1
|
Guo W, Chen H, Liu F, Chen B, Liu C, Cai Y. Peptide amphiphiles alleviate myocardial endoplasmic reticulum stress to enhance cardiomyocyte-macrophage communication and promote macrophage M2 polarization. J Control Release 2025; 378:719-734. [PMID: 39710208 DOI: 10.1016/j.jconrel.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Myocardial ischemia-reperfusion (I/R) injury represents a significant clinical challenge with limited therapeutic options. Single-cell RNA sequencing and bioinformatics analyses have revealed complex cellular interactions within cardiac tissue, highlighting the crucial role of cardiomyocytes in intercellular communication. During I/R injury, cardiomyocytes experience severe endoplasmic reticulum (ER) stress, leading to detrimental intercellular communication that affects surrounding cells, particularly promoting the transformation of macrophages toward a pro-inflammatory phenotype. This amplifies the inflammatory cascade and exacerbates tissue damage. Targeting injured cardiomyocytes and inhibiting their ER stress presents a promising therapeutic strategy to restore beneficial intercellular communication and maintain myocardial homeostasis, thereby reducing I/R injury. However, the lack of an effective ER stress inhibitor specifically targeting damaged cardiomyocytes constitutes a major barrier to translating mechanistic understanding into therapeutic implementation. Peptide amphiphiles (PA), with their unique amphiphilicity and bioactive functions, constitute ideal candidates for targeted drug delivery. In this study, we developed a cascade-responsive drug delivery system, CT-PA@Sal, which selectively targets damaged cardiomyocytes and controls the release of the ER stress inhibitor Salubrinal. CT-PA@Sal demonstrates superior targeting efficiency and enhanced drug bioavailability, enabling responsive release within injured cardiomyocytes. In vitro and in vivo experiments further show that CT-PA@Sal improves cardiomyocyte-macrophage communication, reduces cardiomyocyte apoptosis, and promotes anti-inflammatory M2 macrophage polarization. These effects preserve cardiac function and enhance tissue recovery following I/R injury. We envision that this investigation offers a prospective framework for developing targeted drugs to treat myocardial I/R injury.
Collapse
Affiliation(s)
- Wenjie Guo
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Huiming Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Boliang Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Canzhao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Center for Translational Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Nair V, Demitri C, Thankam FG. Competitive signaling and cellular communications in myocardial infarction response. Mol Biol Rep 2025; 52:129. [PMID: 39820809 PMCID: PMC11739196 DOI: 10.1007/s11033-025-10236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress. The overlapping communication pathways of Wnt/β-catenin, Notch, and c-Kit exhibit the involvement of important factors in cell competition in the myocardium. Depending on the effects of these pathways on genetic expression and signal amplification, the proliferative capacities of the previously stated cells that make up the myocardium, amplify or diminish. This creates a distinct classification of "fit" and "unfit" cells. Beyond straightforward traits, the intricate metabolite interactions between neighboring cells unveil a complex battle. Strategic manipulation of these pathways holds translational promise for rapid cardiac recovery post-trauma.
Collapse
Affiliation(s)
- Vishnu Nair
- Department of Molecular, Cell, & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
3
|
Hunkler HJ, Pralas AK, Bär C. Non-coding sabotage: How Gadlor lncRNAs hijack heart function. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102365. [PMID: 39554993 PMCID: PMC11566694 DOI: 10.1016/j.omtn.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Affiliation(s)
- Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Anita-Koula Pralas
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| |
Collapse
|
4
|
Logotheti S, Pavlopoulou A, Rudsari HK, Galow AM, Kafalı Y, Kyrodimos E, Giotakis AI, Marquardt S, Velalopoulou A, Verginadis II, Koumenis C, Stiewe T, Zoidakis J, Balasingham I, David R, Georgakilas AG. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: the paradigm of radiotherapy. Pharmacol Ther 2024; 260:108670. [PMID: 38823489 DOI: 10.1016/j.pharmthera.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Advances in cancer therapeutics have improved patient survival rates. However, cancer survivors may suffer from adverse events either at the time of therapy or later in life. Cardiovascular diseases (CVD) represent a clinically important, but mechanistically understudied complication, which interfere with the continuation of best-possible care, induce life-threatening risks, and/or lead to long-term morbidity. These concerns are exacerbated by the fact that targeted therapies and immunotherapies are frequently combined with radiotherapy, which induces durable inflammatory and immunogenic responses, thereby providing a fertile ground for the development of CVDs. Stressed and dying irradiated cells produce 'danger' signals including, but not limited to, major histocompatibility complexes, cell-adhesion molecules, proinflammatory cytokines, and damage-associated molecular patterns. These factors activate intercellular signaling pathways which have potentially detrimental effects on the heart tissue homeostasis. Herein, we present the clinical crosstalk between cancer and heart diseases, describe how it is potentiated by cancer therapies, and highlight the multifactorial nature of the underlying mechanisms. We particularly focus on radiotherapy, as a case known to often induce cardiovascular complications even decades after treatment. We provide evidence that the secretome of irradiated tumors entails factors that exert systemic, remote effects on the cardiac tissue, potentially predisposing it to CVDs. We suggest how diverse disciplines can utilize pertinent state-of-the-art methods in feasible experimental workflows, to shed light on the molecular mechanisms of radiotherapy-related cardiotoxicity at the organismal level and untangle the desirable immunogenic properties of cancer therapies from their detrimental effects on heart tissue. Results of such highly collaborative efforts hold promise to be translated to next-generation regimens that maximize tumor control, minimize cardiovascular complications, and support quality of life in cancer survivors.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece; Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Yağmur Kafalı
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Efthymios Kyrodimos
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris I Giotakis
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197 Berlin, Germany
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany; German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany; Genomics Core Facility, Philipps-University, 35043 Marburg, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece.
| |
Collapse
|
5
|
Fernandez-Patron C, Lopaschuk GD, Hardy E. A self-reinforcing cycle hypothesis in heart failure pathogenesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:627-636. [PMID: 39196226 DOI: 10.1038/s44161-024-00480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 08/29/2024]
Abstract
Heart failure is a progressive syndrome with high morbidity and mortality rates. Here, we suggest that chronic exposure of the heart to risk factors for heart failure damages heart mitochondria, thereby impairing energy production to levels that can suppress the heart's ability to pump blood and repair mitochondria (both energy-consuming processes). As damaged mitochondria accumulate, the heart becomes deprived of energy in a 'self-reinforcing cycle', which can persist after the heart is no longer chronically exposed to (or after antagonism of) the risk factors that initiated the cycle. Together with other previously described pathological mechanisms, this proposed cycle can help explain (1) why heart failure progresses, (2) why it can recur after cessation of treatment, and (3) why heart failure is often accompanied by dysfunction of multiple organs. Ideally, therapy of heart failure syndrome would be best attempted before the self-reinforcing cycle is triggered or designed to break the self-reinforcing cycle.
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Cardiovascular Research Centre, Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
6
|
Wang X, Rao J, Chen X, Wang Z, Zhang Y. Identification of Shared Signature Genes and Immune Microenvironment Subtypes for Heart Failure and Chronic Kidney Disease Based on Machine Learning. J Inflamm Res 2024; 17:1873-1895. [PMID: 38533476 PMCID: PMC10964169 DOI: 10.2147/jir.s450736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background A complex interrelationship exists between Heart Failure (HF) and chronic kidney disease (CKD). This study aims to clarify the molecular mechanisms of the organ-to-organ interplay between heart failure and CKD, as well as to identify extremely sensitive and specific biomarkers. Methods Differentially expressed tandem genes were identified from HF and CKD microarray datasets and enrichment analyses of tandem perturbation genes were performed to determine their biological functions. Machine learning algorithms are utilized to identify diagnostic biomarkers and evaluate the model by ROC curves. RT-PCR was employed to validate the accuracy of diagnostic biomarkers. Molecular subtypes were identified based on tandem gene expression profiling, and immune cell infiltration of different subtypes was examined. Finally, the ssGSEA score was used to build the ImmuneScore model and to assess the differentiation between subtypes using ROC curves. Results Thirty-three crosstalk genes were associated with inflammatory, immune and metabolism-related signaling pathways. The machine-learning algorithm identified 5 hub genes (PHLDA1, ATP1A1, IFIT2, HLTF, and MPP3) as the optimal shared diagnostic biomarkers. The expression levels of tandem genes were negatively correlated with left ventricular ejection fraction and glomerular filtration rate. The CIBERSORT results indicated the presence of severe immune dysregulation in patients with HF and CKD, which was further validated at the single-cell level. Consensus clustering classified HF and CKD patients into immune and metabolic subtypes. Twelve immune genes associated with immune subtypes were screened based on WGCNA analysis, and an ImmuneScore model was constructed for high and low risk. The model accurately predicted different molecular subtypes of HF or CKD. Conclusion Five crosstalk genes may serve as potential biomarkers for diagnosing HF and CKD and are involved in disease progression. Metabolite disorders causing activation of a large number of immune cells explain the common pathogenesis of HF and CKD.
Collapse
Affiliation(s)
- Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiangyu Chen
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yufeng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Chen W, Li C, Chen Y, Bin J, Chen Y. Cardiac cellular diversity and functionality in cardiac repair by single-cell transcriptomics. Front Cardiovasc Med 2023; 10:1237208. [PMID: 37920179 PMCID: PMC10619858 DOI: 10.3389/fcvm.2023.1237208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Cardiac repair after myocardial infarction (MI) is orchestrated by multiple intrinsic mechanisms in the heart. Identifying cardiac cell heterogeneity and its effect on processes that mediate the ischemic myocardium repair may be key to developing novel therapeutics for preventing heart failure. With the rapid advancement of single-cell transcriptomics, recent studies have uncovered novel cardiac cell populations, dynamics of cell type composition, and molecular signatures of MI-associated cells at the single-cell level. In this review, we summarized the main findings during cardiac repair by applying single-cell transcriptomics, including endogenous myocardial regeneration, myocardial fibrosis, angiogenesis, and the immune microenvironment. Finally, we also discussed the integrative analysis of spatial multi-omics transcriptomics and single-cell transcriptomics. This review provided a basis for future studies to further advance the mechanism and development of therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
8
|
Sun YH, Wu YL, Liao BY. Phenotypic heterogeneity in human genetic diseases: ultrasensitivity-mediated threshold effects as a unifying molecular mechanism. J Biomed Sci 2023; 30:58. [PMID: 37525275 PMCID: PMC10388531 DOI: 10.1186/s12929-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Phenotypic heterogeneity is very common in genetic systems and in human diseases and has important consequences for disease diagnosis and treatment. In addition to the many genetic and non-genetic (e.g., epigenetic, environmental) factors reported to account for part of the heterogeneity, we stress the importance of stochastic fluctuation and regulatory network topology in contributing to phenotypic heterogeneity. We argue that a threshold effect is a unifying principle to explain the phenomenon; that ultrasensitivity is the molecular mechanism for this threshold effect; and discuss the three conditions for phenotypic heterogeneity to occur. We suggest that threshold effects occur not only at the cellular level, but also at the organ level. We stress the importance of context-dependence and its relationship to pleiotropy and edgetic mutations. Based on this model, we provide practical strategies to study human genetic diseases. By understanding the network mechanism for ultrasensitivity and identifying the critical factor, we may manipulate the weak spot to gently nudge the system from an ultrasensitive state to a stable non-disease state. Our analysis provides a new insight into the prevention and treatment of genetic diseases.
Collapse
Affiliation(s)
- Y Henry Sun
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | - Yueh-Lin Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institute, Zhunan, Miaoli, Taiwan
| |
Collapse
|
9
|
The Function and Therapeutic Potential of lncRNAs in Cardiac Fibrosis. BIOLOGY 2023; 12:biology12020154. [PMID: 36829433 PMCID: PMC9952806 DOI: 10.3390/biology12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Cardiac fibrosis remains an unresolved problem in cardiovascular diseases. Fibrosis of the myocardium plays a key role in the clinical outcomes of patients with heart injuries. Moderate fibrosis is favorable for cardiac structure maintaining and contractile force transmission, whereas adverse fibrosis generally progresses to ventricular remodeling and cardiac systolic or diastolic dysfunction. The molecular mechanisms involved in these processes are multifactorial and complex. Several molecular mechanisms, such as TGF-β signaling pathway, extracellular matrix (ECM) synthesis and degradation, and non-coding RNAs, positively or negatively regulate myocardial fibrosis. Long noncoding RNAs (lncRNAs) have emerged as significant mediators in gene regulation in cardiovascular diseases. Recent studies have demonstrated that lncRNAs are crucial in genetic programming and gene expression during myocardial fibrosis. We summarize the function of lncRNAs in cardiac fibrosis and their contributions to miRNA expression, TGF-β signaling, and ECMs synthesis, with a particular attention on the exosome-derived lncRNAs in the regulation of adverse fibrosis as well as the mode of action of lncRNAs secreted into exosomes. We also discuss how the current knowledge on lncRNAs can be applied to develop novel therapeutic strategies to prevent or reverse cardiac fibrosis.
Collapse
|
10
|
Abstract
BACKGROUND Chronic heart failure (CHF) is associated with redox imbalance. Downregulation of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) plays important roles in disrupting myocardial redox homeostasis and mediating sympathetic nerve activity in the setting of CHF. However, it is unclear if circulating extracellular vesicles (EVs) elicit sympathetic excitation in CHF by disrupting central redox homeostasis. We tested the hypothesis that cardiac-derived EVs circulate to the presympathetic rostral ventrolateral medulla and contribute to oxidative stress and sympathetic excitation via EV-enriched microRNA-mediated Nrf2 downregulation. METHODS Data were collected on rats with CHF post-myocardial infarction (MI) and on human subjects with ischemic CHF. EVs were isolated from tissue and plasma, and we determined the miRNAs cargo that related to targeting Nrf2 translation. We tracked the distribution of cardiac-derived EVs using in vitro labeled circulating EVs and cardiac-specific membrane GFP+ transgenic mice. Finally, we tested the impact of exogenously loading of antagomirs to specific Nrf2-related miRNAs on CHF-EV-induced pathophysiological phenotypes in normal rats (eg, sympathetic and cardiac function). RESULTS Nrf2 downregulation in CHF rats was associated with an upregulation of Nrf2-targeting miRNAs, which were abundant in cardiac-derived and circulating EVs from rats and humans. EVs isolated from the brain of CHF rats were also enriched with Nrf2-targeting miRNAs and cardiac-specific miRNAs. Cardiac-derived EVs were taken up by neurons in the rostral ventrolateral medulla. The administration of cardiac-derived and circulating EVs from CHF rats into the rostral ventrolateral medulla of normal rats evoked an increase in renal sympathetic nerve activity and plasma norepinephrine compared with Sham-operated rats, which were attenuated by exogenously preloading CHF-EVs with antagomirs to Nrf2-targeting miRNAs. CONCLUSIONS Cardiac microRNA-enriched EVs from animals with CHF can mediate crosstalk between the heart and the brain in the regulation of sympathetic outflow by targeting the Nrf2/antioxidant signaling pathway. This new endocrine signaling pathway regulating sympathetic outflow in CHF may be exploited for novel therapeutics.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tara L. Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
11
|
Candidate microRNAs as prognostic biomarkers in heart failure: A systematic review. Rev Port Cardiol 2022; 41:865-885. [DOI: 10.1016/j.repc.2021.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
|
12
|
Wang S, Lv T, Chen Q, Yang Y, Xu L, Zhang X, Wang E, Hu X, Liu Y. Transcriptome sequencing and lncRNA-miRNA-mRNA network construction in cardiac fibrosis and heart failure. Bioengineered 2022; 13:7118-7133. [PMID: 35235759 PMCID: PMC8974171 DOI: 10.1080/21655979.2022.2045839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cardiac fibrosis (CF) and heart failure (HF) are common heart diseases, and severe CF can lead to HF. In this study, we tried to find their common potential molecular markers, which may help the diagnosis and treatment of CF and HF. RNA library construction and high-throughput sequencing were performed. The DESeq2 package in R was used to screen differentially expressed mRNAs (DEmRNAs), differentially expressed lncRNA (DElncRNAs) and differentially expressed miRNA (DEmiRNAs) between different samples. The common DEmRNAs, DElncRNAs and DEmiRNAs for the two diseases were obtained. The ConsensusPathDB (CPDB) was used to perform biological function enrichment for common DEmRNAs. Gene interaction network was constructed to screen out key genes. Subsequently, real-time polymerase chain reaction (RT-PCR) verification was performed. Lastly, GSE104150 and GSE21125 data sets were utilized for expression validation and diagnostic analysis. There were 1477 DEmRNAs, 502 DElncRNAs and 36 DEmiRNAs between CF and healthy control group. There were 607 DEmRNAs, 379DElncRNAs,s and 42 DEmiRNAs between HF and healthy control group. CH and FH shared 146 DEmRNAs, 80 DElncRNAs, and 6 DEmiRNAs. Hsa-miR-144-3p, CCNE2, C9orf72, MAP3K20-AS1, LEF1-AS1, AC243772.2, FLJ46284, and AC239798.2 were key molecules in lncRNA-miRNA-mRNA network. In addition, hsa-miR-144-3p and CCNE2 may be considered as potential diagnostic gene biomarkers in HF. In this study, the identification of common biomarkers of CF and HF may help prevent CF to HF transition as early as possible.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Tianjie Lv
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Qincong Chen
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Yan Yang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Lei Xu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Xiaolei Zhang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Enmao Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Xitian Hu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| | - Yuying Liu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhaung, HB, China
| |
Collapse
|
13
|
Finke D, Heckmann MB, Frey N, Lehmann LH. Cancer-A Major Cardiac Comorbidity With Implications on Cardiovascular Metabolism. Front Physiol 2021; 12:729713. [PMID: 34899373 PMCID: PMC8662519 DOI: 10.3389/fphys.2021.729713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases have multifactorial causes. Classical cardiovascular risk factors, such as arterial hypertension, smoking, hyperlipidemia, and diabetes associate with the development of vascular stenoses and coronary heart disease. Further comorbidities and its impact on cardiovascular metabolism have gotten more attention recently. Thus, also cancer biology may affect the heart, apart from cardiotoxic side effects of chemotherapies. Cancer is a systemic disease which primarily leads to metabolic alterations within the tumor. An emerging number of preclinical and clinical studies focuses on the interaction between cancer and a maladaptive crosstalk to the heart. Cachexia and sarcopenia can have dramatic consequences for many organ functions, including cardiac wasting and heart failure. These complications significantly increase mortality and morbidity of heart failure and cancer patients. There are concurrent metabolic changes in fatty acid oxidation (FAO) and glucose utilization in heart failure as well as in cancer, involving central molecular regulators, such as PGC-1α. Further, specific inflammatory cytokines (IL-1β, IL-6, TNF-α, INF-β), non-inflammatory cytokines (myostatin, SerpinA3, Ataxin-10) and circulating metabolites (D2-HG) may mediate a direct and maladaptive crosstalk of both diseases. Additionally, cancer therapies, such as anthracyclines and angiogenesis inhibitors target common metabolic mechanisms in cardiomyocytes and malignant cells. This review focuses on cardiovascular, cancerous, and cancer therapy-associated alterations on the systemic and cardiac metabolic state.
Collapse
Affiliation(s)
- Daniel Finke
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Markus B Heckmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lorenz H Lehmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Deutsches Krebsfoschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Designer Exosomes: Smart Nano-Communication Tools for Translational Medicine. Bioengineering (Basel) 2021; 8:bioengineering8110158. [PMID: 34821724 PMCID: PMC8615258 DOI: 10.3390/bioengineering8110158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Exosomes are the master transporters of genes, RNAs, microRNAs, proteins, and lipids. They have applications in major diseases, including cancer, cardiovascular diseases, neurological disorders, and diabetes mellitus. Delivery of the exosomes to recipient cells is governed by the functional heterogenicity of the tissues. Engineered exosomes are promising tools in tissue regeneration. In addition to their role as intracellular communication cargos, exosomes are increasingly primed as standard biomarkers in the progression of diseases, thereby solving the diagnostic dilemma. Futuristic empowerment of exosomes with OMICS strategy can undoubtedly be a bio-tool in translational medicine. This review discusses the advent transformation of exosomes in regenerative medicine and limitations that are caveats to broader applications in clinical use.
Collapse
|
15
|
Flores-Vergara R, Olmedo I, Aránguiz P, Riquelme JA, Vivar R, Pedrozo Z. Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-β, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules. Front Physiol 2021; 12:716721. [PMID: 34539441 PMCID: PMC8446518 DOI: 10.3389/fphys.2021.716721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Communication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue. Under pathological conditions, such as myocardial infarction, humoral factors released by these cells may induce tissue damage or protection, depending on the type and concentration of molecules secreted. Cardiac remodeling is also mediated by the factors secreted by cardiomyocytes and fibroblasts that are involved in the extensive reciprocal interactions between these cells. Identifying the molecules and cellular signal pathways implicated in these processes will be crucial for creating effective tissue-preserving treatments during or after reperfusion. Numerous therapies to protect cardiac tissue from reperfusion-induced injury have been explored, and ample pre-clinical research has attempted to identify drugs or techniques to mitigate cardiac damage. However, despite great success in animal models, it has not been possible to completely translate these cardioprotective effects to human applications. This review provides a current summary of the principal molecules, pathways, and mechanisms underlying cardiomyocyte and cardiac fibroblast crosstalk during ischemia/reperfusion injury. We also discuss pre-clinical molecules proposed as treatments for myocardial infarction and provide a clinical perspective on these potential therapeutic agents.
Collapse
Affiliation(s)
- Raúl Flores-Vergara
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Jaime Andrés Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
| | - Raúl Vivar
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
16
|
Bermúdez V, Durán P, Rojas E, Díaz MP, Rivas J, Nava M, Chacín M, Cabrera de Bravo M, Carrasquero R, Ponce CC, Górriz JL, D´Marco L. The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium. Front Endocrinol (Lausanne) 2021; 12:735070. [PMID: 34603210 PMCID: PMC8479191 DOI: 10.3389/fendo.2021.735070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen in the human obese phenotype. These processes promote an abnormal adipocyte proteomic reprogramming, whereby these cells become a source of abnormal signals, affecting vascular and myocardial tissues, leading to meta-inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure and myocardial infarction. This review first discusses the pathophysiology and consequences of adipose tissue expansion, particularly their association with meta-inflammation and microbiota dysbiosis. We also explore the precise mechanisms involved in metabolic reprogramming in AT that represent plausible causative factors for CVD. Finally, we clarify how lifestyle changes could promote improvement in myocardiocyte function in the context of changes in AT proteomics and a better gut microbiome profile to develop effective, non-pharmacologic approaches to CVD.
Collapse
Affiliation(s)
- Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Edward Rojas
- Cardiovascular Division, University Hospital, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Rivas
- Department of Medicine, Cardiology Division, University of Florida-College of Medicine, Jacksonville, FL, United States
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano Ponce
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Luis Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Luis D´Marco
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
17
|
Scott A, Sueiro Ballesteros L, Bradshaw M, Tsuji C, Power A, Lorriman J, Love J, Paul D, Herman A, Emanueli C, Richardson RJ. In Vivo Characterization of Endogenous Cardiovascular Extracellular Vesicles in Larval and Adult Zebrafish. Arterioscler Thromb Vasc Biol 2021; 41:2454-2468. [PMID: 34261327 PMCID: PMC8384253 DOI: 10.1161/atvbaha.121.316539] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Objective Extracellular vesicles (EVs) facilitate molecular transport across extracellular space, allowing local and systemic signaling during homeostasis and in disease. Extensive studies have described functional roles for EV populations, including during cardiovascular disease, but the in vivo characterization of endogenously produced EVs is still in its infancy. Because of their genetic tractability and live imaging amenability, zebrafish represent an ideal but under-used model to investigate endogenous EVs. We aimed to establish a transgenic zebrafish model to allow the in vivo identification, tracking, and extraction of endogenous EVs produced by different cell types. Approach and Results Using a membrane-tethered fluorophore reporter system, we show that EVs can be fluorescently labeled in larval and adult zebrafish and demonstrate that multiple cell types including endothelial cells and cardiomyocytes actively produce EVs in vivo. Cell-type specific EVs can be tracked by high spatiotemporal resolution light-sheet live imaging and modified flow cytometry methods allow these EVs to be further evaluated. Additionally, cryo electron microscopy reveals the full morphological diversity of larval and adult EVs. Importantly, we demonstrate the utility of this model by showing that different cell types exchange EVs in the adult heart and that ischemic injury models dynamically alter EV production. Conclusions We describe a powerful in vivo zebrafish model for the investigation of endogenous EVs in all aspects of cardiovascular biology and pathology. A cell membrane fluorophore labeling approach allows cell-type specific tracing of EV origin without bias toward the expression of individual protein markers and will allow detailed future examination of their function.
Collapse
Affiliation(s)
- Aaron Scott
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Lorena Sueiro Ballesteros
- Flow Cytometry Facility, Faculty of Biomedical Sciences (L.S.B., A.H.)
- Now with Charles River Laboratories, Discovery House, Quays Office Park, Conference Avenue, Portishead, Bristol, United Kingdom (L.S.B.)
| | - Marston Bradshaw
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Chisato Tsuji
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Ann Power
- BioEconomy Centre, The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, United Kingdom (A.P., J.L.)
| | - James Lorriman
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - John Love
- BioEconomy Centre, The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, United Kingdom (A.P., J.L.)
| | - Danielle Paul
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Andrew Herman
- Flow Cytometry Facility, Faculty of Biomedical Sciences (L.S.B., A.H.)
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Science (C.E.), University of Bristol, United Kingdom
- National Heart and Lung Institute, Imperial College London, United Kingdom (C.E.)
| | - Rebecca J. Richardson
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| |
Collapse
|
18
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Ryan R, Moyse BR, Richardson RJ. Zebrafish cardiac regeneration-looking beyond cardiomyocytes to a complex microenvironment. Histochem Cell Biol 2020; 154:533-548. [PMID: 32926230 PMCID: PMC7609419 DOI: 10.1007/s00418-020-01913-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
The study of heart repair post-myocardial infarction has historically focused on the importance of cardiomyocyte proliferation as the major factor limiting adult mammalian heart regeneration. However, there is mounting evidence that a narrow focus on this one cell type discounts the importance of a complex cascade of cell-cell communication involving a whole host of different cell types. A major difficulty in the study of heart regeneration is the rarity of this process in adult animals, meaning a mammalian template for how this can be achieved is lacking. Here, we review the adult zebrafish as an ideal and unique model in which to study the underlying mechanisms and cell types required to attain complete heart regeneration following cardiac injury. We provide an introduction to the role of the cardiac microenvironment in the complex regenerative process and discuss some of the key advances using this in vivo vertebrate model that have recently increased our understanding of the vital roles of multiple different cell types. Due to the sheer number of exciting studies describing new and unexpected roles for inflammatory cell populations in cardiac regeneration, this review will pay particular attention to these important microenvironment participants.
Collapse
Affiliation(s)
- Rebecca Ryan
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Bethany R Moyse
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Rebecca J Richardson
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
20
|
Videira RF, da Costa Martins PA. Non-coding RNAs in Cardiac Intercellular Communication. Front Physiol 2020; 11:738. [PMID: 33013428 PMCID: PMC7509180 DOI: 10.3389/fphys.2020.00738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Intercellular communication allows for molecular information to be transferred from cell to cell, in order to maintain tissue or organ homeostasis. Alteration in the process due to changes, either on the vehicle or the cargo information, may contribute to pathological events, such as cardiac pathological remodeling. Extracellular vesicles (EVs), namely exosomes, are double-layer vesicles secreted by cells to mediate intercellular communication, both locally and systemically. EVs can carry different types of cargo, including non-coding RNAs (ncRNAs), which, are major regulators of physiological and pathological processes. ncRNAs transported in EVs are functionally active and trigger a cascade of processes in the recipient cells. Upon cardiac injury, exosomal ncRNAs can derive from and target different cardiac cell types to initiate cellular and molecular remodeling events such as hypertrophic growth, cardiac fibrosis, endothelial dysfunction, and inflammation, all contributing to cardiac dysfunction and, eventually, heart failure. Exosomal ncRNAs are currently accepted as crucial players in the process of cardiac pathological remodeling and alterations in their presence profile in EVs may attenuate cardiac dysfunction, suggesting that exosomal ncRNAs are potential new therapeutic targets. Here, we review the current research on the role of ncRNAs in intercellular communication, in the context of cardiac pathological remodeling.
Collapse
Affiliation(s)
- Raquel Figuinha Videira
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands.,Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Matilla L, Arrieta V, Jover E, Garcia-Peña A, Martinez-Martinez E, Sadaba R, Alvarez V, Navarro A, Fernandez-Celis A, Gainza A, Santamaria E, Fernandez-Irigoyen J, Rossignol P, Zannad F, Lopez-Andres N. Soluble St2 Induces Cardiac Fibroblast Activation and Collagen Synthesis via Neuropilin-1. Cells 2020; 9:cells9071667. [PMID: 32664340 PMCID: PMC7408622 DOI: 10.3390/cells9071667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Circulating levels of soluble interleukin 1 receptor-like 1 (sST2) are increased in heart failure and associated with poor outcome, likely because of the activation of inflammation and fibrosis. We investigated the pathogenic role of sST2 as an inductor of cardiac fibroblasts activation and collagen synthesis. The effects of sST2 on human cardiac fibroblasts was assessed using proteomics and immunodetection approaches to evidence the upregulation of neuropilin-1 (NRP-1), a regulator of the profibrotic transforming growth factor (TGF)-β1. In parallel, sST2 increased fibroblast activation, collagen and fibrosis mediators. Pharmacological inhibition of nuclear factor-kappa B (NF-κB) restored NRP-1 levels and blocked profibrotic effects induced by sST2. In NRP-1 knockdown cells, sST2 failed to induce fibroblast activation and collagen synthesis. Exogenous NRP-1 enhanced cardiac fibroblast activation and collagen synthesis via NF-κB. In a pressure overload rat model, sST2 was elevated in association with cardiac fibrosis and was positively correlated with NRP-1 expression. Our study shows that sST2 induces human cardiac fibroblasts activation, as well as the synthesis of collagen and profibrotic molecules. These effects are mediated by NRP-1. The blockade of NF-κB restored NRP-1 expression, improving the profibrotic status induced by sST2. These results show a new pathogenic role for sST2 and its mediator, NRP-1, as cardiac fibroblast activators contributing to cardiac fibrosis.
Collapse
Affiliation(s)
- Lara Matilla
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Vanessa Arrieta
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Eva Jover
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Amaia Garcia-Peña
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Ernesto Martinez-Martinez
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
- Departamento de Fisiología, Facultad Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, 28040 Madrid, Spain
| | - Rafael Sadaba
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Virginia Alvarez
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Adela Navarro
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Amaya Fernandez-Celis
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Alicia Gainza
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Institute for Health Research, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (E.S.); (J.F.-I.)
| | - Joaquín Fernandez-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Institute for Health Research, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (E.S.); (J.F.-I.)
| | - Patrick Rossignol
- INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, 54035 Nancy, France; (P.R.); (F.Z.)
| | - Faiez Zannad
- INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, 54035 Nancy, France; (P.R.); (F.Z.)
| | - Natalia Lopez-Andres
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
- INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, 54035 Nancy, France; (P.R.); (F.Z.)
- Correspondence: ; Tel.: +34-848428539; Fax: +34-848422300
| |
Collapse
|
22
|
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D. Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med 2020; 24:7214-7227. [PMID: 32485073 PMCID: PMC7339231 DOI: 10.1111/jcmm.15251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR‐676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR‐676 as a new reference control for the EV miR studies.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald E Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Tikhomirov R, Reilly-O’Donnell B, Catapano F, Faggian G, Gorelik J, Martelli F, Emanueli C. Exosomes: From Potential Culprits to New Therapeutic Promise in the Setting of Cardiac Fibrosis. Cells 2020; 9:E592. [PMID: 32131460 PMCID: PMC7140485 DOI: 10.3390/cells9030592] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a significant global health problem associated with many inflammatory and degenerative diseases affecting multiple organs, individually or simultaneously. Fibrosis develops when extracellular matrix (ECM) remodeling becomes excessive or uncontrolled and is associated with nearly all forms of heart disease. Cardiac fibroblasts and myofibroblasts are the main effectors of ECM deposition and scar formation. The heart is a complex multicellular organ, where the various resident cell types communicate between themselves and with cells of the blood and immune systems. Exosomes, which are small extracellular vesicles, (EVs), contribute to cell-to-cell communication and their pathophysiological relevance and therapeutic potential is emerging. Here, we will critically review the role of endogenous exosomes as possible fibrosis mediators and discuss the possibility of using stem cell-derived and/or engineered exosomes as anti-fibrotic agents.
Collapse
Affiliation(s)
- Roman Tikhomirov
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, Policlinico G., B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy; (G.F.); (F.M.)
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese Milano, Italy
| | - Benedict Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| | - Giuseppe Faggian
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, Policlinico G., B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy; (G.F.); (F.M.)
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| | - Fabio Martelli
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, Policlinico G., B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy; (G.F.); (F.M.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (R.T.); (B.R.-O.); (F.C.); (J.G.)
| |
Collapse
|
24
|
Cao M, Yuan W, Peng M, Mao Z, Zhao Q, Sun X, Yan J. Role of CyPA in cardiac hypertrophy and remodeling. Biosci Rep 2019; 39:BSR20193190. [PMID: 31825469 PMCID: PMC6928530 DOI: 10.1042/bsr20193190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological cardiac hypertrophy is a complex process and eventually develops into heart failure, in which the heart responds to various intrinsic or external stress, involving increased interstitial fibrosis, cell death and cardiac dysfunction. Studies have shown that oxidative stress is an important mechanism for this maladaptation. Cyclophilin A (CyPA) is a member of the cyclophilin (CyPs) family. Many cells secrete CyPA to the outside of the cells in response to oxidative stress. CyPA from blood vessels and the heart itself participate in a variety of signaling pathways to regulate the production of reactive oxygen species (ROS) and mediate inflammation, promote cardiomyocyte hypertrophy and proliferation of cardiac fibroblasts, stimulate endothelial injury and vascular smooth muscle hyperplasia, and promote the dissolution of extracellular matrix (ECM) by activating matrix metalloproteinases (MMPs). The events triggered by CyPA cause a decline of diastolic and systolic function and finally lead to the occurrence of heart failure. This article aims to introduce the role and mechanism of CyPA in cardiac hypertrophy and remodeling, and highlights its potential role as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Meiling Peng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Ziqi Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Qianru Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Xia Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| |
Collapse
|
25
|
Sciatti E, Dallapellegrina L, Metra M, Lombardi CM. New drugs for the treatment of chronic heart failure with a reduced ejection fraction. J Cardiovasc Med (Hagerstown) 2019; 20:650-659. [DOI: 10.2459/jcm.0000000000000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Long Noncoding RNA-Enriched Vesicles Secreted by Hypoxic Cardiomyocytes Drive Cardiac Fibrosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:363-374. [PMID: 31634682 PMCID: PMC6807307 DOI: 10.1016/j.omtn.2019.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) have potential as novel therapeutic targets in cardiovascular diseases, but detailed information about the intercellular lncRNA shuttling mechanisms in the heart is lacking. Here, we report an important novel crosstalk between cardiomyocytes and fibroblasts mediated by the transfer of lncRNA-enriched extracellular vesicles (EVs) in the context of cardiac ischemia. lncRNA profiling identified two hypoxia-sensitive lncRNAs: ENSMUST00000122745 was predominantly found in small EVs, whereas lncRNA Neat1 was enriched in large EVs in vitro and in vivo. Vesicles were taken up by fibroblasts, triggering expression of profibrotic genes. In addition, lncRNA Neat1 was transcriptionally regulated by P53 under basal conditions and by HIF2A during hypoxia. The function of Neat1 was further elucidated in vitro and in vivo. Silencing of Neat1 in vitro revealed that Neat1 was indispensable for fibroblast and cardiomyocyte survival and affected fibroblast functions (reduced migration capacity, stalled cell cycle, and decreased expression of fibrotic genes). Of translational importance, genetic loss of Neat1 in vivo resulted in an impaired heart function after myocardial infarction highlighting its translational relevance.
Collapse
|
27
|
Organ crosstalk: the potent roles of inflammation and fibrotic changes in the course of organ interactions. Inflamm Res 2019; 68:825-839. [PMID: 31327029 DOI: 10.1007/s00011-019-01271-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Organ crosstalk can be defined as the complex and mutual biological communication between distant organs mediated by signaling factors. Normally, crosstalk helps to coordinate and maintain homeostasis, but sudden or chronic dysfunction in any organ causes dysregulation in another organ. Many signal molecules, including cytokines and growth factors, are involved in the metabolic dysregulation, and excessive or inappropriate release of these molecules leads to organ dysfunction or disease (e.g., obesity, type 2 diabetes). AIM AND METHOD The aim of this review is to reveal the impact of organ crosstalk on the pathogenesis of diseases associated with organ interactions and the role of inflammatory and fibrotic changes in the organ dysfunction. After searching in MEDLINE, PubMed and Google Scholar databases using 'organ crosstalk' as a keyword, studies related to organ crosstalk and organ interaction were compiled and examined. CONCLUSION The organ crosstalk and the functional integration of organ systems are exceedingly complex processes. Organ crosstalk contributes to metabolic homeostasis and affects the inflammatory response, related pathways and fibrotic changes. As in the case of interactions between adipose tissue and intestine, stimulation of inflammatory mechanisms plays an active role in the development of diseases including insulin resistance, obesity, type 2 diabetes and hepatic steatosis. The increased level of knowledge about the 'crosstalk' between any organ and distant organs will facilitate the early diagnosis of the disease as well as the management of the treatment practices in the short- and long-term organ dysfunction.
Collapse
|
28
|
Soluble ST2 promotes oxidative stress and inflammation in cardiac fibroblasts: an in vitro and in vivo study in aortic stenosis. Clin Sci (Lond) 2019; 133:1537-1548. [DOI: 10.1042/cs20190475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Background: Soluble ST2 (interleukin 1 receptor-like 1) (sST2) is involved in inflammatory diseases and increased in heart failure (HF). We herein investigated sST2 effects on oxidative stress and inflammation in human cardiac fibroblasts and its pathological role in human aortic stenosis (AS).
Methods and results: Using proteomics and immunodetection approaches, we have identified that sST2 down-regulated mitofusin-1 (MFN-1), a protein involved in mitochondrial fusion, in human cardiac fibroblasts. In parallel, sST2 increased nitrotyrosine, protein oxidation and peroxide production. Moreover, sST2 enhanced the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1β and monocyte chemoattractant protein-1 (CCL-2). Pharmacological inhibition of transcriptional factor nuclear factor κB (NFκB) restored MFN-1 levels and improved oxidative status and inflammation in cardiac fibroblasts. Mito-Tempo, a mitochondria-specific superoxide scavenger, as well as Resveratrol, a general antioxidant, attenuated oxidative stress and inflammation induced by sST2. In myocardial biopsies from 26 AS patients, sST2 up-regulation paralleled a decrease in MFN-1. Cardiac sST2 inversely correlated with MFN-1 levels and positively associated with IL-6 and CCL-2 in myocardial biopsies from AS patients.
Conclusions: sST2 affected mitochondrial fusion in human cardiac fibroblasts, increasing oxidative stress production and inflammatory markers secretion. The blockade of NFκB or mitochondrial reactive oxygen species restored MFN-1 expression, improving oxidative stress status and reducing inflammatory markers secretion. In human AS, cardiac sST2 levels associated with oxidative stress and inflammation. The present study reveals a new pathogenic pathway by which sST2 promotes oxidative stress and inflammation contributing to cardiac damage.
Collapse
|
29
|
Clementi A, Virzì G, Battaglia G, Ronco C. Neurohormonal, Endocrine, and Immune Dysregulation and Inflammation in Cardiorenal Syndrome. Cardiorenal Med 2019; 9:265-273. [DOI: 10.1159/000500715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022] Open
Abstract
“Organ crosstalk” is the complex physiological communication between different body systems, and it is necessary for the optimal equilibrium and functioning of the organism. In particular, heart and kidney function is tightly connected, and interplay between these two organs occurs through a vast array of dynamic and bidirectional mechanisms. The term cardiorenal syndrome (CRS) indicates an interaction between the heart and kidneys in acute and chronic disease settings. In all types of CRS, multiple pathophysiological processes are implicated in the initiation and progression of organ injury. In addition to hemodynamic parameters, endothelial injury, immunological imbalance, cell death, inflammatory cascades, oxidative stress, neutrophil migration, leukocyte trafficking, caspase-mediated apoptosis, extracellular vesicles, small noncoding RNAs, and epigenetics play pivotal roles in the development of CRS. In this review, we will focus on neurohormonal, endocrine, and immune dysregulation and inflammation as mechanisms involved in the pathogenesis of CRS.
Collapse
|
30
|
Virzì G, Clementi A, Battaglia G, Ronco C. Multi-Omics Approach: New Potential Key Mechanisms Implicated in Cardiorenal Syndromes. Cardiorenal Med 2019; 9:201-211. [DOI: 10.1159/000497748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/31/2019] [Indexed: 11/19/2022] Open
Abstract
Cardiorenal syndromes (CRS) include a scenario of clinical interactions characterized by the heart and kidney dysfunction. The crosstalk between cardiac and renal systems is clearly evidenced but not completely understood. Multi-factorial mechanisms leading to CRS do not involve only hemodynamic parameters. In fact, in recent works on organ crosstalk endothelial injury, the alteration of normal immunologic balance, cell death, inflammatory cascades, cell adhesion molecules, cytokine and chemokine overexpression, neutrophil migration, leukocyte trafficking, caspase-mediated induction of apoptotic mechanisms and oxidative stress has been demonstrated to induce distant organ dysfunction. Furthermore, new alternative mechanisms using the multi-omics approach may be implicated in the pathogenesis of cardiorenal crosstalk. The study of “omics” modifications in the setting of cardiovascular and renal disease represents an emerging area of research. Over the last years, indeed, many studies have elucidated the exact mechanisms involved in gene expression and regulation, cellular communication and organ crosstalk. In this review, we analyze epigenetics, gene expression, small non-coding RNAs, extracellular vesicles, proteomics, and metabolomics in the setting of CRS.
Collapse
|
31
|
Delfín DA, DeAguero JL, McKown EN. The Extracellular Matrix Protein ABI3BP in Cardiovascular Health and Disease. Front Cardiovasc Med 2019; 6:23. [PMID: 30923710 PMCID: PMC6426741 DOI: 10.3389/fcvm.2019.00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/20/2019] [Indexed: 01/31/2023] Open
Abstract
ABI3BP is a relatively newly identified protein whose general biological functions are not yet fully defined. It is implicated in promoting cellular senescence and cell-extracellular matrix interactions, both of which are of vital importance in the cardiovascular system. ABI3BP has been shown in multiple studies to be expressed in the heart and vasculature, and to have a role in normal cardiovascular function and disease. However, its precise role in the cardiovascular system is not known. Because ABI3BP is present in the cardiovascular system and is altered in cardiovascular disease states, further investigation into ABI3BP's biological and biochemical importance in cardiovascular health and disease is warranted.
Collapse
Affiliation(s)
- Dawn A. Delfín
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | | | | |
Collapse
|
32
|
Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, Kuwabara Y, Nishiga M, Ide Y, Baba O, Nishi H, Nakao T, Nishino T, Nakazeki F, Koyama S, Hanada R, Randolph RR, Endo J, Kimura T, Ono K. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep 2018; 8:16749. [PMID: 30425314 PMCID: PMC6233179 DOI: 10.1038/s41598-018-35194-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Acute cardiac rupture and adverse left ventricular (LV) remodeling causing heart failure are serious complications of acute myocardial infarction (MI). While cardio-hepatic interactions have been recognized, their role in MI remains unknown. We treated cultured cardiomyocytes with conditioned media from various cell types and analyzed the media by mass spectrometry to identify α1-microglobulin (AM) as an Akt-activating hepatokine. In mouse MI model, AM protein transiently distributed in the infarct and border zones during the acute phase, reflecting infiltration of AM-bound macrophages. AM stimulation activated Akt, NFκB, and ERK signaling and enhanced inflammation as well as macrophage migration and polarization, while inhibited fibrogenesis-related mRNA expression in cultured macrophages and cardiac fibroblasts. Intramyocardial AM administration exacerbated macrophage infiltration, inflammation, and matrix metalloproteinase 9 mRNA expression in the infarct and border zones, whereas disturbed fibrotic repair, then provoked acute cardiac rupture in MI. Shotgun proteomics and lipid pull-down analysis found that AM partly binds to phosphatidic acid (PA) for its signaling and function. Furthermore, systemic delivery of a selective inhibitor of diacylglycerol kinase α-mediated PA synthesis notably reduced macrophage infiltration, inflammation, matrix metalloproteinase activity, and adverse LV remodeling in MI. Therefore, targeting AM signaling could be a novel pharmacological option to mitigate adverse LV remodeling in MI.
Collapse
Affiliation(s)
- Daihiko Hakuno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ritsuko Hanada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ruiz R Randolph
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jin Endo
- Cardiovascular Division, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
33
|
van den Hoogenhof MMG, van der Made I, de Groot NE, Damanafshan A, van Amersfoorth SCM, Zentilin L, Giacca M, Pinto YM, Creemers EE. AAV9-mediated Rbm24 overexpression induces fibrosis in the mouse heart. Sci Rep 2018; 8:11696. [PMID: 30076363 PMCID: PMC6076270 DOI: 10.1038/s41598-018-29552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle-specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored. Here, we used adeno-associated viruses (AAV9) to investigate the effect of increased Rbm24 levels in adult mouse heart. Using high-resolution microarrays, we found 893 differentially expressed genes and 1102 differential splicing events in 714 genes in hearts overexpressing Rbm24. We found splicing differences in cardiac genes, such as PDZ and Lim domain 5, Phospholamban, and Titin, but did not find splicing differences in previously identified embryonic splicing targets of Rbm24, such as skNAC, αNAC, and Coro6. Gene ontology enrichment analysis demonstrated increased expression of extracellular matrix (ECM)-related and immune response genes. Moreover, we found increased expression of Tgfβ-signaling genes, suggesting enhanced Tgfβ-signaling in these hearts. Ultimately, this increased activation of cardiac fibroblasts, as evidenced by robust expression of Periostin in the heart, and induced extensive cardiac fibrosis. These results indicate that Rbm24 may function as a regulator of cardiac fibrosis, potentially through the regulation of TgfβR1 and TgfβR2 expression.
Collapse
Affiliation(s)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Nina E de Groot
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Amin Damanafshan
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | | | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Yigal M Pinto
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology, Academic Medical Center (AMC), Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Song J, Liu Q, Tang H, Tao A, Wang H, Kao R, Rui T. Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment. Oncotarget 2018; 7:80803-80810. [PMID: 27821807 PMCID: PMC5348356 DOI: 10.18632/oncotarget.13096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022] Open
Abstract
Background The high mobility group box 1 (HMGB1) protein mediates the cardiomyocyte–cardiac fibroblast interaction that contributes to induction of myocardial fibrosis in diabetes mellitus (DM). In the present study, we aim to investigate the intracellular signaling pathway that leads to cardiomyocyte HMGB1 expression under a diabetic environment. Results HMGB1 expression is increased in high concentration of glucose (HG)-conditioned cardiomyocytes. Challenging cardiomyocytes with HG also increased PI3Kγ and Akt phosphorylation. Inhibition of PI3Kγ (CRISPR/Cas9 knockout plasmid or AS605240) prevented HG-induced Akt phosphorylation and HMGB1 expression by the cardiomyocytes. In addition, inhibition of Akt (Akt1/2/3 siRNA or A6730) attenuated HG-induced HMGB1 production. Finally, challenging cardiomyocytes with HG resulted in increased reactive oxygen species (ROS) production. Treatment of cardiomyocytes with an antioxidant (Mitotempo) abolished HG-induced PI3Kγ and Akt activation, as well as HMGB1 production. Materials and Methods Isolated rat cardiomyocytes were cultured with a high concentration of glucose. Cardiomyocyte phosphatidylinositol 3-kinase gamma (PI3Kγ) and Akt activation were determined by Western blot. Cardiomyocyte HMGB1 production was evaluated with Western blot and enzyme-linked immunosorbent assay (ELISA), while cardiomyocyte oxidative stress was determined with a DCFDA fluorescence probe. Conclusions Our results suggest that the cardiomyocytes incur an oxidative stress under diabetic condition, which subsequently activates the PI3Kγ/Akt cell-signaling pathway and further increases HMGB1 expression.
Collapse
Affiliation(s)
- Jia Song
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Qian Liu
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Han Tang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Aibin Tao
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.,Critical Illness Research, Lawson Health Research Institute, London, Ontario, N6A 4G5, Canada
| | - Hao Wang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Raymond Kao
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, N6A 4G5, Canada
| | - Tao Rui
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.,Critical Illness Research, Lawson Health Research Institute, London, Ontario, N6A 4G5, Canada.,Departments of Medicine, Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 4G5, Canada
| |
Collapse
|
35
|
Response and outcomes of cardiac resynchronization therapy in patients with renal dysfunction. J Interv Card Electrophysiol 2018; 51:237-244. [PMID: 29460235 DOI: 10.1007/s10840-018-0330-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Renal dysfunction is often associated with chronic heart failure, leading to increased morbi-mortality. However, data regarding these patients after cardiac resynchronization therapy (CRT) is sparse. We sought to evaluate response and long-term mortality in patients with heart failure and renal dysfunction and assess renal improvement after CRT. METHODS We analyzed 178 consecutive patients who underwent successful CRT device implantation (age 64 ± 11 years; 69% male; 92% in New York Heart Association (NYHA) functional class ≥ III; 34% with ischemic cardiomyopathy). Echocardiographic response was defined as ≥ 15% reduction in left ventricular end-systolic diameter and clinical response as a sustained improvement of at least one NYHA functional class. Renal dysfunction was defined as an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2. RESULTS Renal dysfunction was present in 34.7%. Renal dysfunction was not an independent predictor of echocardiographic response (OR 1.109, 95% CI 0.713-1.725, p 0.646) nor clinical response (OR 1.003; 95% CI 0.997-1.010; p 0.324). During follow-up (mean 55.2 ± 32 months), patients with eGFR < 60mL/min/1.73 m2 had higher overall mortality (HR 4.902, 95% CI 1.118-21.482, p 0.035). However, clinical response in patients with renal dysfunction was independently associated with better long-term survival (HR 0.236, 95% CI 0.073-0.767, p 0.016). Renal function was significantly improved in patients who respond to CRT (ΔeGFR + 5.5 mL/min/1.73 m2 at baseline vs. follow-up, p 0.049), while this was not evident in nonresponders. Improvements in eGFR of at least 10 mL/min/1.73 m2 were associated with improved survival in renal dysfunction patients (log-rank p 0.036). CONCLUSION Renal dysfunction was associated with higher long-term mortality in CRT patients, though, it did not influence echocardiographic nor functional response. Despite worse overall prognosis, renal dysfunction patients who are responders showed long-term survival benefit and improvement in renal function following CRT.
Collapse
|
36
|
Lourenço AP, Leite-Moreira AF, Balligand JL, Bauersachs J, Dawson D, de Boer RA, de Windt LJ, Falcão-Pires I, Fontes-Carvalho R, Franz S, Giacca M, Hilfiker-Kleiner D, Hirsch E, Maack C, Mayr M, Pieske B, Thum T, Tocchetti CG, Brutsaert DL, Heymans S. An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur J Heart Fail 2017; 20:216-227. [DOI: 10.1002/ejhf.1059] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Andre P. Lourenço
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine; University of Porto; Portugal
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine; University of Porto; Portugal
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc; Université catholique de Louvain; Brussels Belgium
| | - Johann Bauersachs
- Klinik fuer Kardiologie und Angiologie Medizinische Hochschule; Hannover Germany
| | - Dana Dawson
- Reader in Cardiovascular Medicine and Honorary Consultant Cardiologist, University of Aberdeen; UK
| | | | - Leon J. de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences; Maastricht University; The Netherlands
| | - Inês Falcão-Pires
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine; University of Porto; Portugal
| | - Ricardo Fontes-Carvalho
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine; University of Porto; Portugal
| | - Stefan Franz
- University Hospital Halle; Department of Internal Medicine III; Halle, Saale Germany
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB) & Department of Medical, Surgical and Health Sciences; University of Trieste; Trieste Italy
| | | | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences; University of Turin; Torino Italy
| | - Christoph Maack
- Klinik für Innere Medizin III; Universitätsklinikum des Saarlandes; Homburg Germany
| | - Manuel Mayr
- The James Black Centre and King's British Heart Foundation Centre, King's College; University of London; London UK
| | - Burkert Pieske
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Berlin; Germany & Department of Cardiology, University of Graz; Graz Austria
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, & REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany, and National Heart and Lung Institute; Imperial College London; UK
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Division of Internal Medicine; Federico II University; Naples Italy
| | | | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center & CARIM; Maastricht University; Maastricht The Netherlands
- Cardiovascular Sciences; University of Leuven; Belgium
- Netherlands Heart Institute; Utrecht The Netherlands
| |
Collapse
|
37
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW With the intention to summarize the currently available evidence on the pathophysiological relevance of inflammation in heart failure, this review addresses the question whether inflammation is a cause or consequence of heart failure, or both. RECENT FINDINGS This review discusses the diversity (sterile, para-inflammation, chronic inflammation) and sources of inflammation and gives an overview of how inflammation (local versus systemic) can trigger heart failure. On the other hand, the review is outlined how heart failure-associated wall stress and signals released by stressed, malfunctioning, or dead cells (DAMPs: e.g., mitochondrial DNA, ATP, S100A8, matricellular proteins) induce cardiac sterile inflammation and how heart failure provokes inflammation in various peripheral tissues in a direct (inflammatory) and indirect (hemodynamic) manner. The crosstalk between the heart and peripheral organs (bone marrow, spleen, gut, adipose tissue) is outlined and the importance of neurohormonal mechanisms including the renin angiotensin aldosteron system and the ß-adrenergic nervous system in inflammation and heart failure is discussed. Inflammation and heart failure are strongly interconnected and mutually reinforce each other. This indicates the difficulty to counteract inflammation and heart failure once this chronic vicious circle has started and points out the need to control the inflammatory process at an early stage avoiding chronic inflammation and heart failure. The diversity of inflammation further addresses the need for a tailored characterization of inflammation enabling differentiation of inflammation and subsequent target-specific strategies. It is expected that the characterization of the systemic and/or cardiac immune profile will be part of precision medicine in the future of cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
39
|
Zhou D, Fu H, Zhang L, Zhang K, Min Y, Xiao L, Lin L, Bastacky SI, Liu Y. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis. J Am Soc Nephrol 2017; 28:2322-2336. [PMID: 28336721 PMCID: PMC5533232 DOI: 10.1681/asn.2016080902] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/16/2017] [Indexed: 01/15/2023] Open
Abstract
Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β-catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro, incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lu Zhang
- Division of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Zhang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yali Min
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
40
|
Vegter EL, van der Meer P, Voors AA. Associations between volume status and circulating microRNAs in acute heart failure. Eur J Heart Fail 2017; 19:1077-1078. [DOI: 10.1002/ejhf.867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Eline L. Vegter
- Department of Cardiology; University Medical Centre Groningen, Hanzeplein 1; 9713 GZ Groningen the Netherlands
| | - Peter van der Meer
- Department of Cardiology; University Medical Centre Groningen, Hanzeplein 1; 9713 GZ Groningen the Netherlands
| | - Adriaan A. Voors
- Department of Cardiology; University Medical Centre Groningen, Hanzeplein 1; 9713 GZ Groningen the Netherlands
| |
Collapse
|
41
|
TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep 2017; 7:44659. [PMID: 28304381 PMCID: PMC5356338 DOI: 10.1038/srep44659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance.
Collapse
|
42
|
Metra M. February 2017 at a glance: fibrosis, acute heart failure and neurologic abnormalities. Eur J Heart Fail 2017; 19:165-166. [PMID: 28157268 DOI: 10.1002/ejhf.760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| |
Collapse
|
43
|
Li S, Li H, Yang D, Yu X, Irwin DM, Niu G, Tan H. Excessive Autophagy Activation and Increased Apoptosis Are Associated with Palmitic Acid-Induced Cardiomyocyte Insulin Resistance. J Diabetes Res 2017; 2017:2376893. [PMID: 29318158 PMCID: PMC5727752 DOI: 10.1155/2017/2376893] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/26/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) remains the major cause of death associated with diabetes. Researchers have demonstrated the importance of impaired cardiac insulin signaling in this process. Insulin resistance (IR) is an important predictor of DCM. Previous studies examining the dynamic changes in autophagy during IR have yielded inconsistent results. This study aimed to investigate the dynamic changes in autophagy and apoptosis in the rat H9c2 cardiomyocyte IR model. H9c2 cells were treated with 500 μM palmitic acid (PA) for 24 hours, resulting in the induction of IR. To examine autophagy, monodansylcadaverine staining, GFP-LC3 puncta confocal observation, and Western blot analysis of LC3I-to-LC3II conversion were used. Results of these studies showed that autophagic acid vesicles increased in numbers during the first 24 hours and then decreased by 36 hours after PA treatment. Western blot analysis showed that treatment of H9c2 cells with 500 μM PA for 24 hours decreased the expression of Atg12-Atg5, Atg16L1, Atg3, and PI3Kp85. Annexin V/PI flow cytometry revealed that PA exposure for 24 hours increased the rate of apoptosis. Together, this study demonstrates that PA induces IR in H9c2 cells and that this process is accompanied by excessive activation of autophagy and increases in apoptosis.
Collapse
Affiliation(s)
- Shanxin Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Di Yang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Xiuyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing 100082, China
| | - Huanran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
44
|
Nayak A, Neill C, Kormos RL, Lagazzi L, Halder I, McTiernan C, Larsen J, Inashvili A, Teuteberg J, Bachman TN, Hanley-Yanez K, McNamara DM, Simon MA. Chemokine receptor patterns and right heart failure in mechanical circulatory support. J Heart Lung Transplant 2016; 36:657-665. [PMID: 28209402 DOI: 10.1016/j.healun.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Right ventricular failure (RVF) complicates 9% to 44% of left ventricular assist device (LVAD) implants post-operatively. Current prediction scores perform only modestly in validation studies, and do not include immune markers. Chemokines are inflammatory signaling molecules with a fundamental role in cardiac physiology and stress adaptation. In this study we investigated chemokine receptor regulation in LVAD recipients who develop RVF. METHODS Expression of chemokine receptor (CCR) genes 3 to 8 were examined in the peripheral blood of 111 LVAD patients, collected 24 hours before implant. RNA was isolated using a PAXgene protocol. Gene expression was assessed using a targeted microarray (RT2 Profiler PCR Array; Qiagen). Results were expressed as polymerase chain reaction (PCR) cycles to threshold and normalized to the average of 3 control genes, glyceraldehyde phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and β2-microglobulin (B2M). Secondary outcomes studied were 1-year mortality and long-term RV failure (RVF-LT). RESULTS CCR3, CCR4, CCR6, CCR7 and CCR8 were downregulated in LVAD recipients with RVF. Within this cohort of patients, CCR4, CCR7 and CCR8 were further downregulated in those who required RV mechanical support. In addition, under-expression of CCR3 to CCR8 was independently associated with an increased risk of mortality at 1 year, even after adjusting for RVF. CCR expression did not predict RVF-LT in our patient cohort. CONCLUSIONS Pre-LVAD CCR downregulation is associated with RVF and increased mortality after implant. Inflammatory signatures may play a major role in prognostication in this patient population.
Collapse
Affiliation(s)
- Aditi Nayak
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Colin Neill
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert L Kormos
- Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Luigi Lagazzi
- Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Indrani Halder
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles McTiernan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Larsen
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ana Inashvili
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Teuteberg
- Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy N Bachman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karen Hanley-Yanez
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dennis M McNamara
- Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marc A Simon
- Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
45
|
Metra M, Carubelli V, Ravera A, Stewart Coats AJ. Heart failure 2016: still more questions than answers. Int J Cardiol 2016; 227:766-777. [PMID: 27838123 DOI: 10.1016/j.ijcard.2016.10.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/23/2016] [Accepted: 10/23/2016] [Indexed: 12/21/2022]
Abstract
Heart failure has reached epidemic proportions given the ageing of populations and is associated with high mortality and re-hospitalization rates. This article reviews and summarizes recent advances in the diagnosis, assessment and treatment of the patients with heart failure. Data are discussed based also on the most recent guidelines indications. Open issues and unmet needs are highlighted.
Collapse
Affiliation(s)
- Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy.
| | - Valentina Carubelli
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Alice Ravera
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | | |
Collapse
|
46
|
DeAguero JL, McKown EN, Zhang L, Keirsey J, Fischer EG, Samedi VG, Canan BD, Kilic A, Janssen PML, Delfín DA. Altered protein levels in the isolated extracellular matrix of failing human hearts with dilated cardiomyopathy. Cardiovasc Pathol 2016; 26:12-20. [PMID: 27837684 DOI: 10.1016/j.carpath.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is associated with extensive pathological cardiac remodeling and involves numerous changes in the protein expression profile of the extracellular matrix of the heart. We obtained seven human, end-stage, failing hearts with DCM (DCM-failing) and nine human, nonfailing donor hearts and compared their extracellular matrix protein profiles. We first showed that the DCM-failing hearts had indeed undergone extensive remodeling of the left ventricle myocardium relative to nonfailing hearts. We then isolated the extracellular matrix from a subset of these hearts and performed a proteomic analysis on the isolated matrices. We found that the levels of 26 structural proteins were altered in the DCM-failing isolated cardiac extracellular matrix compared to nonfailing isolated cardiac extracellular matrix. Overall, most of the extracellular matrix proteins showed reduced levels in the DCM-failing hearts, while all of the contractile proteins showed increased levels. There was a mixture of increased and decreased levels of cytoskeletal and nuclear transport proteins. Using immunoprobing, we verified that collagen IV (α2 and α6 isoforms), zyxin, and myomesin protein levels were reduced in the DCM-failing hearts. We expect that these data will add to the understanding of the pathology associated with heart failure with DCM.
Collapse
Affiliation(s)
- Joshua L DeAguero
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Elizabeth N McKown
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Liwen Zhang
- The Ohio State University Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, 460 W. 12th Ave., Room 250 Biomedical Research Tower, Columbus, OH 43210, USA.
| | - Jeremy Keirsey
- The Ohio State University Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, 460 W. 12th Ave., Room 250 Biomedical Research Tower, Columbus, OH 43210, USA.
| | - Edgar G Fischer
- The University of New Mexico School of Medicine, Department of Pathology, MSC08 4640, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Von G Samedi
- The University of New Mexico School of Medicine, Department of Pathology, MSC08 4640, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Benjamin D Canan
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology and the Davis Heart Lung Research Institute, 200 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210.
| | - Ahmet Kilic
- The Ohio State University College of Medicine, Department of Surgery and the Davis Heart Lung Research Institute, Richard M. Ross Heart Hospital, 452 West 10th Ave., Columbus, OH 43210.
| | - Paul M L Janssen
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology and the Davis Heart Lung Research Institute, 200 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210.
| | - Dawn A Delfín
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|