP 0.006 to 1265 μg/l; for CITP 0.3 to 5450 μg/l; for PINP 0.15 to 80 μg/l. Extreme variations in values for fibrosis biomarkers were observed across studies, especially when different assays were used, but also with the same assays. CONCLUSIONS Our findings show that it is challenging to ascertain normal ranges or compare studies for the measurement of fibrosis biomarkers. Given the potential implications for clinical practice and current lack of awareness of these issues, this subject warrants comprehensive acknowledgement and understanding.
Collapse
Affiliation(s)
- Pawel Piotr Rubiś
- Krakow Specialist Hospital named after St. John Paul II, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Dziewięcka
- Krakow Specialist Hospital named after St. John Paul II, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Arantxa González
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Department of Pathology, Anatomy and Physiology, Universidad de Navarra and IdiSNA, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Popa A, Cionca C, Agoston R, Rusu F, Tarcau BM, Negru A, Orzan RI, Agoston-Coldea L. The Role of Magnetic Resonance Imaging in Risk Stratification of Patients with Acute Myocarditis. Diagnostics (Basel) 2024; 14:1426. [PMID: 39001316 PMCID: PMC11241337 DOI: 10.3390/diagnostics14131426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Cardiac magnetic resonance (cMRI) is often used to diagnose acute myocarditis (AM). It is also performed after 6 months to monitor myocardial involvement. However, the clinical and predictive relevance of the 6-month cMRI is uncertain. OBJECTIVE We used cMRI to assess the morphology and heart function of patients with AM, the correlation between left ventricular remodeling and biomarkers of heart dysfunction and myocardial fibrosis, and the involvement of myocardial fibrosis initially and 6 months after the acute episode. MATERIALS AND METHODS We conducted a prospective study of 90 patients with the clinical suspicion of AM, where cMRI was performed within the first week after symptom onset and repeated after 6 months. RESULTS Non-ischemic late gadolinium enhancement (LGE) was present in 88 (97.7%) patients and mainly involved the septum and inferior wall. cMRI at 6 months was associated with significantly reduced abnormalities of segmental kinetics (p < 0.001), myocardial edema (p < 0.001), presence of LGE (p < 0.05) and LGE mass (p < 0.01), native T1 mapping (p < 0.001), and presence of pericardial collection (p ≤ 0.001). At 6 months, signs of myocardial edema appeared in 34.4% of patients, and a complete cure (absence of edema and LGE) was found in 8.8% of patients. LGE disappeared in 15.2% of patients, and the mean number of myocardial segments involved decreased from 46% to 30%, remaining unchanged in 13% of patients. Patients with LGE without edema had a more severe prognostic condition than those with persistent edema. Patients with increased LGE extension on the control cMRI had a worse prognosis than those with modified or low LGE. The most significant independent predictive parameters for major cardiovascular events (MACEs) were LGE mass (adjusted OR = 1.27 [1.11-1.99], p < 0.001), myocardial edema (OR = 1.70 [1.14-209.3], p < 0.001), and prolonged native T1 (OR = 0.97 [0.88-3.06], p < 0.001). The mid-wall model of LGE and the presence of edema-free LGE were MACE-independent predictors. CONCLUSIONS LGE, myocardial edema, and prolonged native T1 were predictors of MACEs. LGE does not necessarily mean constituted fibrosis in the presence of edema and may disappear over time. LGE without edema could represent fibrosis, whereas the persistence of edema represents active inflammation and could be associated with the residual chance of complete recovery. cMRI should be performed in all patients with AM at 6 months to evaluate progress and prognosis.
Collapse
Affiliation(s)
- Alexandra Popa
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Carmen Cionca
- Department of Radiology, Affidea Hiperdia Diagnostic Imaging Centre, 400487 Cluj-Napoca, Romania
| | - Renata Agoston
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Flaviu Rusu
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Mihai Tarcau
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania
| | - Andra Negru
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Rares Ilie Orzan
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Regional Institute of Gastroenterology and Hepatology "Prof. Dr. Octavian Fodor", 400162 Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Radiology, Affidea Hiperdia Diagnostic Imaging Centre, 400487 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Larsen BS, Biering-Sørensen T, Olsen FJ. Ischemic stroke and the emerging role of left atrial function. Expert Rev Cardiovasc Ther 2024; 22:289-300. [PMID: 38943632 DOI: 10.1080/14779072.2024.2370814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Ischemic stroke is a leading cause of morbidity and mortality worldwide. Emerging evidence suggests that left atrial (LA) dysfunction could play a role in the pathophysiology of ischemic stroke, as a possible contributor and as a predictive biomarker. AREAS COVERED This narrative review details the intricate relationship between LA function, atrial fibrillation (AF), and ischemic stroke. We discuss imaging techniques used to assess LA function, the mechanisms by which impaired LA function may contribute to stroke, and its potential as a prognostic marker of stroke. EXPERT OPINION There is a lack of evidence-based treatments of LA dysfunction in both primary and secondary stroke prevention. This is partly due to the lack of a practical clinical definition and unanswered questions concerning the clinical implications of LA dysfunction in patients without AF. Until such questions are resolved, addressing well-known cardiovascular risk factors, like hypertension and obesity, should be prioritized for preventing AF and ischemic stroke. These risk factors are closely tied to atrial remodeling, emphasizing the importance of targeting primary modifiable factors for preventing future morbidity and mortality.
Collapse
Affiliation(s)
- Bjørn Strøier Larsen
- Department of Cardiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tor Biering-Sørensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Flemming Javier Olsen
- Department of Cardiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| |
Collapse
|
22
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
23
|
Alnour F, Beuthner BE, Hakroush S, Topci R, Vogelgesang A, Lange T, Seidler T, Kutschka I, Toischer K, Schuster A, Jacobshagen C, Leha A, Zabel M, Hasenfuß G, Puls M, Zeisberg EM. Cardiac fibrosis as a predictor for sudden cardiac death after transcatheter aortic valve implantation. EUROINTERVENTION 2024; 20:e760-e769. [PMID: 38887885 PMCID: PMC11163439 DOI: 10.4244/eij-d-23-01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Cardiac fibrosis plays a major pathophysiological role in any form of chronic heart disease, and high levels are associated with poor outcome. Diffuse and focal cardiac fibrosis are different subtypes, which have different pathomechanisms and prognostic implications. The total fibrosis burden in endomyocardial biopsy tissue was recently proved to play an independent prognostic role in aortic stenosis patients after transcatheter aortic valve implantation (TAVI). AIMS Here, for the first time, we aim to assess the specific impact of different fibrosis subtypes on sudden cardiac death (SCD) as a primary reason for cardiovascular mortality after TAVI. METHODS The fibrosis pattern was assessed histologically in the left ventricular biopsies obtained during TAVI interventions in 161 patients, who received a structured follow-up thereafter. RESULTS Receiver operating characteristic analyses, performed 6, 12, 24 and 48 months after TAVI, showed diffuse, but not focal, fibrosis as a significant predictor for SCD at all timepoints, with the highest area under the curve at the first time point and a decrease in its SCD predictivity over time. In both multivariate Cox proportional hazards and Fine-Gray competing risk models, including both fibrosis subtypes, as well as age, sex and ejection fraction, high diffuse fibrosis remained statistically significant. Accordingly, it represents an independent SCD predictor, most importantly for the occurrence of early events. CONCLUSIONS The burden of diffuse cardiac fibrosis plays an important and independent prognostic role regarding SCD early after TAVI. Therefore, the histological evaluation of fibrosis topography has value as a prognostic tool for TAVI patients and may help to tailor individualised approaches to optimise their postinterventional management.
Collapse
Affiliation(s)
- Fouzi Alnour
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Bo E Beuthner
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Samy Hakroush
- Institute for Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Rodi Topci
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Anja Vogelgesang
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Torben Lange
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Tim Seidler
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Ingo Kutschka
- Department of Cardiovascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Karl Toischer
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Andreas Schuster
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Claudius Jacobshagen
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
- Clinic of Cardiology, Intensive Medicine and Angiology, St. Vincentius-Kliniken, Karlsruhe, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Zabel
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Gerd Hasenfuß
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Miriam Puls
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Clinic of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Lower Saxony Site, Göttingen, Germany
| |
Collapse
|
24
|
An C, Shao F, Long C, Zhang Y, Nie W, Zeng R, Dou Z, Zhao Y, Lin Y, Zhang S, Zhang L, Ren C, Zhang Y, Zhou G, Wang H, Liu J. Local delivery of stem cell spheroids with protein/polyphenol self-assembling armor to improve myocardial infarction treatment via immunoprotection and immunoregulation. Biomaterials 2024; 307:122526. [PMID: 38513434 DOI: 10.1016/j.biomaterials.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Stem cell therapies have shown great potential for treating myocardial infarction (MI) but are limited by low cell survival and compromised functionality due to the harsh microenvironment at the disease site. Here, we presented a Mesenchymal stem cell (MSC) spheroid-based strategy for MI treatment by introducing a protein/polyphenol self-assembling armor coating on the surface of cell spheroids, which showed significantly enhanced therapeutic efficacy by actively manipulating the hostile pathological MI microenvironment and enabling versatile functionality, including protecting the donor cells from host immune clearance, remodeling the ROS microenvironment and stimulating MSC's pro-healing paracrine secretion. The underlying mechanism was elucidated, wherein the armor protected to prolong MSCs residence at MI site, and triggered paracrine stimulation of MSCs towards immunoregulation and angiogenesis through inducing hypoxia to provoke glycolysis in stem cells. Furthermore, local delivery of coated MSC spheroids in MI rat significantly alleviated local inflammation and subsequent fibrosis via mediation macrophage polarization towards pro-healing M2 phenotype and improved cardiac function. In general, this study provided critical insight into the enhanced therapeutic efficacy of stem cell spheroids coated with a multifunctional armor. It potentially opens up a new avenue for designing immunomodulatory treatment for MI via stem cell therapy empowered by functional biomaterials.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Wen Nie
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, PR China
| | - Rui Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuan Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuanyuan Lin
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Faculty of Medicine, Dalian University of Technology, Dalian, 116023, PR China; Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, 116044, PR China
| | - Yang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China.
| |
Collapse
|
25
|
Sengupta SP, Okwose NC, MacGowan GA, Jakovljevic DG. Cardiac response to pharmacological stress in heart failure reduced and heart failure preserved ejection fraction. Acta Cardiol 2024; 79:510-516. [PMID: 38699935 DOI: 10.1080/00015385.2024.2347680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Shantanu P Sengupta
- Sengupta Hospital and Research Institute, Nagpur, India
- Cardiovascular Research Theme, Translational and Clinical, and Biosciences Research Institutes, Newcastle University, Newcastle upon Tyne, UK
| | - Nduka C Okwose
- Cardiovascular Research Theme, Translational and Clinical, and Biosciences Research Institutes, Newcastle University, Newcastle upon Tyne, UK
- Department of Health and Life Sciences, Coventry University, Coventry, UK
| | - Guy A MacGowan
- Cardiovascular Research Theme, Translational and Clinical, and Biosciences Research Institutes, Newcastle University, Newcastle upon Tyne, UK
| | - Djordje G Jakovljevic
- Cardiovascular Research Theme, Translational and Clinical, and Biosciences Research Institutes, Newcastle University, Newcastle upon Tyne, UK
- Department of Health and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
26
|
Karur GR, Aneja A, Stojanovska J, Hanneman K, Latchamsetty R, Kersting D, Rajiah PS. Imaging of Cardiac Fibrosis: An Update, From the AJR Special Series on Imaging of Fibrosis. AJR Am J Roentgenol 2024; 222:e2329870. [PMID: 37753860 DOI: 10.2214/ajr.23.29870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Myocardial fibrosis (MF) is defined as excessive production and deposition of extra-cellular matrix proteins that result in pathologic myocardial remodeling. Three types of MF have been identified: replacement fibrosis from tissue necrosis, reactive fibrosis from myocardial stress, and infiltrative interstitial fibrosis from progressive deposition of nondegradable material such as amyloid. Although echocardiography, nuclear medicine, and CT play important roles in the assessment of MF, MRI is pivotal in the evaluation of MF, with the late gadolinium enhancement (LGE) technique used as a primary end point. The LGE technique focuses on the pattern and distribution of gadolinium accumulation in the myocardium and assists in the diagnosis and establishment of the cause of both ischemic and nonischemic cardiomyopathy. LGE MRI also aids prognostication and risk stratification. In addition, LGE MRI is used to guide the management of patients considered for ablation for arrhythmias. Parametric mapping techniques, including T1 mapping and extracellular volume measurement, allow detection and quantification of diffuse fibrosis, which may not be detected by LGE MRI. These techniques also allow monitoring of disease progression and therapy response. This review provides an update on the imaging of MF, including prognostication and risk stratification tools, electrophysiologic considerations, and disease monitoring.
Collapse
Affiliation(s)
- Gauri R Karur
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital, Toronto, ON, Canada
| | - Ashish Aneja
- Department of Cardiology, MetroHealth System, Cleveland, OH
| | | | - Kate Hanneman
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital, Toronto, ON, Canada
| | | | - David Kersting
- Department of Nuclear Medicine and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | | |
Collapse
|
27
|
Jaffery OA, Melki L, Slabaugh G, Good WW, Roney CH. A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data. Arrhythm Electrophysiol Rev 2024; 13:e08. [PMID: 38807744 PMCID: PMC11131150 DOI: 10.15420/aer.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/27/2023] [Indexed: 05/30/2024] Open
Abstract
Computational models of cardiac electrophysiology have gradually matured during the past few decades and are now being personalised to provide patient-specific therapy guidance for improving suboptimal treatment outcomes. The predictive features of these personalised electrophysiology models hold the promise of providing optimal treatment planning, which is currently limited in the clinic owing to reliance on a population-based or average patient approach. The generation of a personalised electrophysiology model entails a sequence of steps for which a range of activation mapping, calibration methods and therapy simulation pipelines have been suggested. However, the optimal methods that can potentially constitute a clinically relevant in silico treatment are still being investigated and face limitations, such as uncertainty of electroanatomical data recordings, generation and calibration of models within clinical timelines and requirements to validate or benchmark the recovered tissue parameters. This paper is aimed at reporting techniques on the personalisation of cardiac computational models, with a focus on calibrating cardiac tissue conductivity based on electroanatomical mapping data.
Collapse
Affiliation(s)
- Ovais A Jaffery
- School of Engineering and Materials Science, Queen Mary University of London London, UK
| | - Lea Melki
- R&D Algorithms, Acutus Medical Carlsbad, CA, US
| | - Gregory Slabaugh
- Digital Environment Research Institute, Queen Mary University of London London, UK
| | | | - Caroline H Roney
- School of Engineering and Materials Science, Queen Mary University of London London, UK
| |
Collapse
|
28
|
Bekedam FT, Smal R, Smit MC, Aman J, Vonk-Noordegraaf A, Bogaard HJ, Goumans MJ, De Man FS, Llucià-Valldeperas A. Mechanical stimulation of induced pluripotent stem derived cardiac fibroblasts. Sci Rep 2024; 14:9795. [PMID: 38684844 PMCID: PMC11058244 DOI: 10.1038/s41598-024-60102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Cardiac fibrosis contributes to the development of heart failure, and is the response of cardiac fibroblasts (CFs) to pressure or volume overload. Limiting factors in CFs research are the poor availability of human cells and the tendency of CFs to transdifferentiate into myofibroblasts when cultured in vitro. The possibility to generate CFs from induced pluripotent stem cells (iPSC), providing a nearly unlimited cell source, opens new possibilities. However, the behaviour of iPSC-CFs under mechanical stimulation has not been studied yet. Our study aimed to assess the behaviour of iPSC-CFs under mechanical stretch and pro-fibrotic conditions. First, we confirm that iPSC-CFs are comparable to primary CFs at gene, protein and functional level. Furthermore, iPSC-derived CFs adopt a pro-fibrotic response to transforming growth factor beta (TGF-β). In addition, mechanical stretch inhibits TGF-β-induced fibroblast activation in iPSC-CFs. Thus, the responsiveness to cytokines and mechanical stimulation of iPSC-CFs demonstrates they possess key characteristics of primary CFs and may be useful for disease modelling.
Collapse
Affiliation(s)
- Fjodor T Bekedam
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Rowan Smal
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Marisa C Smit
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Jurjan Aman
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC, Leiden, The Netherlands
| | - Frances S De Man
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands.
| | - Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Russo I, Dun W, Mehta S, Ahmed S, Tzimas C, Fukuma N, Tsai EJ. Extracellular Matrix Instability and Chronic Inflammation Underlie Maladaptive Right Ventricular Pressure Overload Remodeling and Failure in Male Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588013. [PMID: 38617374 PMCID: PMC11014567 DOI: 10.1101/2024.04.03.588013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Right ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or etiology. In both, RVD arises from the chronic RV pressure overload, and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of HF and PAH patients, however, differ by sex. Men develop more severe RVD and die at younger ages than do women. Mechanistic details of this sexual dimorphism in RV remodeling are incompletely understood. We sought to elucidate the cardiac pathophysiology underlying the sex-specific RV remodeling phenotypes, RV failure (RVF) versus compensated RVD. Methods We subjected male (M-) and female (F-) adult mice to moderate pulmonary artery banding (PAB) for 9wks. Mice underwent serial echocardiography, cardiac MRI, RV pressure-volume loop recordings, histologic and molecular analyses. Results M-PAB developed severe RVD with RVF, increased RV collagen deposition and degradation, extracellular matrix (ECM) instability, and activation and recruitment of macrophages. Despite the same severity and chronicity of RV pressure overload, F-PAB had more stable ECM, lacked chronic inflammation, and developed mild RVD without RVF. Conclusions ECM destabilization and chronic activation of recruited macrophages are associated with maladaptive RV remodeling and RVF in male PAB mice. Adaptive RV remodeling of female PAB mice lacked these histopathologic changes. Our findings suggest that these two pathophysiologic processes likely contribute to the sexual dimorphism of RV pressure overload remodeling. Further mechanistic studies are needed to assess their pathogenic roles and potential as targets for RVD therapy and RVF prevention. CLINICAL PERSPECTIVE What is new?: In a mouse model of pure PH, males but not females showed an association between ECM instability, chronic inflammation with activation of recruited macrophages, and severe RV dysfunction and failure.What are the clinical implications?: In male HF and PH patients, enhancing ECM stability and countering the recruitment and activation of macrophages may help preserve RV function such that RVF can be prevented or delayed. Further preclinical mechanistic studies are needed to assess the therapeutic potential of such approaches. RESEARCH PERSPECTIVE What new question does this study raise? What question should be addressed next?: What mechanisms regulate RV ECM stability and macrophage recruitment and activation in response to chronic RV pressure overload? Are these regulatory mechanisms dependent upon or independent of sex hormone signaling?
Collapse
|
30
|
Ciampi CM, Sultana A, Ossola P, Farina A, Fragasso G, Spoladore R. Current experimental and early investigational agents for cardiac fibrosis: where are we at? Expert Opin Investig Drugs 2024; 33:389-404. [PMID: 38426439 DOI: 10.1080/13543784.2024.2326024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Myocardial fibrosis (MF) is induced by factors activating pro-fibrotic pathways such as acute and prolonged inflammation, myocardial ischemic events, hypertension, aging process, and genetically-linked cardiomyopathies. Dynamics and characteristics of myocardial fibrosis development are very different. The broad range of myocardial fibrosis presentations suggests the presence of multiple potential targets. AREA COVERED Heart failure treatment involves medications primarily aimed at counteracting neurohormonal activation. While these drugs have demonstrated efficacy against MF, not all specifically target inflammation or fibrosis progression with some exceptions such as RAAS inhibitors. Consequently, new therapies are being developed to address this issue. This article is aimed to describe anti-fibrotic drugs currently employed in clinical practice and emerging agents that target specific pathways, supported by evidence from both preclinical and clinical studies. EXPERT OPINION Despite various preclinical findings suggesting the potential utility of new drugs and molecules for treating cardiac fibrosis in animal models, there is a notable scarcity of clinical trials investigating these effects. However, the pathology of damage and repair in the heart muscle involves a complex network of interconnected inflammatory pathways and various types of immune cells. Our comprehension of the positive and negative roles played by specific immune cells and cytokines is an emerging area of research.
Collapse
Affiliation(s)
- Claudio M Ciampi
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Farina
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| | - Gabriele Fragasso
- Heart Failure Unit Head, Division of Cardiology, IRCCS Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Roberto Spoladore
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| |
Collapse
|
31
|
Sharma VJ, Singh A, Grant JL, Raman J. Point-of-care diagnosis of tissue fibrosis: a review of advances in vibrational spectroscopy with machine learning. Pathology 2024; 56:313-321. [PMID: 38341306 DOI: 10.1016/j.pathol.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024]
Abstract
Histopathology is the gold standard for diagnosing fibrosis, but its routine use is constrained by the need for additional stains, time, personnel and resources. Vibrational spectroscopy is a novel technique that offers an alternative atraumatic approach, with short scan times, while providing metabolic and morphological data. This review evaluates vibrational spectroscopy for the assessment of fibrosis, with a focus on point-of-care capabilities. OVID Medline, Embase and Cochrane databases were systematically searched using PRISMA guidelines for search terms including vibrational spectroscopy, human tissue and fibrosis. Studies were stratified based on imaging modality and tissue type. Outcomes recorded included tissue type, machine learning technique, metrics for accuracy and author conclusions. Systematic review yielded 420 articles, of which 14 were relevant. Ten of these articles considered mid-infrared spectroscopy, three dealt with Raman spectroscopy and one with near-infrared spectroscopy. The metrics for detecting fibrosis were Pearson correlation coefficients ranging from 0.65-0.98; sensitivity from 76-100%; specificity from 90-99%; area under receiver operator curves from 0.83-0.98; and accuracy of 86-99%. Vibrational spectroscopy identified fibrosis in myeloproliferative neoplasms in bone, cirrhotic and hepatocellular carcinoma in liver, end-stage heart failure in cardiac tissue and following laser ablation for acne in skin. It also identified interstitial fibrosis as a predictor of early renal transplant rejection in renal tissue. Vibrational spectroscopic techniques can therefore accurately identify fibrosis in a range of human tissues. Emerging data show that it can be used to quantify, classify and provide data about the nature of fibrosis with a high degree of accuracy with potential scope for point-of-care use.
Collapse
Affiliation(s)
- Varun J Sharma
- Brian F. Buxton Department of Cardiac and Thoracic Aortic Surgery, Austin Health, Heidelberg, Melbourne, Vic, Australia; Department of Surgery (Austin Health), Melbourne Medical School, The University of Melbourne, Vic, Australia; Spectromix Laboratory, Melbourne, Vic, Australia
| | - Aashima Singh
- Department of Surgery (Austin Health), Melbourne Medical School, The University of Melbourne, Vic, Australia; Melbourne Medical School, The University of Melbourne, Vic, Australia
| | | | - Jaishankar Raman
- Brian F. Buxton Department of Cardiac and Thoracic Aortic Surgery, Austin Health, Heidelberg, Melbourne, Vic, Australia; Department of Surgery (Austin Health), Melbourne Medical School, The University of Melbourne, Vic, Australia; Spectromix Laboratory, Melbourne, Vic, Australia; Department of Cardiac Surgery, St Vincent's Hospital, Fitzroy, Melbourne, Vic, Australia.
| |
Collapse
|
32
|
Liu X, Li B, Wang S, Zhang E, Schultz M, Touma M, Monteiro Da Rocha A, Evans SM, Eichmann A, Herron T, Chen R, Xiong D, Jaworski A, Weiss S, Si MS. Stromal Cell-SLIT3/Cardiomyocyte-ROBO1 Axis Regulates Pressure Overload-Induced Cardiac Hypertrophy. Circ Res 2024; 134:913-930. [PMID: 38414132 PMCID: PMC10977056 DOI: 10.1161/circresaha.122.321292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Recently shown to regulate cardiac development, the secreted axon guidance molecule SLIT3 maintains its expression in the postnatal heart. Despite its known expression in the cardiovascular system after birth, SLIT3's relevance to cardiovascular function in the postnatal state remains unknown. As such, the objectives of this study were to determine the postnatal myocardial sources of SLIT3 and to evaluate its functional role in regulating the cardiac response to pressure overload stress. METHODS We performed in vitro studies on cardiomyocytes and myocardial tissue samples from patients and performed in vivo investigation with SLIT3 and ROBO1 (roundabout homolog 1) mutant mice undergoing transverse aortic constriction to establish the role of SLIT3-ROBO1 in adverse cardiac remodeling. RESULTS We first found that SLIT3 transcription was increased in myocardial tissue obtained from patients with congenital heart defects that caused ventricular pressure overload. Immunostaining of hearts from WT (wild-type) and reporter mice revealed that SLIT3 is secreted by cardiac stromal cells, namely fibroblasts and vascular mural cells, within the heart. Conditioned media from cardiac fibroblasts and vascular mural cells both stimulated cardiomyocyte hypertrophy in vitro, an effect that was partially inhibited by an anti-SLIT3 antibody. Also, the N-terminal, but not the C-terminal, fragment of SLIT3 and the forced overexpression of SLIT3 stimulated cardiomyocyte hypertrophy and the transcription of hypertrophy-related genes. We next determined that ROBO1 was the most highly expressed roundabout receptor in cardiomyocytes and that ROBO1 mediated SLIT3's hypertrophic effects in vitro. In vivo, Tcf21+ fibroblast and Tbx18+ vascular mural cell-specific knockout of SLIT3 in mice resulted in decreased left ventricular hypertrophy and cardiac fibrosis after transverse aortic constriction. Furthermore, α-MHC+ cardiomyocyte-specific deletion of ROBO1 also preserved left ventricular function and abrogated hypertrophy, but not fibrosis, after transverse aortic constriction. CONCLUSIONS Collectively, these results indicate a novel role for the SLIT3-ROBO1-signaling axis in regulating postnatal cardiomyocyte hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, China (X.L., R.C.)
| | - Baolei Li
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, China (B.L.)
| | - Shuyun Wang
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
| | - Erge Zhang
- Division of Cardiac Surgery, Department of Surgery (E.Z., M.S., M.-S.S.), David Geffen School of Medicine University of California, Los Angeles
| | - Megan Schultz
- Division of Cardiac Surgery, Department of Surgery (E.Z., M.S., M.-S.S.), David Geffen School of Medicine University of California, Los Angeles
| | - Marlin Touma
- Department of Pediatrics (M.T.), David Geffen School of Medicine University of California, Los Angeles
| | - Andre Monteiro Da Rocha
- Division of Cardiovascular Medicine, Department of Internal Medicine (A.M.D.R., T.H.), Michigan Medicine, Ann Arbor
| | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences (S.M.E.), University of California, San Diego, La Jolla
- Department of Medicine, School of Medicine (S.M.E.), University of California, San Diego, La Jolla
| | - Anne Eichmann
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.E.)
- INSERM, Paris Cardiovascular Research Center (PARCC), Université de Paris, France (A.E.)
| | - Todd Herron
- Division of Cardiovascular Medicine, Department of Internal Medicine (A.M.D.R., T.H.), Michigan Medicine, Ann Arbor
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, China (X.L., R.C.)
| | - Dingding Xiong
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
| | - Alexander Jaworski
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI (A.J.)
| | - Stephen Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor (S.W.)
| | - Ming-Sing Si
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
- Division of Cardiac Surgery, Department of Surgery (E.Z., M.S., M.-S.S.), David Geffen School of Medicine University of California, Los Angeles
| |
Collapse
|
33
|
Jiang Y, Ye J, Yang Y, Zhang Y, Yan X, Qiang W, Chen H, Xu S, Zhou L, Qi R, Zhang Q. Prognostic value of measurement of myocardial extracellular volume using dual-energy CT in heart failure with preserved ejection fraction. Sci Rep 2024; 14:7504. [PMID: 38553622 PMCID: PMC10980678 DOI: 10.1038/s41598-024-58271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Diffuse myocardial fibrosis is associated with adverse outcomes in heart failure with preserved ejection fraction (HFpEF). Dual-energy CT (DECT) can noninvasively assess myocardial fibrosis by quantification of extracellular volume (ECV) fraction. This study evaluated the association between ECV measured by DECT and clinical outcomes in patients with HFpEF. 125 hospitalized HFpEF patients were enrolled in this retrospective cohort study. ECV was measured using DECT with late iodine enhancement. The composite endpoint was defined as HFpEF hospitalization and all-cause mortality during the follow-up. During the median follow-up of 10.4 months, 34 patients (27.20%) experienced the composite outcomes, including 5 deaths; and 29 HFpEF hospitalizations. The higher DECT-ECV group had higher rates of composite outcomes than the low ECV group (log-rank X2 = 6.818, P = 0.033). In multivariate Cox regression analysis, the ECV (HR 1.17, 95% CI 1.06-1.30, P = 0.001) and NT-pro BNP (HR 2.83, 95% CI 1.16-6.88, P = 0.022) were independent risk factors for the adverse outcomes. Myocardial ECV measured using DECT was an independent risk factor for adverse outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Ying Jiang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Jiaqi Ye
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Yang Yang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Ying Zhang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Xiaoyun Yan
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Wenhui Qiang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Haixiao Chen
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Shuang Xu
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Rongxing Qi
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China.
| | - Qing Zhang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China.
| |
Collapse
|
34
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse Cardiac Events of Hypercholesterolemia Are Enhanced by Sitagliptin Administration in Sprague Dawley Rats. RESEARCH SQUARE 2024:rs.3.rs-4075353. [PMID: 38562676 PMCID: PMC10984018 DOI: 10.21203/rs.3.rs-4075353/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. Thus, we hypothesized that atherogenic feeding would result in adverse cardiac effects and would attenuate upon sitagliptin administration. Methods Six-week-old adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with vehicle (water) or sitagliptin (100 mg/kg/d) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. Results Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. Conclusion Adverse cardiac outcomes in HChol were enhanced with sitagliptin administration and such effects were alleviated by Met. Our findings could be significant for understanding the risk-benefit of sitagliptin in type 2 diabetics who are known to consume atherogenic diets.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Southern University and Agricultural and Mechanical College
| | - Rashmi Pathak
- Southern University and Agricultural and Mechanical College
| | | | | | | |
Collapse
|
35
|
Mittelheisser V, Gensbittel V, Bonati L, Li W, Tang L, Goetz JG. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. NATURE NANOTECHNOLOGY 2024; 19:281-297. [PMID: 38286876 DOI: 10.1038/s41565-023-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 01/31/2024]
Abstract
Disease progression is usually accompanied by changes in the biochemical composition of cells and tissues and their biophysical properties. For instance, hallmarks of cancer include the stiffening of tissues caused by extracellular matrix remodelling and the softening of individual cancer cells. In this context, accumulating evidence has shown that immune cells sense and respond to mechanical signals from the environment. However, the mechanisms regulating these mechanical aspects of immune surveillance remain partially understood. The growing appreciation for the 'mechano-immunology' field has urged researchers to investigate how immune cells sense and respond to mechanical cues in various disease settings, paving the way for the development of novel engineering strategies that aim at mechanically modulating and potentiating immune cells for enhanced immunotherapies. Recent pioneer developments in this direction have laid the foundations for leveraging 'mechanical immunoengineering' strategies to treat various diseases. This Review first outlines the mechanical changes occurring during pathological progression in several diseases, including cancer, fibrosis and infection. We next highlight the mechanosensitive nature of immune cells and how mechanical forces govern the immune responses in different diseases. Finally, we discuss how targeting the biomechanical features of the disease milieu and immune cells is a promising strategy for manipulating therapeutic outcomes.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Lucia Bonati
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
| |
Collapse
|
36
|
Doiron JE, Li Z, Yu X, LaPenna KB, Quiriarte H, Allerton TD, Koul K, Malek A, Shah SJ, Sharp TE, Goodchild TT, Kapusta DR, Lefer DJ. Early Renal Denervation Attenuates Cardiac Dysfunction in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e032646. [PMID: 38353216 PMCID: PMC11010115 DOI: 10.1161/jaha.123.032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/08/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND The renal sympathetic nervous system modulates systemic blood pressure, cardiac performance, and renal function. Pathological increases in renal sympathetic nerve activity contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). We investigated the effects of renal sympathetic denervation performed at early or late stages of HFpEF progression. METHODS AND RESULTS Male ZSF1 obese rats were subjected to radiofrequency renal denervation (RF-RDN) or sham procedure at either 8 weeks or 20 weeks of age and assessed for cardiovascular function, exercise capacity, and cardiorenal fibrosis. Renal norepinephrine and renal nerve tyrosine hydroxylase staining were performed to quantify denervation following RF-RDN. In addition, renal injury, oxidative stress, inflammation, and profibrotic biomarkers were evaluated to determine pathways associated with RDN. RF-RDN significantly reduced renal norepinephrine and tyrosine hydroxylase content in both study cohorts. RF-RDN therapy performed at 8 weeks of age attenuated cardiac dysfunction, reduced cardiorenal fibrosis, and improved endothelial-dependent vascular reactivity. These improvements were associated with reductions in renal injury markers, expression of renal NLR family pyrin domain containing 3/interleukin 1β, and expression of profibrotic mediators. RF-RDN failed to exert beneficial effects when administered in the 20-week-old HFpEF cohort. CONCLUSIONS Our data demonstrate that early RF-RDN therapy protects against HFpEF disease progression in part due to the attenuation of renal fibrosis and inflammation. In contrast, the renoprotective and left ventricular functional improvements were lost when RF-RDN was performed in later HFpEF progression. These results suggest that RDN may be a viable treatment option for HFpEF during the early stages of this systemic inflammatory disease.
Collapse
Affiliation(s)
- Jake E. Doiron
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Zhen Li
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Xiaoman Yu
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Kyle B. LaPenna
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Heather Quiriarte
- Department of Vascular MetabolismPennington Biomedical Research CenterBaton RougeLAUSA
| | - Timothy D. Allerton
- Department of Vascular MetabolismPennington Biomedical Research CenterBaton RougeLAUSA
| | - Kashyap Koul
- School of MedicineLouisiana State University Health Sciences Center New OrleansNew OrleansLAUSA
| | - Andrew Malek
- School of MedicineLouisiana State University Health Sciences Center New OrleansNew OrleansLAUSA
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine and Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Thomas E. Sharp
- Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaFLUSA
- USF Health Heart InstituteTampaFLUSA
| | - Traci T. Goodchild
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Daniel R. Kapusta
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - David J. Lefer
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| |
Collapse
|
37
|
Dattani A, Brady EM, Kanagala P, Stoma S, Parke KS, Marsh AM, Singh A, Arnold JR, Moss AJ, Zhao L, Cvijic ME, Fronheiser M, Du S, Costet P, Schafer P, Carayannopoulos L, Chang CP, Gordon D, Ramirez-Valle F, Jerosch-Herold M, Nelson CP, Squire IB, Ng LL, Gulsin GS, McCann GP. Is atrial fibrillation in HFpEF a distinct phenotype? Insights from multiparametric MRI and circulating biomarkers. BMC Cardiovasc Disord 2024; 24:94. [PMID: 38326736 PMCID: PMC10848361 DOI: 10.1186/s12872-024-03734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) frequently co-exist. There is a limited understanding on whether this coexistence is associated with distinct alterations in myocardial remodelling and mechanics. We aimed to determine if patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) represent a distinct phenotype. METHODS In this secondary analysis of adults with HFpEF (NCT03050593), participants were comprehensively phenotyped with stress cardiac MRI, echocardiography and plasma fibroinflammatory biomarkers, and were followed for the composite endpoint (HF hospitalisation or death) at a median of 8.5 years. Those with AF were compared to sinus rhythm (SR) and unsupervised cluster analysis was performed to explore possible phenotypes. RESULTS 136 subjects were included (SR = 75, AF = 61). The AF group was older (76 ± 8 vs. 70 ± 10 years) with less diabetes (36% vs. 61%) compared to the SR group and had higher left atrial (LA) volumes (61 ± 30 vs. 39 ± 15 mL/m2, p < 0.001), lower LA ejection fraction (EF) (31 ± 15 vs. 51 ± 12%, p < 0.001), worse left ventricular (LV) systolic function (LVEF 63 ± 8 vs. 68 ± 8%, p = 0.002; global longitudinal strain 13.6 ± 2.9 vs. 14.7 ± 2.4%, p = 0.003) but higher LV peak early diastolic strain rates (0.73 ± 0.28 vs. 0.53 ± 0.17 1/s, p < 0.001). The AF group had higher levels of syndecan-1, matrix metalloproteinase-2, proBNP, angiopoietin-2 and pentraxin-3, but lower level of interleukin-8. No difference in clinical outcomes was observed between the groups. Three distinct clusters were identified with the poorest outcomes (Log-rank p = 0.029) in cluster 2 (hypertensive and fibroinflammatory) which had equal representation of SR and AF. CONCLUSIONS Presence of AF in HFpEF is associated with cardiac structural and functional changes together with altered expression of several fibro-inflammatory biomarkers. Distinct phenotypes exist in HFpEF which may have differing clinical outcomes.
Collapse
Affiliation(s)
- Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Emer M Brady
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Svetlana Stoma
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Kelly S Parke
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anna-Marie Marsh
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anvesha Singh
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jayanth R Arnold
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alastair J Moss
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Lei Zhao
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | - Shuyan Du
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | | | | | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Iain B Squire
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
38
|
Lai W, Wang B, Huang R, Zhang C, Fu P, Ma L. Ferroptosis in organ fibrosis: From mechanisms to therapeutic medicines. J Transl Int Med 2024; 12:22-34. [PMID: 38525436 PMCID: PMC10956731 DOI: 10.2478/jtim-2023-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Fibrosis occurs in many organs, and its sustained progress can lead to organ destruction and malfunction. Although numerous studies on organ fibrosis have been carried out, its underlying mechanism is largely unknown, and no ideal treatment is currently available. Ferroptosis is an iron-dependent process of programmed cell death that is characterized by lipid peroxidation. In the past decade, a growing body of evidence demonstrated the association between ferroptosis and fibrotic diseases, while targeting ferroptosis may serve as a potential therapeutic strategy. This review highlights recent advances in the crosstalk between ferroptosis and organ fibrosis, and discusses ferroptosis-targeted therapeutic approaches against fibrosis that are currently being explored.
Collapse
Affiliation(s)
- Weijing Lai
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, China
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Rongshuang Huang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chuyue Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Liang Ma
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
39
|
de Boer RA, Díez J. Advancing the fight against fibrosis in patients with heart failure: The contribution of sodium-glucose cotransporter 2 inhibition. Eur J Heart Fail 2024; 26:285-287. [PMID: 38196302 DOI: 10.1002/ejhf.3125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Rudolf A de Boer
- Thorax Center, Department of Cardiology, Erasmus Medical Center, Erasmus MC, Cardiovascular Institute, Rotterdam, The Netherlands
| | - Javier Díez
- Center for Applied Medical Research (CIMA), and School of Medicine, University of Navarra, Pamplona, Spain
- Center for Network Biomedical Research of Cardiovascular Diseases (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
40
|
González A, López B, Ravassa S, San José G, Latasa I, Butler J, Díez J. Myocardial Interstitial Fibrosis in Hypertensive Heart Disease: From Mechanisms to Clinical Management. Hypertension 2024; 81:218-228. [PMID: 38084597 DOI: 10.1161/hypertensionaha.123.21708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hypertensive heart disease (HHD) can no longer be considered as the beneficial adaptive result of the hypertrophy of cardiomyocytes in response to pressure overload leading to the development of left ventricular hypertrophy. The current evidence indicates that in patients with HHD, pathological lesions in the myocardium lead to maladaptive structural remodeling and subsequent alterations in cardiac function, electrical activity, and perfusion, all contributing to poor outcomes. Diffuse myocardial interstitial fibrosis is probably the most critically involved lesion in these disorders. Therefore, in this review, we will focus on the histological characteristics, the mechanisms, and the clinical consequences of myocardial interstitial fibrosis in patients with HHD. In addition, we will consider the most useful tools for the noninvasive diagnosis of myocardial interstitial fibrosis in patients with HHD, as well as the most effective available therapeutic strategies to prevent its development or facilitate its regression in this patient population. Finally, we will issue a call to action for the need for more fundamental and clinical research on myocardial interstitial fibrosis in HHD.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Disease, Centro de Investigación Médica Aplicada Universidad de Navarra (CIMA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Insitituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, Pamplona, Spain (A.G.)
| | - Begoña López
- Program of Cardiovascular Disease, Centro de Investigación Médica Aplicada Universidad de Navarra (CIMA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Insitituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
| | - Susana Ravassa
- Program of Cardiovascular Disease, Centro de Investigación Médica Aplicada Universidad de Navarra (CIMA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Insitituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
| | - Gorka San José
- Program of Cardiovascular Disease, Centro de Investigación Médica Aplicada Universidad de Navarra (CIMA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Insitituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
| | - Iñigo Latasa
- Program of Cardiovascular Disease, Centro de Investigación Médica Aplicada Universidad de Navarra (CIMA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Insitituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX (J.B.)
- Department of Medicine, University of Mississippi, Jackson (J.B.)
| | - Javier Díez
- Program of Cardiovascular Disease, Centro de Investigación Médica Aplicada Universidad de Navarra (CIMA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Insitituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), Carlos III Institute of Health, Madrid, Spain (A.G., B.L., S.R., G.S.J., I.L., J.D.)
| |
Collapse
|
41
|
Vitouš J, Jiřík R, Stračina T, Hendrych M, Nádeníček J, Macíček O, Tian Y, Krátká L, Dražanová E, Nováková M, Babula P, Panovský R, DiBella E, Starčuk Z. T1 mapping of myocardium in rats using self-gated golden-angle acquisition. Magn Reson Med 2024; 91:368-380. [PMID: 37811699 DOI: 10.1002/mrm.29846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE The aim of this study is to design a method of myocardial T1 quantification in small laboratory animals and to investigate the effects of spatiotemporal regularization and the needed acquisition duration. METHODS We propose a compressed-sensing approach to T1 quantification based on self-gated inversion-recovery radial two/three-dimensional (2D/3D) golden-angle stack-of-stars acquisition with image reconstruction performed using total-variation spatiotemporal regularization. The method was tested on a phantom and on a healthy rat, as well as on rats in a small myocardium-remodeling study. RESULTS The results showed a good match of the T1 estimates with the results obtained using the ground-truth method on a phantom and with the literature values for rats myocardium. The proposed 2D and 3D methods showed significant differences between normal and remodeling myocardium groups for acquisition lengths down to approximately 5 and 15 min, respectively. CONCLUSIONS A new 2D and 3D method for quantification of myocardial T1 in rats was proposed. We have shown the capability of both techniques to distinguish between normal and remodeling myocardial tissue. We have shown the effects of image-reconstruction regularization weights and acquisition length on the T1 estimates.
Collapse
Affiliation(s)
- Jiří Vitouš
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Radovan Jiřík
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia
| | - Tibor Stračina
- Department of Physiology, Masaryk University, Faculty of Medicine, Brno, Czechia
| | - Michal Hendrych
- First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine Masaryk University, Brno, Czechia
| | - Jaroslav Nádeníček
- Department of Physiology, Masaryk University, Faculty of Medicine, Brno, Czechia
| | - Ondřej Macíček
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia
| | - Ye Tian
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Lucie Krátká
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia
| | - Eva Dražanová
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marie Nováková
- Department of Physiology, Masaryk University, Faculty of Medicine, Brno, Czechia
| | - Petr Babula
- Department of Physiology, Masaryk University, Faculty of Medicine, Brno, Czechia
| | - Roman Panovský
- International Clinical Research Center, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
- 1st Department of Internal Medicine/Cardioangiology, St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Edward DiBella
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Zenon Starčuk
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
42
|
Shi YJ, Yang CG, Qiao WB, Liu YC, Liu SY, Dong GJ. Sacubitril/valsartan attenuates myocardial inflammation, hypertrophy, and fibrosis in rats with heart failure with preserved ejection fraction. Eur J Pharmacol 2023; 961:176170. [PMID: 37939991 DOI: 10.1016/j.ejphar.2023.176170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a multifaceted syndrome related to complex pathologic mechanisms. Sacubitril/valsartan (Sac/val) has demonstrated therapeutic efficacy in HFpEF treatment. However, additional research is required to elucidate its pharmacological mechanisms. Accordingly, this study aimed to explore the potential therapeutic effects of Sac/val in HFpEF rats and the underlying molecular mechanisms. In this study, rats with HFpEF were induced by subjecting spontaneously hypertensive rats to a diet rich in fats, salts, and sugars, along with administering streptozotocin. Subsequently, they were administered Sac/val at a daily dosage of 18 mg/kg. Finally, cardiac structure and function were assessed using echocardiography; Hematoxylin and eosin staining and Masson's trichrome staining were employed to evaluate the pathological changes; Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of pertinent mRNA and proteins. Sac/val treatment attenuated left ventricular (LV) remodeling and diastolic dysfunction in HFpEF rats, possibly related to its anti-inflammatory, anti-hypertrophic, and anti-fibrotic efficacy. Mechanistically, Sac/val might inhibit inflammation by down-regulating cell adhesion molecule (intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial cell adhesion molecule-1 (VCAM-1)) expression. Additionally, it blocked the phosphorylation of glycogen synthase kinase 3β (GSK-3β) to prevent cardiomyocyte hypertrophy. Furthermore, it effectively suppressed myocardial fibrosis by inhibiting the transforming growth factor-beta1 (TGF-β1)/Smads pathway. Our findings suggest that Sac/val improved LV remodeling and diastolic dysfunction, potentially attributed to its anti-inflammatory, anti-hypertrophic, and anti-fibrotic effects. These results provide a sound theoretical rationale for the clinical application of Sac/val in patients with HFpEF.
Collapse
Affiliation(s)
- Yu Jiao Shi
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Chen Guang Yang
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wen Bo Qiao
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yong Cheng Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Si Yu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Guo Ju Dong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
43
|
Wang X, Gaur M, Mounzih K, Rodriguez HJ, Qiu H, Chen M, Yan L, Cooper BA, Narayan S, Derakhshandeh R, Rao P, Han DD, Nabavizadeh P, Springer ML, John CM. Inhibition of galectin-3 post-infarction impedes progressive fibrosis by regulating inflammatory profibrotic cascades. Cardiovasc Res 2023; 119:2536-2549. [PMID: 37602717 PMCID: PMC10676456 DOI: 10.1093/cvr/cvad116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/02/2023] [Accepted: 05/12/2023] [Indexed: 08/22/2023] Open
Abstract
AIMS Acute myocardial infarction (MI) causes inflammation, collagen deposition, and reparative fibrosis in response to myocyte death and, subsequently, a pathological myocardial remodelling process characterized by excessive interstitial fibrosis, driving heart failure (HF). Nonetheless, how or when to limit excessive fibrosis for therapeutic purposes remains uncertain. Galectin-3, a major mediator of organ fibrosis, promotes cardiac fibrosis and remodelling. We performed a preclinical assessment of a protein inhibitor of galectin-3 (its C-terminal domain, Gal-3C) to limit excessive fibrosis resulting from MI and prevent ventricular enlargement and HF. METHODS AND RESULTS Gal-3C was produced by enzymatic cleavage of full-length galectin-3 or by direct expression of the truncated form in Escherichia coli. Gal-3C was intravenously administered for 7 days in acute MI models of young and aged rats, starting either pre-MI or 4 days post-MI. Echocardiography, haemodynamics, histology, and molecular and cellular analyses were performed to assess post-MI cardiac functionality and pathological fibrotic progression. Gal-3C profoundly benefitted left ventricular ejection fraction, end-systolic and end-diastolic volumes, haemodynamic parameters, infarct scar size, and interstitial fibrosis, with better therapeutic efficacy than losartan and spironolactone monotherapies over the 56-day study. Gal-3C therapy in post-MI aged rats substantially improved pump function and attenuated ventricular dilation, preventing progressive HF. Gal-3C in vitro treatment of M2-polarized macrophage-like cells reduced their M2-phenotypic expression of arginase-1 and interleukin-10. Gal-3C inhibited M2 polarization of cardiac macrophages during reparative response post-MI. Gal-3C impeded progressive fibrosis post-MI by down-regulating galectin-3-mediated profibrotic signalling cascades including a reduction in endogenous arginase-1 and inducible nitric oxide synthase (iNOS). CONCLUSION Gal-3C treatment improved long-term cardiac function post-MI by reduction in the wound-healing response, and inhibition of inflammatory fibrogenic signalling to avert an augmentation of fibrosis in the periinfarct region. Thus, Gal-3C treatment prevented the infarcted heart from extensive fibrosis that accelerates the development of HF, providing a potential targeted therapy.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Meenakshi Gaur
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Khalid Mounzih
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Hilda J Rodriguez
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Huiliang Qiu
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Ming Chen
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Liqiu Yan
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Brian A Cooper
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
| | - Shilpa Narayan
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Ronak Derakhshandeh
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Poonam Rao
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Daniel D Han
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Pooneh Nabavizadeh
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Matthew L Springer
- Division of Cardiology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, USA
| | - Constance M John
- MandalMed, Inc., 665 3rd Street, Suite 250, San Francisco, CA 94107, USA
- Department of Laboratory Medicine, University of California, San Francisco, 185 Berry Street, Suite 100, San Francisco, CA 94143, USA
| |
Collapse
|
44
|
Bengel FM, Diekmann J, Hess A, Jerosch-Herold M. Myocardial Fibrosis: Emerging Target for Cardiac Molecular Imaging and Opportunity for Image-Guided Therapy. J Nucl Med 2023; 64:49S-58S. [PMID: 37918842 DOI: 10.2967/jnumed.122.264867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Myocardial fibrosis is a major contributor to the development and progression of heart failure. Significant progress in the understanding of its pathobiology has led to the introduction and preclinical testing of multiple highly specific antifibrotic therapies. Because the mechanisms of fibrosis are highly dynamic, and because the involved cell populations are heterogeneous and plastic, there is increasing emphasis that any therapy directed specifically against myocardial fibrosis will require personalization and guidance by equally specific diagnostic testing for successful clinical translation. Noninvasive imaging techniques have undergone significant progress and provide increasingly specific information about the quantity, quality, and activity of myocardial fibrosis. Cardiac MRI can precisely map the extracellular space of the myocardium, whereas nuclear imaging characterizes activated fibroblasts and immune cells as the cellular components contributing to fibrosis. Existing techniques may be used in complementarity to provide the imaging biomarkers needed for the success of novel targeted therapies. This review provides a road map on how progress in basic fibrosis research, antifibrotic drug development, and high-end noninvasive imaging may come together to facilitate the success of fibrosis-directed cardiovascular medicine.
Collapse
Affiliation(s)
- Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Johanna Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Annika Hess
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | | |
Collapse
|
45
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
46
|
Saraste A, Knuuti J, Bengel F. Phenotyping heart failure by nuclear imaging of myocardial perfusion, metabolism, and molecular targets. Eur Heart J Cardiovasc Imaging 2023; 24:1318-1328. [PMID: 37294318 PMCID: PMC10531130 DOI: 10.1093/ehjci/jead128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Nuclear imaging techniques can detect and quantify pathophysiological processes underlying heart failure, complementing evaluation of cardiac structure and function with other imaging modalities. Combined imaging of myocardial perfusion and metabolism can identify left ventricle dysfunction caused by myocardial ischaemia that may be reversible after revascularization in the presence of viable myocardium. High sensitivity of nuclear imaging to detect targeted tracers has enabled assessment of various cellular and subcellular mechanisms of heart failure. Nuclear imaging of active inflammation and amyloid deposition is incorporated into clinical management algorithms of cardiac sarcoidosis and amyloidosis. Innervation imaging has well-documented prognostic value with respect to heart failure progression and arrhythmias. Emerging tracers specific for inflammation and myocardial fibrotic activity are in earlier stages of development but have demonstrated potential value in early characterization of the response to myocardial injury and prediction of adverse left ventricular remodelling. Early detection of disease activity is a key for transition from broad medical treatment of clinically overt heart failure towards a personalized approach aimed at supporting repair and preventing progressive failure. This review outlines the current status of nuclear imaging in phenotyping heart failure and combines it with discussion on novel developments.
Collapse
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4–8, 20520 Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Hämeentie 11, 20520 Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4–8, 20520 Turku, Finland
| | - Frank Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Raafs AG, Adriaans BP, Henkens MTHM, Verdonschot JAJ, Abdul Hamid MA, Díez J, Knackstedt C, van Empel VPM, Brunner-La Rocca HP, González A, Wildberger JE, Heymans SRB, Hazebroek MR. Biomarkers of Collagen Metabolism Are Associated with Left Ventricular Function and Prognosis in Dilated Cardiomyopathy: A Multi-Modal Study. J Clin Med 2023; 12:5695. [PMID: 37685762 PMCID: PMC10488673 DOI: 10.3390/jcm12175695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Collagen cross-linking is a fundamental process in dilated cardiomyopathy (DCM) and occurs when collagen deposition exceeds degradation, leading to impaired prognosis. This study investigated the associations of collagen-metabolism biomarkers with left ventricular function and prognosis in DCM. METHODS DCM patients who underwent endomyocardial biopsy, blood sampling, and cardiac MRI were included. The primary endpoint included death, heart failure hospitalization, or life-threatening arrhythmias, with a follow-up of 6 years (5-8). RESULTS In total, 209 DCM patients were included (aged 54 ± 13 years, 65% male). No associations were observed between collagen volume fraction, circulating carboxy-terminal propeptide of procollagen type-I (PICP), or collagen type I carboxy-terminal telopeptide [CITP] and matrix metalloproteinase [MMP]-1 ratio and cardiac function parameters. However, CITP:MMP-1 was significantly correlated with global longitudinal strain (GLS) in the total study sample (R = -0.40, p < 0.0001; lower CITP:MMP-1 ratio was associated with impaired GLS), with even stronger correlations in patients with LVEF > 40% (R = -0.70, p < 0.0001). Forty-seven (22%) patients reached the primary endpoint. Higher MMP-1 levels were associated with a worse outcome, even after adjustment for clinical and imaging predictors (1.026, 95% CI 1.002-1.051, p = 0.037), but CITP and CITP:MMP-1 were not. Combining MMP-1 and PICP improved the goodness-of-fit (LHR36.67, p = 0.004). CONCLUSION The degree of myocardial cross-linking (CITP:MMP-1) is associated with myocardial longitudinal contraction, and MMP-1 is an independent predictor of outcome in DCM patients.
Collapse
Affiliation(s)
- Anne G. Raafs
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
| | - Bouke P. Adriaans
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Michiel T. H. M. Henkens
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Netherlands Heart Institute (NLHI), 3511 EP Utrecht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Job A. J. Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Myrurgia A. Abdul Hamid
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, 31008 Pamplona, Spain; (J.D.); (A.G.)
- CIBERCV, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Christian Knackstedt
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Vanessa P. M. van Empel
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, 31008 Pamplona, Spain; (J.D.); (A.G.)
- CIBERCV, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Joachim E. Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Stephane R. B. Heymans
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Cardiovascular Research, University of Leuven, 3000 Leuven, Belgium
| | - Mark R. Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
| |
Collapse
|
48
|
Kerstens TP, Weerts J, van Dijk APJ, Weijers G, Knackstedt C, Eijsvogels TMH, Oxborough D, van Empel VPM, Thijssen DHJ. Association of left ventricular strain-volume loop characteristics with adverse events in patients with heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Imaging 2023; 24:1168-1176. [PMID: 37259911 PMCID: PMC10445262 DOI: 10.1093/ehjci/jead117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
AIMS Patients with heart failure with preserved ejection fraction (HFpEF) are characterized by impaired diastolic function. Left ventricular (LV) strain-volume loops (SVL) represent the relation between strain and volume during the cardiac cycle and provide insight into systolic and diastolic function characteristics. In this study, we examined the association of SVL parameters and adverse events in HFpEF. METHODS AND RESULTS In 235 patients diagnosed with HFpEF, LV-SVL were constructed based on echocardiography images. The endpoint was a composite of all-cause mortality and Heart Failure (HF)-related hospitalization, which was extracted from electronic medical records. Cox-regression analysis was used to assess the association of SVL parameters and the composite endpoint, while adjusting for age, sex, and NYHA class. HFpEF patients (72.3% female) were 75.8 ± 6.9 years old, had a BMI of 29.9 ± 5.4 kg/m2, and a left ventricular ejection fraction of 60.3 ± 7.0%. Across 2.9 years (1.8-4.1) of follow-up, 73 Patients (31%) experienced an event. Early diastolic slope was significantly associated with adverse events [second quartile vs. first quartile: adjusted hazards ratio (HR) 0.42 (95%CI 0.20-0.88)] after adjusting for age, sex, and NYHA class. The association between LV peak strain and adverse events disappeared upon correction for potential confounders [adjusted HR 1.02 (95% CI 0.96-1.08)]. CONCLUSION Early diastolic slope, representing the relationship between changes in LV volume and strain during early diastole, but not other SVL-parameters, was associated with adverse events in patients with HFpEF during 2.9 years of follow-up.
Collapse
Affiliation(s)
- Thijs P Kerstens
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jerremy Weerts
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P. Debyeplein 25, 6200 MD Maastricht, The Netherlands
| | - Arie P J van Dijk
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gert Weijers
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Christian Knackstedt
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P. Debyeplein 25, 6200 MD Maastricht, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX, UK
| | - Vanessa P M van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P. Debyeplein 25, 6200 MD Maastricht, The Netherlands
| | - Dick H J Thijssen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX, UK
| |
Collapse
|
49
|
Ala M. The beneficial effects of mesenchymal stem cells and their exosomes on myocardial infarction and critical considerations for enhancing their efficacy. Ageing Res Rev 2023; 89:101980. [PMID: 37302757 DOI: 10.1016/j.arr.2023.101980] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with regenerative, anti-inflammatory, and immunomodulatory properties. MSCs and their exosomes significantly improved structural and functional alterations after myocardial infarction (MI) in preclinical studies and clinical trials. By reprograming intracellular signaling pathways, MSCs attenuate inflammatory response, oxidative stress, apoptosis, pyroptosis, and endoplasmic reticulum (ER) stress and improve angiogenesis, mitochondrial biogenesis, and myocardial remodeling after MI. MSC-derived exosomes contain a mixture of non-coding RNAs, growth factors, anti-inflammatory mediators, and anti-fibrotic factors. Although primary results from clinical trials were promising, greater efficacies can be achieved by controlling several modifiable factors. The optimum timing of transplantation, route of administration, origin of MSCs, number of doses, and number of cells per dose need to be further investigated by future studies. Newly, highly effective MSC delivery systems have been developed to improve the efficacy of MSCs and their exosomes. Moreover, MSCs can be more efficacious after being pretreated with non-coding RNAs, growth factors, anti-inflammatory or inflammatory mediators, and hypoxia. Similarly, viral vector-mediated overexpression of particular genes can augment the protective effects of MSCs on MI. Therefore, future clinical trials must consider these advances in preclinical studies to properly reflect the efficacy of MSCs or their exosomes for MI.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|