1
|
Liu D, Xu C, Liu Y, Ouyang W, Lin S, Xu A, Zhang Y, Xie Y, Huang Q, Zhao W, Chen Z, Wang L, Chen S, Huang J, Wu ZB, Sun X. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front Med 2023; 17:458-475. [PMID: 36928550 DOI: 10.1007/s11684-022-0968-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 03/18/2023]
Abstract
The Ly-6 and uPAR (LU) domain-containing proteins represent a large family of cell-surface markers. In particular, mouse Ly-6A/Sca-1 is a widely used marker for various stem cells; however, its human ortholog is missing. In this study, based on a systematic survey and comparative genomic study of mouse and human LU domain-containing proteins, we identified a previously unannotated human gene encoding the candidate ortholog of mouse Ly-6A/Sca-1. This gene, hereby named LY6A, reversely overlaps with a lncRNA gene in the majority of exonic sequences. We found that LY6A is aberrantly expressed in pituitary tumors, but not in normal pituitary tissues, and may contribute to tumorigenesis. Similar to mouse Ly-6A/Sca-1, human LY6A is also upregulated by interferon, suggesting a conserved transcriptional regulatory mechanism between humans and mice. We cloned the full-length LY6A cDNA, whose encoded protein sequence, domain architecture, and exon-intron structures are all well conserved with mouse Ly-6A/Sca-1. Ectopic expression of the LY6A protein in cells demonstrates that it acts the same as mouse Ly-6A/Sca-1 in their processing and glycosylphosphatidylinositol anchoring to the cell membrane. Collectively, these studies unveil a novel human gene encoding a candidate biomarker and provide an interesting model gene for studying gene regulatory and evolutionary mechanisms.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aining Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Biomedical Big Data Center, First Affiliated Hospital, Zhejiang University School of Medicine, and Cancer Center, Zhejiang University, Hangzhou, 310000, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Hariharan A, Qi W, Rehrauer H, Wu L, Ronner M, Wipplinger M, Kresoja‐Rakic J, Sun S, Oton‐Gonzalez L, Sculco M, Serre‐Beinier V, Meiller C, Blanquart C, Fonteneau J, Vrugt B, Rüschoff JH, Opitz I, Jean D, de Perrot M, Felley‐Bosco E. Heterogeneous RNA editing and influence of ADAR2 on mesothelioma chemoresistance and the tumor microenvironment. Mol Oncol 2022; 16:3949-3974. [PMID: 36221913 PMCID: PMC9718120 DOI: 10.1002/1878-0261.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
We previously observed increased levels of adenosine-deaminase-acting-on-dsRNA (Adar)-dependent RNA editing during mesothelioma development in mice exposed to asbestos. The aim of this study was to characterize and assess the role of ADAR-dependent RNA editing in mesothelioma. We found that tumors and mesothelioma primary cultures have higher ADAR-mediated RNA editing compared to mesothelial cells. Unsupervised clustering of editing in different genomic regions revealed heterogeneity between tumor samples as well as mesothelioma primary cultures. ADAR2 expression levels are higher in BRCA1-associated protein 1 wild-type tumors, with corresponding changes in RNA editing in transcripts and 3'UTR. ADAR2 knockdown and rescue models indicated a role in cell proliferation, altered cell cycle, increased sensitivity to antifolate treatment, and type-1 interferon signaling upregulation, leading to changes in the microenvironment in vivo. Our data indicate that RNA editing contributes to mesothelioma heterogeneity and highlights an important role of ADAR2 not only in growth regulation in mesothelioma but also in chemotherapy response, in addition to regulating inflammatory response downstream of sensing nucleic acid structures.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Weihong Qi
- Functional Genomics Center, ETH ZurichUniversity of ZurichSwitzerland
| | - Hubert Rehrauer
- Functional Genomics Center, ETH ZurichUniversity of ZurichSwitzerland
| | - Licun Wu
- Latner Thoracic Surgery Laboratories, Division of Thoracic SurgeryUniversity Health NetworkTorontoCanada
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Jelena Kresoja‐Rakic
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Lucia Oton‐Gonzalez
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Marika Sculco
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | | | - Clément Meiller
- Centre de Recherche des Cordeliers, InsermSorbonne Université, Université Paris Cité, Functional Genomics of Solid TumorsFrance
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NAFrance
| | | | - Bart Vrugt
- Institute of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Jan Hendrik Rüschoff
- Institute of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Isabelle Opitz
- Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Didier Jean
- Centre de Recherche des Cordeliers, InsermSorbonne Université, Université Paris Cité, Functional Genomics of Solid TumorsFrance
| | - Marc de Perrot
- Latner Thoracic Surgery Laboratories, Division of Thoracic SurgeryUniversity Health NetworkTorontoCanada
| | - Emanuela Felley‐Bosco
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| |
Collapse
|
3
|
Prasit KK, Ferrer-Font L, Burn OK, Anderson RJ, Compton BJ, Schmidt AJ, Mayer JU, Chen CJJ, Dasyam N, Ritchie DS, Godfrey DI, Mattarollo SR, Dundar PR, Painter GF, Hermans IF. Intratumoural administration of an NKT cell agonist with CpG promotes NKT cell infiltration associated with an enhanced antitumour response and abscopal effect. Oncoimmunology 2022; 11:2081009. [PMID: 35712122 PMCID: PMC9196710 DOI: 10.1080/2162402x.2022.2081009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intratumoural administration of unmethylated cytosine-phosphate-guanine motifs (CpG) to stimulate toll-like receptor (TLR)-9 has been shown to induce tumour regression in preclinical studies and some efficacy in the clinic. Because activated natural killer T (NKT) cells can cooperate with pattern-recognition via TLRs to improve adaptive immune responses, we assessed the impact of combining a repeated dosing regimen of intratumoural CpG with a single intratumoural dose of the NKT cell agonist α-galactosylceramide (α-GalCer). The combination was superior to CpG alone at inducing regression of established tumours in several murine tumour models, primarily mediated by CD8+ T cells. An antitumour effect on distant untreated tumours (abscopal effect) was reliant on sustained activity of NKT cells and was associated with infiltration of KLRG1+ NKT cells in tumours and draining lymph nodes at both injected and untreated distant sites. Cytometric analysis pointed to increased exposure to type I interferon (IFN) affecting many immune cell types in the tumour and lymphoid organs. Accordingly, antitumour activity was lost in animals in which dendritic cells (DCs) were incapable of signaling through the type I IFN receptor. Studies in conditional ablation models showed that conventional type 1 DCs and plasmacytoid DCs were required for the response. In tumour models where the combined treatment was less effective, the addition of tumour-antigen derived peptide, preferably conjugated to α-GalCer, significantly enhanced the antitumour response. The combination of TLR ligation, NKT cell agonism, and peptide delivery could therefore be adapted to induce responses to both known and unknown antigens.
Collapse
Affiliation(s)
- Kef K Prasit
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Laura Ferrer-Font
- Maurice Wilkins Centre, Auckland, New Zealand.,Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Alfonso J Schmidt
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Chun-Jen J Chen
- Maurice Wilkins Centre, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - David S Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - P Rod Dundar
- Maurice Wilkins Centre, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| |
Collapse
|
4
|
Akama-Garren EH, van den Broek T, Simoni L, Castrillon C, van der Poel CE, Carroll MC. Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease. Nat Commun 2021; 12:6687. [PMID: 34795279 PMCID: PMC8602266 DOI: 10.1038/s41467-021-27035-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic autoantibodies contribute to tissue damage and clinical decline in autoimmune disease. Follicular T cells are central regulators of germinal centers, although their contribution to autoantibody-mediated disease remains unclear. Here we perform single cell RNA and T cell receptor (TCR) sequencing of follicular T cells in a mouse model of autoantibody-mediated disease, allowing for analyses of paired transcriptomes and unbiased TCRαβ repertoires at single cell resolution. A minority of clonotypes are preferentially shared amongst autoimmune follicular T cells and clonotypic expansion is associated with differential gene signatures in autoimmune disease. Antigen prediction using algorithmic and machine learning approaches indicates convergence towards shared specificities between non-autoimmune and autoimmune follicular T cells. However, differential autoimmune transcriptional signatures are preserved even amongst follicular T cells with shared predicted specificities. These results demonstrate that follicular T cells are phenotypically distinct in B cell-driven autoimmune disease, providing potential therapeutic targets to modulate autoantibody development.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells/immunology
- Clone Cells/metabolism
- Gene Expression Profiling/methods
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Mice, Inbred C57BL
- Microscopy, Confocal
- RNA-Seq/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Single-Cell Analysis/methods
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Mice
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Theo van den Broek
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lea Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Abbas AA, Akbar AN. Induction of T Cell Senescence by Cytokine Induced Bystander Activation. FRONTIERS IN AGING 2021; 2:714239. [PMID: 35821998 PMCID: PMC9261416 DOI: 10.3389/fragi.2021.714239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
As people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens. With ageing, unconventional end-stage T cells, that exhibit a senescent phenotype, amass. These senescent T cells deviate from T cell receptor (TCR) signaling toward natural killer (NK) activity. The transition toward innate immune cell function from these adaptor T cells impacts antigen specificity, contributing to increased susceptibility of infection in the elderly. The mechanism by which senescent T cells arise remains largely unclear however in this review we investigate the part that bystander activation plays in driving the change in function of T cells with age. Cytokine-induced bystander activation may offer a plausible explanation for the induction of NK-like activity and senescence in T cells. Further understanding of these specific NK-like senescent T cells allows us to identify the benefits and detriments of these cells in health and disease which can be utilized or regulated, respectively. This review discusses the dynamic of senescent T cells in adopting NK-like T cells and the implications that has in an infectious disease context, predominately in the elderly.
Collapse
|
6
|
JAK2-V617F and interferon-α induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood 2021; 137:2139-2151. [PMID: 33667305 DOI: 10.1182/blood.2020005563] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
We studied a subset of hematopoietic stem cells (HSCs) that are defined by elevated expression of CD41 (CD41hi) and showed bias for differentiation toward megakaryocytes (Mks). Mouse models of myeloproliferative neoplasms (MPNs) expressing JAK2-V617F (VF) displayed increased frequencies and percentages of the CD41hi vs CD41lo HSCs compared with wild-type controls. An increase in CD41hi HSCs that correlated with JAK2-V617F mutant allele burden was also found in bone marrow from patients with MPN. CD41hi HSCs produced a higher number of Mk-colonies of HSCs in single-cell cultures in vitro, but showed reduced long-term reconstitution potential compared with CD41lo HSCs in competitive transplantations in vivo. RNA expression profiling showed an upregulated cell cycle, Myc, and oxidative phosphorylation gene signatures in CD41hi HSCs, whereas CD41lo HSCs showed higher gene expression of interferon and the JAK/STAT and TNFα/NFκB signaling pathways. Higher cell cycle activity and elevated levels of reactive oxygen species were confirmed in CD41hi HSCs by flow cytometry. Expression of Epcr, a marker for quiescent HSCs inversely correlated with expression of CD41 in mice, but did not show such reciprocal expression pattern in patients with MPN. Treatment with interferon-α further increased the frequency and percentage of CD41hi HSCs and reduced the number of JAK2-V617F+ HSCs in mice and patients with MPN. The shift toward the CD41hi subset of HSCs by interferon-α provides a possible mechanism of how interferon-α preferentially targets the JAK2 mutant clone.
Collapse
|
7
|
CD86-based analysis enables observation of bona fide hematopoietic responses. Blood 2021; 136:1144-1154. [PMID: 32438398 DOI: 10.1182/blood.2020004923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Hematopoiesis is a system that provides red blood cells (RBCs), leukocytes, and platelets, which are essential for oxygen transport, biodefense, and hemostasis; its balance thus affects the outcome of various disorders. Here, we report that stem cell antigen-1 (Sca-1), a cell surface marker commonly used for the identification of multipotent hematopoietic progenitors (Lin-Sca-1+c-Kit+ cells; LSKs), is not suitable for the analysis of hematopoietic responses under biological stresses with interferon production. Lin-Sca-1-c-Kit+ cells (LKs), downstream progenitors of LSKs, acquire Sca-1 expression upon inflammation, which makes it impossible to distinguish between LSKs and LKs. As an alternative and stable marker even under such stresses, we identified CD86 by screening 180 surface markers. The analysis of infection/inflammation-triggered hematopoiesis on the basis of CD86 expression newly revealed urgent erythropoiesis producing stress-resistant RBCs and intact reconstitution capacity of LSKs, which could not be detected by conventional Sca-1-based analysis.
Collapse
|
8
|
Abstract
RNA editing is a post-transcriptional process increasing transcript diversity, thereby regulating different biological processes. We recently observed that mutations resulting from RNA editing due to hydrolytic deamination of adenosine increase during the development of mesothelioma, a rare cancer linked to chronic exposure to asbestos. This review gathers information from the published literature and public data mining to explore several aspects of RNA editing and their possible implications for cancer growth and therapy. We address possible links between RNA editing and particular types of mesothelioma genetic and epigenetic alterations and discuss the relevance of an edited substrate in the context of current chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
9
|
Zhang X, Karatepe K, Chiewchengchol D, Zhu H, Guo R, Liu P, Yu H, Ren Q, Luo X, Cheng T, Ma F, Xu Y, Han M, Luo HR. Bacteria-Induced Acute Inflammation Does Not Reduce the Long-Term Reconstitution Capacity of Bone Marrow Hematopoietic Stem Cells. Front Immunol 2020; 11:626. [PMID: 32373117 PMCID: PMC7179742 DOI: 10.3389/fimmu.2020.00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/04/2022] Open
Abstract
Pathogen-initiated chronic inflammation or autoimmune diseases accelerate proliferation and promote differentiation of hematopoietic stem cells (HSCs) but simultaneously reduce reconstitution capacity. Nevertheless, the effect of acute infection and inflammation on functional HSCs is still largely unknown. Here we found that acute infection elicited by heat-inactivated Escherichia coli (HIEC) expanded bone marrow lineage-negative (Lin)− stem-cell antigen 1 (Sca-1)+cKit+ (LSK) cell population, leading to reduced frequency of functional HSCs in LSK population. However, the total number of BM phenotypic HSCs (Flk2−CD48−CD150+ LSK cells) was not altered in HIEC-challenged mice. Additionally, the reconstitution capacity of the total BM between infected and uninfected mice was similar by both the competitive repopulation assay and measurement of functional HSCs by limiting dilution. Thus, occasionally occurring acute inflammation, which is critical for host defenses, is unlikely to affect HSC self-renewal and maintenance of long-term reconstitution capacity. During acute bacterial infection and inflammation, the hematopoietic system can replenish hematopoietic cells consumed in the innate inflammatory response by accelerating hematopoietic stem and progenitor cell proliferation, but preserving functional HSCs in the BM.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States.,The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kutay Karatepe
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Direkrit Chiewchengchol
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rongxia Guo
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury, MA, United States
| | - Qian Ren
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fengxia Ma
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| |
Collapse
|
10
|
Simpson SR, Rego SL, Harvey SE, Liu M, Hemphill WO, Venkatadri R, Sharma R, Grayson JM, Perrino FW. T Cells Produce IFN-α in the TREX1 D18N Model of Lupus-like Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:348-359. [PMID: 31826941 PMCID: PMC6946867 DOI: 10.4049/jimmunol.1900220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
Autoimmunity can result when cells fail to properly dispose of DNA. Mutations in the three-prime repair exonuclease 1 (TREX1) cause a spectrum of human autoimmune diseases resembling systemic lupus erythematosus. The cytosolic dsDNA sensor, cyclic GMP-AMP synthase (cGAS), and the stimulator of IFN genes (STING) are required for pathogenesis, but specific cells in which DNA sensing and subsequent type I IFN (IFN-I) production occur remain elusive. In this study, we demonstrate that TREX1 D18N catalytic deficiency causes dysregulated IFN-I signaling and autoimmunity in mice. Moreover, we show that bone marrow-derived cells drive this process. We identify both innate immune and, surprisingly, activated T cells as sources of pathological IFN-α production. These findings demonstrate that TREX1 enzymatic activity is crucial to prevent inappropriate DNA sensing and IFN-I production in immune cells, including normally low-level IFN-α-producing cells. These results expand our understanding of DNA sensing and innate immunity in T cells and may have relevance to the pathogenesis of human disease caused by TREX1 mutation.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Stephen L Rego
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Scott E Harvey
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rajkumar Venkatadri
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157;
| |
Collapse
|
11
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Uccellini MB, García-Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep 2019; 25:2784-2796.e3. [PMID: 30517866 PMCID: PMC6317368 DOI: 10.1016/j.celrep.2018.11.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Type I and type III interferons (IFNs) are critical for controlling viral infections. However, the precise dynamics of the IFN response have been difficult to define in vivo. Signaling through type I IFN receptors leads to interferon-stimulated response element (ISRE)-dependent gene expression and an antiviral state. As an alternative to tracking IFN, we used an ISRE-dependent reporter mouse to define the cell types, localization, and kinetics of IFN responding cells during influenza virus infection. We find that measurable IFN responses are largely limited to hematopoietic cells, which show a high sensitivity to IFN. Inflammatory monocytes display high basal IFN responses, which are enhanced upon infection and correlate with infection of these cells. We find that inflammatory monocyte development is independent of IFN signaling; however, IFN is critical for chemokine production and recruitment following infection. The data reveal a role for inflammatory monocytes in both basal IFN responses and responses to infection. Uccellini and García-Sastre create an ISRE reporter mouse and track interferon (IFN) responses in vivo in response to pathogen-associated molecular pattern (PAMP) stimulation and influenza infection. They find that IFN responses are highest in hematopoietic cells during infection. Specifically, Ly6Chi inflammatory monocytes have high basal IFN responses that are further enhanced upon infection.
Collapse
Affiliation(s)
- Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Melero-Jerez C, Suardíaz M, Lebrón-Galán R, Marín-Bañasco C, Oliver-Martos B, Machín-Díaz I, Fernández Ó, de Castro F, Clemente D. The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon-β treatment in a murine model of multiple sclerosis. Neurobiol Dis 2019; 127:13-31. [PMID: 30798007 DOI: 10.1016/j.nbd.2019.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/13/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the human central nervous system (CNS), mainly affecting young adults. Among the immunomodulatory disease modifying treatments approved up to date to treat MS, IFN-β remains to be one of the most widely prescribed for the Relapsing-Remitting (RR) variant of the disease, although its mechanism of action is still partially understood. RR-MS variant is characterized by phases with increasing neurological symptoms (relapses) followed by periods of total or partial recovery (remissions), which implies the existence of immunomodulatory agents to promote the relapsing-to-remitting transition. Among these agents, it has been described the immunosuppressive role of a heterogeneous population of immature myeloid cells, namely the myeloid-derived suppressor cells (MDSCs) during the clinical course of the experimental autoimmune encephalomyelitis (EAE), the most used MS model to study RRMS. However, it is still unknown how the current MS disease modifying treatments, e.g. IFN- β, affects to MDSCs number or activity. Our present results show that a single injection of IFN-β at the onset of the clinical course reduces the severity of the EAE, enhancing the presence of MDSCs within the smaller demyelinated areas. Moreover, the single dose of IFN-β promotes MDSC immunosuppressive activity both in vivo and in vitro, augmenting T cell apoptosis. Finally, we show that IFN-ß preserves MDSC immaturity, preventing their differentiation to mature and less suppressive myeloid cell subsets. Taking together, all these data add new insights into the mechanism of IFN-β treatment in EAE and point to MDSCs as a putative endogenous mediator of its beneficial role in this animal model of MS.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Margarita Suardíaz
- Unidad de Gestión Clínica Inter-centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Madrid, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Carmen Marín-Bañasco
- Unidad de Gestión Clínica Inter-centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Madrid, Spain
| | - Begoña Oliver-Martos
- Unidad de Gestión Clínica Inter-centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Madrid, Spain
| | - Isabel Machín-Díaz
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Óscar Fernández
- Unidad de Gestión Clínica Inter-centros de Neurociencias, Laboratorio de Investigación y Servicio de Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Madrid, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
14
|
Tong Y, Zhou L, Yang L, Guo P, Cao Y, Qin FXF, Liu J. Concomitant type I IFN and M-CSF signaling reprograms monocyte differentiation and drives pro-tumoral arginase production. EBioMedicine 2018; 39:132-144. [PMID: 30528455 PMCID: PMC6354658 DOI: 10.1016/j.ebiom.2018.11.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type I IFN-based therapies against solid malignancies have yielded only limited success. How IFN affects tumor-associated macrophage (TAM) compartment to impact the therapeutic outcomes are not well understood. METHODS The effect of an IFN-inducer poly(I:C) on tumor-infiltrating monocytes and TAMs were analyzed using a transplantable mouse tumor model (LLC). In vitro culture systems were utilized to study the direct actions by poly(I:C)-IFN on differentiating monocytes. RESULTS We found that poly(I:C)-induced IFN targets Ly6C+ monocytes and impedes their transition into TAMs. Such an effect involves miR-155-mediated suppression of M-CSF receptor expression, contributing to restricting tumor growth. Remarkably, further analyses of gene expression profile of IFN-treated differentiating monocytes reveal a strong induction of Arg1 (encoding arginase-1) in addition to other classical IFN targets. Mechanistically, the unexpected Arg1 arm of IFN action is mediated by a prolonged STAT3 signaling in monocytes, in conjunction with elevated macrophage colony-stimulating factor (M-CSF) signaling. Functionally, induction of ARG1 limited the therapeutic effect of IFN, as inhibition of arginase activity could strongly synergize with poly(I:C) to enhance CD8+ T cell responses to thwart tumor growth in mice. CONCLUSIONS Taken together, we have uncovered two functionally opposing actions by IFN on the TAM compartment. Our work provides significant new insights on IFN-mediated immunoregulation that may have implications in cancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Tong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Gulou Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Limin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Yanlan Cao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - F Xiao-Feng Qin
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China.
| |
Collapse
|
15
|
Thompson LJ, Lai JF, Valladao AC, Thelen TD, Urry ZL, Ziegler SF. Conditioning of naive CD4(+) T cells for enhanced peripheral Foxp3 induction by nonspecific bystander inflammation. Nat Immunol 2016; 17:297-303. [PMID: 26752376 PMCID: PMC4757503 DOI: 10.1038/ni.3329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
Abstract
Inflammation induced during infection can both promote and suppress immunity. This contradiction suggests that inflammatory cytokines impact the immune system in a context-dependent manner. Here we show that non-specific bystander inflammation conditioned naïve CD4+ T cells for enhanced peripheral Foxp3 induction and reduced effector differentiation. This resulted in inhibition of immune responses in vivo via Foxp3-dependent effect on antigen-specific naïve CD4+ T cell precursors. Such conditioning may have evolved to allow immunity to infection while limiting subsequent autoimmunity caused by release of self-antigens in the wake of infection. Furthermore, this phenomenon suggests a mechanistic explanation for the concept that early tuning of the immune system by infection impacts the long-term quality of immune regulation.
Collapse
Affiliation(s)
- Lucas J Thompson
- Benaroya Research Institute, Immunology Research Program, Seattle, Washington, USA
| | - Jen-Feng Lai
- Benaroya Research Institute, Immunology Research Program, Seattle, Washington, USA
| | - Andrea C Valladao
- Benaroya Research Institute, Immunology Research Program, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Tennille D Thelen
- Benaroya Research Institute, Immunology Research Program, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| | | | - Steven F Ziegler
- Benaroya Research Institute, Immunology Research Program, Seattle, Washington, USA
| |
Collapse
|
16
|
Askenasy N. Interferon and tumor necrosis factor as humoral mechanisms coupling hematopoietic activity to inflammation and injury. Blood Rev 2014; 29:11-5. [PMID: 25440916 DOI: 10.1016/j.blre.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022]
Abstract
Enhanced hematopoiesis accompanies systemic responses to injury and infection. Tumor necrosis factor (TNF) produced by injured cells and interferons (IFNs) secreted by inflammatory cells is a co-product of the process of clearance of debris and removal of still viable but dysfunctional cells. Concomitantly, these cytokines induce hematopoietic stem and progenitor cell (HSPC) activity as an intrinsic component of the systemic response. The proposed scenario includes induction of HSPC activity by type I (IFNα/β) and II (IFNγ) receptors within the quiescent bone marrow niches rendering progenitors responsive to additional signals. TNFα converges as a non-selective stimulant of HSPC activity and both cytokines synergize with other growth factors in promoting differentiation. These physiological signaling pathways of stress hematopoiesis occur quite frequent and do not cause HSPC extinction. The proposed role of IFNs and TNFs in stress hematopoiesis commends revision of their alleged involvement in bone marrow failure syndromes.
Collapse
Affiliation(s)
- Nadir Askenasy
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel.
| |
Collapse
|
17
|
Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegué E. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. ACTA ACUST UNITED AC 2014; 211:245-62. [PMID: 24493802 PMCID: PMC3920566 DOI: 10.1084/jem.20131043] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure Type I interferons (IFN-1s) are antiviral cytokines that suppress blood production while paradoxically inducing hematopoietic stem cell (HSC) proliferation. Here, we clarify the relationship between the proliferative and suppressive effects of IFN-1s on HSC function during acute and chronic IFN-1 exposure. We show that IFN-1–driven HSC proliferation is a transient event resulting from a brief relaxation of quiescence-enforcing mechanisms in response to acute IFN-1 exposure, which occurs exclusively in vivo. We find that this proliferative burst fails to exhaust the HSC pool, which rapidly returns to quiescence in response to chronic IFN-1 exposure. Moreover, we demonstrate that IFN-1–exposed HSCs with reestablished quiescence are largely protected from the killing effects of IFNs unless forced back into the cell cycle due to culture, transplantation, or myeloablative treatment, at which point they activate a p53-dependent proapoptotic gene program. Collectively, our results demonstrate that quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure. We show that IFN-1s can poise HSCs for apoptosis but induce direct cell killing only upon active proliferation, thereby establishing a mechanism for the suppressive effects of IFN-1s on HSC function.
Collapse
Affiliation(s)
- Eric M Pietras
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143
| | | | | | | | | | | | | |
Collapse
|
18
|
Niederquell M, Kurig S, Fischer JAA, Tomiuk S, Swiecki M, Colonna M, Johnston ICD, Dzionek A. Sca-1 expression defines developmental stages of mouse pDCs that show functional heterogeneity in the endosomal but not lysosomal TLR9 response. Eur J Immunol 2013; 43:2993-3005. [PMID: 23922217 DOI: 10.1002/eji.201343498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/17/2013] [Accepted: 08/01/2013] [Indexed: 11/07/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) play an important role in innate and adaptive immunity and were shown to be identical to previously described natural interferon (IFN)-α-producing cells. Here, we describe two functionally distinct pDC subpopulations that are characterized by the differential expression of stem cell antigen-1 (Sca-1; Ly-6A/E). Sca-1(-) pDCs are mainly found in the BM, appear first during development, show a higher proliferative activity, and represent the more precursor phenotype. Sca-1(+) pDCs are mostly located in secondary lymphoid organs and represent a later developmental stage. Sca-1(-) pDCs give rise to an Sca-1(+) subset upon activation or in response to endogenous type I IFN. Interestingly, in contrast to Sca-1(-) pDCs, Sca-1(+) pDCs are defective in IFN-α production upon endosomal TLR9 stimulation, whereas lysosomal signaling via TLR9 is functional in both subsets. Gene expression analysis revealed that osteopontin is strongly upregulated in Sca-1(-) pDCs. These data provide evidence for the molecular basis of the observed functional heterogeneity, as the intracellular isoform of osteopontin couples TLR9 signaling to IFN-α expression. Taken together, our results indicate that Sca-1(-) pDCs are an early developmental stage of pDCs with distinct innate functions representing the true murine natural IFN-α-producing cells.
Collapse
|
19
|
Schuettpelz LG, Link DC. Regulation of hematopoietic stem cell activity by inflammation. Front Immunol 2013; 4:204. [PMID: 23882270 PMCID: PMC3715736 DOI: 10.3389/fimmu.2013.00204] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and the ability to generate all mature blood cells. HSCs normally reside in specialized niches in the bone marrow that help maintain their quiescence and long-term repopulating activity. There is emerging evidence that certain cytokines induced during inflammation have significant effects on HSCs in the bone marrow. Type I and II interferons, tumor necrosis factor, and lipopolysaccharide (LPS) directly stimulate HSC proliferation and differentiation, thereby increasing the short-term output of mature effector leukocytes. However, chronic inflammatory cytokine signaling can lead to HSC exhaustion and may contribute the development of hematopoietic malignancies. Pro-inflammatory cytokines such as G-CSF can also indirectly affect HSCs by altering the bone marrow microenvironment, disrupting the stem cell niche, and leading to HSC mobilization into the blood. Herein, we review our current understanding of the effects of inflammatory mediators on HSCs, and we discuss the potential clinical implications of these findings with respect to bone marrow failure and leukemogenesis.
Collapse
Affiliation(s)
- Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| | | |
Collapse
|
20
|
Hematopoietic stem and progenitor cells as effectors in innate immunity. BONE MARROW RESEARCH 2012; 2012:165107. [PMID: 22762001 PMCID: PMC3385697 DOI: 10.1155/2012/165107] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/22/2012] [Accepted: 04/28/2012] [Indexed: 12/17/2022]
Abstract
Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC). While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.
Collapse
|
21
|
Crampton SP, Deane JA, Feigenbaum L, Bolland S. Ifih1 gene dose effect reveals MDA5-mediated chronic type I IFN gene signature, viral resistance, and accelerated autoimmunity. THE JOURNAL OF IMMUNOLOGY 2011; 188:1451-9. [PMID: 22205024 DOI: 10.4049/jimmunol.1102705] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type I IFNs (IFN-I) are normally produced during antiviral responses, yet high levels of chronic IFN-I expression correlate with autoimmune disease. A variety of viral sensors generate IFN-I in their response, but other than TLRs, it is not fully known which pathways are directly involved in the development of spontaneous immune pathologies. To further explore the link between IFN-I induced by viral pathways and autoimmunity, we generated a new transgenic mouse line containing multiple copies of Ifih1, a gene encoding the cytoplasmic dsRNA sensor MDA5 with proven linkage to diabetes and lupus. We show that MDA5 overexpression led to a chronic IFN-I state characterized by resistance to a lethal viral infection through rapid clearance of virus in the absence of a CD8(+) or Ab response. Spontaneous MDA5 activation was not sufficient to initiate autoimmune or inflammatory pathology by itself, even though every immune cell population had signs of IFN activation. When combined with the lupus-susceptible background of the FcγR2B deficiency, MDA5 overexpression did accelerate the production of switched autoantibodies, the incidence of glomerulonephritis, and early lethality. Thus, MDA5 transgenic mice provide evidence that chronic elevated levels of IFN-I are not sufficient to initiate autoimmunity or inflammation although they might exacerbate an ongoing autoimmune pathology.
Collapse
Affiliation(s)
- Steve P Crampton
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
22
|
Zoglmeier C, Bauer H, Noerenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 2011; 17:1765-75. [PMID: 21233400 DOI: 10.1158/1078-0432.ccr-10-2672] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The Toll-like receptor (TLR) 9 ligand CpG has been used successfully for the immunotherapy of cancer. Chronic CpG application in tumor-free hosts leads, however, to the expansion of myeloid-derived suppressor cells (MDSC), which can cause T-cell suppression and may thus hamper the development of an effective immune response. Here, we investigated the effect of TLR9 activation on the function of MDSC in tumor-bearing mice. EXPERIMENTAL DESIGN We investigated the effect of CpG treatment on the number, phenotype, and function of MDSC in mice bearing subcutaneous C26 tumors and in CEA424-TAg mice bearing autochthonous gastric tumors. RESULTS CpG treatment blocks the suppressive activity of MDSC on T-cell proliferation in both tumor models. Inhibition of MDSC function by CpG was particularly pronounced for a highly suppressive Ly6G(hi) polymorphonuclear subset of MDSC. We further show that TLR9 activation by CpG promotes maturation and differentiation of MDSC and strongly decreases the proportion of Ly6G(hi) MDSC in both tumor-bearing and tumor-free mice. We demonstrate that IFN-α produced by plasmacytoid dendritic cells upon CpG stimulation is a key effector for the induction of MDSC maturation in vitro and show that treatment of mice with recombinant IFN-α is sufficient to block MDSC suppressivity. CONCLUSIONS We show here for the first time that TLR9 activation inhibits the regulatory function of MDSC in tumor-bearing mice and define a role for the antitumoral cytokine IFN-α in this process.
Collapse
Affiliation(s)
- Christine Zoglmeier
- Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baldridge MT, King KY, Goodell MA. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 2011; 32:57-65. [PMID: 21233016 DOI: 10.1016/j.it.2010.12.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/02/2010] [Accepted: 12/09/2010] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) are the progenitors of all blood and immune cells, yet their role in immunity is not well understood. Most studies have focused on the ability of committed lymphoid and myeloid precursors to replenish immune cells during infection. Recent studies, however, have indicated that HSCs also proliferate in response to systemic infection and replenish effector immune cells. Inflammatory signaling molecules including interferons, tumor necrosis factor-α and Toll-like receptors are essential to the HSC response. Observing the biology of HSCs through the lens of infection and inflammation has led to the discovery of an array of immune-mediators that serve crucial roles in HSC regulation and function.
Collapse
Affiliation(s)
- Megan T Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
24
|
Bao Y, Kim E, Bhosle S, Mehta H, Cho S. A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation 2010; 7:92. [PMID: 21159187 PMCID: PMC3016273 DOI: 10.1186/1742-2094-7-92] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/15/2010] [Indexed: 12/21/2022] Open
Abstract
Although infiltration of peripheral monocytes/macrophages is implicated in stroke pathology, in vivo data regarding the deployment of monocytes and their mobilization to the infarct area is scarce. Recent literature showed that mouse monocytes exhibit two distinct populations that represent pro-inflammatory (Ly-6Chi/CCR2+) and anti-inflammatory (Ly-6Clow/CCR2-) subsets and that spleen is a major source for monocyte deployment upon injury. By reducing post-ischemic infection with antibacterial moxifloxacin (MFX) treatment, the present study investigates the effect of the treatment on Ly-6C and CCR2 expression in the spleen following ischemia and the extent to which the effect is associated with attenuation of post-ischemic inflammation and injury. Mice subjected to a middle cerebral artery occlusion (MCAO) showed a significant reduction in their spleen weights compared to sham animals. Compared to vehicle controls, splenocytes obtained from daily MFX-treated mice 7 days after ischemia exhibited significantly reduced mean Ly-6C expression within pro-inflammatory subsets, whereas the distribution of pro- and anti-inflammatory subsets was not different between the treatment groups. Additionally, MFX treatment significantly reduced CCR2 expression in the spleen tissue and in the post-ischemic brain and attenuated infarct size. The study suggests a potential contributing role of spleen monocytes in post-ischemic inflammation and injury. The influence of peripheral inflammatory status on the primary injury in the CNS further implies that the attenuation of post-stroke infection may be beneficial in mitigating stroke-induced brain injury.
Collapse
Affiliation(s)
- Yi Bao
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | | | | | | | | |
Collapse
|
25
|
Pace L, Vitale S, Dettori B, Palombi C, La Sorsa V, Belardelli F, Proietti E, Doria G. APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions. THE JOURNAL OF IMMUNOLOGY 2010; 184:5969-79. [PMID: 20427775 DOI: 10.4049/jimmunol.0900526] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs are central to a vast array of immunological functions. Their early induction in innate immune responses provides one of the most important priming mechanisms for the subsequent establishment of adaptive immunity. The outcome is either promotion or inhibition of these responses, but the conditions under which one or the other prevails remain to be defined. The main objective of the current study was to determine the involvement of IFN-alpha on murine CD4(+)CD25(-) Th cell activation, as well as to define the role played by this cytokine on CD4(+)CD25(+) regulatory T (Treg) cell proliferation and function. Although IFN-alpha promotes CD4(+)CD25(-) Th cells coincubated with APCs to produce large amounts of IL-2, the ability of these cells to respond to IL-2 proliferative effects is prevented. Moreover, in medium supplemented with IFN-alpha, IL-2-induced CD4(+)CD25(+) Treg cell proliferation is inhibited. Notably, IFN-alpha also leads to a decrease of the CD4(+)CD25(+) Treg cell suppressive activity. Altogether, these findings indicate that through a direct effect on APC activation and by affecting CD4(+)CD25(+) Treg cell-mediated suppression, IFN-alpha sustains and drives CD4(+)CD25(-) Th cell activation.
Collapse
Affiliation(s)
- Luigia Pace
- Immunology Laboratory, Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S, Larma I, Prosser A, Robinson BWS, Smyth MJ, Scalzo AA, Degli-Esposti MA, Lake RA. Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One 2009; 4:e6982. [PMID: 19746156 PMCID: PMC2734989 DOI: 10.1371/journal.pone.0006982] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 08/19/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. METHODS AND FINDINGS We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-alpha/beta response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-gamma and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies. CONCLUSION The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.
Collapse
Affiliation(s)
- Robbert G. van der Most
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- * E-mail: (RGvdM); (RAL)
| | - Andrew J. Currie
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Amanda L. Cleaver
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Joanne Salmons
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Anna K. Nowak
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Sathish Mahendran
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Irma Larma
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Amy Prosser
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Bruce W. S. Robinson
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Mark J. Smyth
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Anthony A. Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, and Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia
| | - Mariapia A. Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, and Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia
| | - Richard A. Lake
- National Research Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- * E-mail: (RGvdM); (RAL)
| |
Collapse
|
27
|
Whitmire JK, Eam B, Whitton JL. Mice deficient in stem cell antigen-1 (Sca1, Ly-6A/E) develop normal primary and memory CD4+ and CD8+ T-cell responses to virus infection. Eur J Immunol 2009; 39:1494-504. [PMID: 19384870 PMCID: PMC2757104 DOI: 10.1002/eji.200838959] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cell antigen-1 (Sca1, Ly-6A/E) is a well-established marker of murine hematopoietic stem cells, and also is expressed on memory T cells. It has been suggested that the functional maintenance of T-cell memory requires the expression of Sca1 on a specialized population of memory T cells termed "memory stem cells". Here, we evaluate the requirement for Sca1 in the primary T-cell response to virus infection, and in the establishment and maintenance of T-cell memory. We find that Sca1 expression increases on almost all CD4(+) and CD8(+) T cells during virus infection, and remains high on virus-specific memory cells. However, Sca1-deficient (Sca1KO) mice generate normal primary T-cell responses to infection; the kinetics, the immunodominance hierarchy, and the absolute numbers of CD4(+) and CD8(+) T cells are essentially indistinguishable from those observed in WT mice. Furthermore, by several criteria, primary and memory T cells in Sca1-deficient mice are phenotypically and functionally normal. These data indicate that Sca1, although perhaps a useful marker of virus-specific memory T cells, is not required for the regulation of T-cell quantity or quality, or for the development of a competent pool of memory cells.
Collapse
Affiliation(s)
- Jason K. Whitmire
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7147, FAX: 858-784-7380,
| | - Boreth Eam
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7147, FAX: 858-784-7380,
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA, Tel: 858-784-7147, FAX: 858-784-7380,
| |
Collapse
|
28
|
Antineoplastic activity of lentiviral vectors expressing interferon-alpha in a preclinical model of primary effusion lymphoma. Blood 2009; 113:4525-33. [PMID: 19196659 DOI: 10.1182/blood-2008-09-180307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The peculiar site of development of primary effusion lymphoma (PEL) highlights a specific role of body cavities in the pathogenesis of this neoplasia. We used a xenograft murine model of PEL to characterize the contribution of the host microenvironment to PEL growth. The activity of a murine (ie, host-specific) interferon-alpha(1) (IFN-alpha(1))-expressing lentiviral vector (mIFN-alpha(1)-LV) was compared with that of a human (h) IFN-alpha(2)b-LV. LVs efficiently delivered the transgene to PEL cells and conferred long-term transgene expression in vitro and in vivo. Treatment of PEL-injected severe combined immunodeficiency mice with hIFN-alpha(2)b-LV significantly prolonged mice survival and reduced ascites development. Interestingly, mIFN-alpha(1)-LV showed an antineoplastic activity comparable with that observed with hIFN-alpha(2)b-LV. As mIFN-alpha(1) retained species-restricted activity in vitro, it probably acted in vivo on the intracavitary murine milieu. mIFN-alpha(1)-treated murine mesothelial cells were found to express tumor necrosis factor-related apoptosis-inducing ligand and to significantly trigger apoptosis of cocultured PEL cells in a tumor necrosis factor-related apoptosis-inducing ligand-dependent manner. These data suggest that the interaction between lymphomatous and mesothelial cells lining the body cavities may play a key role in PEL growth control and also indicate that the specific targeting of microenvironment may impair PEL development.
Collapse
|
29
|
Fairhurst AM, Mathian A, Connolly JE, Wang A, Gray HF, George TA, Boudreaux CD, Zhou XJ, Li QZ, Koutouzov S, Banchereau J, Wakeland EK. Systemic IFN-alpha drives kidney nephritis in B6.Sle123 mice. Eur J Immunol 2008; 38:1948-60. [PMID: 18506882 DOI: 10.1002/eji.200837925] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The impact of IFN-alpha secretion on disease progression was assessed by comparing phenotypic changes in the lupus-prone B6.Sle1Sle2Sle3 (B6.Sle123) strain and the parental C57BL/6 (B6) congenic partner using an adenovirus (ADV) expression vector containing a recombinant IFN-alpha gene cassette (IFN-ADV). A comprehensive comparison of cell lineage composition and activation in young B6 and B6.Sle123 mice revealed a variety of cellular alterations in the presence and absence of systemic IFN-alpha. Most IFN-alpha-induced phenotypes were similar in B6 and B6.Sle123 mice; however, B6.Sle123 mice uniquely exhibited increased B1 and plasma cells after IFN-alpha exposure, although both strains had an overall loss of mature B cells in the bone marrow, spleen and periphery. Although most of the cellular effects of IFN-alpha were identical in both strains, severe glomerulonephritis occurred only in B6.Sle123 mice. Mice injected with IFN-ADV showed an increase in immune complex deposition in the kidney, together with an unexpected decrease in serum anti-nuclear antibody levels. In summary, the predominant impact of systemic IFN-alpha in this murine model is an exacerbation of mechanisms mediating end organ damage.
Collapse
Affiliation(s)
- Anna-Marie Fairhurst
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee PY, Weinstein JS, Nacionales DC, Scumpia PO, Li Y, Butfiloski E, van Rooijen N, Moldawer L, Satoh M, Reeves WH. A novel type I IFN-producing cell subset in murine lupus. THE JOURNAL OF IMMUNOLOGY 2008; 180:5101-8. [PMID: 18354236 DOI: 10.4049/jimmunol.180.7.5101] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Excess type I IFNs (IFN-I) have been linked to the pathogenesis of systemic lupus erythematosus (SLE). Therapeutic use of IFN-I can trigger the onset of SLE and most lupus patients display up-regulation of a group of IFN-stimulated genes (ISGs). Although this "IFN signature" has been linked with disease activity, kidney involvement, and autoantibody production, the source of IFN-I production in SLE remains unclear. 2,6,10,14-Tetramethylpentadecane-induced lupus is at present the only model of SLE associated with excess IFN-I production and ISG expression. In this study, we demonstrate that tetramethylpentadecane treatment induces an accumulation of immature Ly6C(high) monocytes, which are a major source of IFN-I in this lupus model. Importantly, they were distinct from IFN-producing dendritic cells (DCs). The expression of IFN-I and ISGs was rapidly abolished by monocyte depletion whereas systemic ablation of DCs had little effect. In addition, there was a striking correlation between the numbers of Ly6C(high) monocytes and the production of lupus autoantibodies. Therefore, immature monocytes rather than DCs appear to be the primary source of IFN-I in this model of IFN-I-dependent lupus.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease, University of Florida, Gainesville, FL 32610-0221, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Klein JR. T-cell activation in the curious world of the intestinal intraepithelial lymphocyte. Immunol Res 2005; 30:327-37. [PMID: 15531773 DOI: 10.1385/ir:30:3:327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In conventional terms, when T cells encounter appropriate stimuli, they are induced to undergo molecular and physical changes that confer upon them a state of activation. Once initiated, activation generally results in a state of full T-cell responsiveness in an all-or-none manner. Uniquely, however, the intestinal intraepithelial lymphocytes (IELs) bear features that are decidedly different from those of T cells located throughout other immunological compartments in that they exhibit some but not all properties of activated T cells, yet they can be induced to move further into activation provided appropriate costimulatory signals have been received. IEL costimulatory molecules some of which are constitutively expressed, whereas others are upregulated following T-cell receptor (TCR)/CD3 stimulation appear to hold the key to determining the nature and magnitude of the activational process. A system of activation such as this in the intestine would be expected to have great immunological protective value for the host because it would provide an untrammeled process of T-cell activation at a barrier site where the level of antigen exposure is consistently high. Clearly, however, mechanisms must be in place to insure that the IEL activation process is not inadvertently breached. These and other issues central to the operational workings of the intestinal immune system are elaborated in this article, and a model is presented in which IEL activation can be viewed as a layered, three-stage activational process.
Collapse
Affiliation(s)
- John R Klein
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Blasius A, Vermi W, Krug A, Facchetti F, Cella M, Colonna M. A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood 2003; 103:4201-6. [PMID: 14695235 DOI: 10.1182/blood-2003-09-3108] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural interferon (IFN)-producing cells (IPCs) recognize certain viruses and DNA containing deoxycytidylate-phosphatedeoxyguanylate (CpG) motifs through the toll-like receptor (TLR) 9, resulting in secretion of IFN-alpha, interleukin 12 (IL-12), and proinflammatory chemokines. Human IPCs are found mainly in inflamed lymph nodes, where they are presumably recruited from the blood to activate both innate and adaptive responses to microbial infections. Demonstrating IPC recruitment and function in murine infection models has been difficult because multiple antibodies are required to distinguish IPCs from other immune cells and very few IPCs can be recovered from lymph nodes. Here we describe a monoclonal antibody (mAb) that exclusively detects murine IPCs in all lymphoid organs under both normal and inflammatory conditions. Using this antibody, we demonstrate that IPCs are normally present in the T-cell zone of lymph nodes and spleen and that inoculation of peripheral tissues with inflammatory stimuli triggers recruitment of IPC into sentinel lymph nodes, whether the stimuli are able to directly stimulate IPCs through TLR or not. Remarkably, we show that incubation of IPCs with the antibody in vitro or administration of the antibody in vivo dramatically reduce secretion of IFN-alpha in response to CpG DNA without causing IPC depletion. Thus, the antibody identifies an IPC-specific surface molecule that, when engaged, inhibits IFN-alpha secretion.
Collapse
Affiliation(s)
- Amanda Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid, Box 8118, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
33
|
Han GM, Chen SL, Shen N, Ye S, Bao CD, Gu YY. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun 2003; 4:177-86. [PMID: 12700592 DOI: 10.1038/sj.gene.6363966] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiologic studies suggest a strong genetic component for susceptibility to systemic lupus erythematosus (SLE). To investigate the genetic mechanism of pathogenesis of SLE, we studied the difference in gene expression of peripheral blood cells between 10 SLE patients and 18 healthy controls using oligonucleotide microarray. When gene expression for patients was compared to the mean of normal controls, among the 3002 target genes, 61 genes were identified with greater than a two-fold change difference in expression level. Of these genes, 24 were upregulated and 37 downregulated in at least half of the patients. By the Welch's ANOVA/Welch's t-test, all these 61 genes were significantly different (P<0.05) between SLE patients and normal controls. Among these genes with differential expression, IFN-omega and Ly6E (TSA-1/Sca-2) may play an important role in the mechanism of SLE pathogenesis. TSA-1 antigens may represent an important alternative pathway for T-cell activation that may be involved in IFN-mediated immunomodulation. Hierarchical clustering showed that patient samples were clearly separated from controls based on their gene expression profile. These results demonstrate that high-density oligonucleotide microarray has the potential to explore the mechanism of pathogenesis of systemic lupus erythematosus.
Collapse
Affiliation(s)
- G-M Han
- Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, China.
| | | | | | | | | | | |
Collapse
|
34
|
Ito CY, Li CYJ, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003; 101:517-23. [PMID: 12393491 DOI: 10.1182/blood-2002-06-1918] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite its wide use as a marker for hematopoietic stem cells (HSCs), the function of stem cell antigen-1 (Sca-1) (also known as lymphocyte activation protein-6A [Ly-6A]) in hematopoiesis remains poorly defined. We have previously established that Sca-1(-/-) T cells develop normally, although they are hyperresponsive to antigen. Here, we report detailed analysis of hematopoiesis in Sca-1-deficient animals. The differentiation potential of Sca-1-null bone marrow was determined from examination of the most mature precursors (culture colony-forming units [CFU-Cs]) to less committed progenitors (spleen CFUs [CFU-Ss]) to long-term repopulating HSCs. Sca-1-null mice are mildly thrombocytopenic with a concomitant decrease in megakaryocytes and their precursors. Bone marrow cells derived from Sca-1(-/-) mice also have decreased multipotential granulocyte, erythroid, macrophage, and megakaryocyte CFU (GEMM-CFU) and CFU-S progenitor activity. Competitive repopulation assays demonstrated that Sca-1(-/-) HSCs are at a competitive disadvantage compared with wild-type HSCs. To further analyze the potential of Sca-1(-/-) HSCs, serial transplantations were performed. While secondary repopulations using wild-type bone marrow completely repopulated Sca-1(-/-) mice, Sca-1(-/-) bone marrow failed to rescue one third of lethally irradiated wild-type mice receiving secondary bone marrow transplants from irradiation-induced anemia and contributed poorly to the surviving transplant recipients. These data strongly suggest that Sca-1 is required for regulating HSC self-renewal and the development of committed progenitor cells, megakaryocytes, and platelets. Thus, our studies conclusively demonstrate that Sca-1, in addition to being a marker of HSCs, regulates the developmental program of HSCs and specific progenitor populations.
Collapse
Affiliation(s)
- Caryn Y Ito
- Programme in Cancer/Blood, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
35
|
Schlueter AJ, Krieg AM, De Vries P, Li X. B cells express Ly-6C in a Th1 but not Th2 cytokine environment. J Interferon Cytokine Res 2002; 22:799-806. [PMID: 12184918 DOI: 10.1089/107999002320271396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Interferon-alpha (IFN-alpha) is the primary regulator of transient Ly-6C expression on T cells. B cells, which do not express Ly-6C in the resting state, have been reported to express Ly-6C following exposure to proinflammatory stimuli. This study examined the factors controlling Ly-6C expression on B cells and the kinetics of Ly-6C expression in the presence of these factors. In vivo studies demonstrated that proinflammatory (Th1) cytokines transiently upregulate B cell Ly-6C expression. In vitro studies identified Th1 cytokines, particularly IFN-alpha and IFN-gamma, as the principal cytokines responsible for this induction. Polyclonal B cell activators (anti-IgM and recombinant CD40 ligand trimer) showed minimal ability to independently induce Ly-6C expression on B cells but did enhance the ability of IFNs to induce expression. Th2 cytokine environments did not result in B cell Ly-6C expression, and interleukin-4 (IL-4) actually antagonized the IFN-driven induction of Ly-6C. Ly6.1 strains of mice consistently demonstrated a greater ability to express Ly-6C on B cells than did Ly-6.2 strains. Together, these studies demonstrate the ability of Th1 but not Th2 cytokine environments to transiently induce the expression of Ly-6C on B cells and provide additional evidence for differences in the regulation of Ly-6C expression in Ly6.1 and Ly6.2 strains.
Collapse
Affiliation(s)
- Annette J Schlueter
- Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242-1181, USA.
| | | | | | | |
Collapse
|
36
|
Schlueter AJ, Krieg AM, de Vries P, Li X. Type I interferon is the primary regulator of inducible Ly-6C expression on T cells. J Interferon Cytokine Res 2001; 21:621-9. [PMID: 11559440 DOI: 10.1089/10799900152547885] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ly-6C has been proposed as a marker of memory CD8+ T cells. Reports have indicated that Ly-6C is upregulated after T cell receptor (TCR) stimulation or exposure to proinflammatory cytokines. This study examined the relative roles of proinflammatory cytokines and TCR engagement in Ly-6C induction. In vitro experiments tested the effects of cytokines on Ly-6C expression and confirmed interferon-alpha (IFN-alpha) as a primary cytokine that induces Ly-6C expression on CD4+ and CD8+ T cells. The amount and duration of Ly-6C expression were examined on T cells after in vivo induction of proinflammatory cytokines (CpG oligodeoxynucleotides [ODN]) or TCR activation (staphylococcal enterotoxin B [SEB]). In vivo, proinflammatory cytokines transiently upregulated Ly-6C on T cells in the absence of TCR stimulation. TCR stimulation by SEB transiently upregulated Ly-6C expression on antigen-specific and antigen-nonspecific T cells but did not cause long-term upregulation of Ly-6C expression in either population. IFN-alpha was confirmed as a primary inducer of Ly-6C in vivo, as CpG ODN were unable to induce Ly-6C expression in IFN-alphaRI(-/-) mice. Thus, inducible Ly-6C expression on CD4+ and CD8+ T cells is largely due to IFN-alpha in the environment and appears not to be directly correlated with the development of T cell memory.
Collapse
Affiliation(s)
- A J Schlueter
- Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242-1181, USA.
| | | | | | | |
Collapse
|
37
|
Polic B, Kunkel D, Scheffold A, Rajewsky K. How alpha beta T cells deal with induced TCR alpha ablation. Proc Natl Acad Sci U S A 2001; 98:8744-9. [PMID: 11447257 PMCID: PMC37506 DOI: 10.1073/pnas.141218898] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On deletion of the gene encoding the constant region of the T cell antigen receptor (TCR)alpha chain in mature T cells by induced Cre-mediated recombination, the cells lose most of their TCR from the cell surface within 7--10 days, but minute amounts of surface-bound TCR beta chains are retained for long periods of time. In a situation in which cellular influx from the thymus is blocked, TCR-deficient naive T cells decay over time, the decay rates being faster for CD8(+) cells (t(1/2) approximately 16 days) than for CD4(+) cells (t(1/2) approximately 46 days). TCR(+) naïve cells are either maintained (CD8(+)) or decay more slowly (CD4(+); t(1/2) approximately 78 days.) Numbers of TCR-deficient memory T cells decline very slowly (CD8(+) cells; t(1/2) approximately 52 days) or not at all (CD4(+) cells), but at the population level, these cells fail to expand as their TCR(+) counterparts do. Together with earlier data on T cell maintenance in environments lacking appropriate major histocompatibility complex antigens, these data argue against the possibility that spontaneous ligand-independent signaling by the alpha beta TCR contributes significantly to T-cell homeostasis.
Collapse
Affiliation(s)
- B Polic
- Department of Immunology, Institute for Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany.
| | | | | | | |
Collapse
|
38
|
Tough DF, Zhang X, Sprent J. An IFN-gamma-dependent pathway controls stimulation of memory phenotype CD8+ T cell turnover in vivo by IL-12, IL-18, and IFN-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6007-11. [PMID: 11342616 DOI: 10.4049/jimmunol.166.10.6007] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unlike naive T cells, memory phenotype (CD44(high)) T cells exhibit a high background rate of turnover in vivo. Previous studies showed that the turnover of memory phenotype CD8(+) (but not CD4(+)) cells in vivo can be considerably enhanced by products of infectious agents such as LPS. Such stimulation is TCR independent and hinges on the release of type I IFNs (IFN-I) which leads to the production of an effector cytokine, probably IL-15. In this study, we describe a second pathway of CD44(high) CD8(+) stimulation in vivo. This pathway is IFN-gamma rather than IFN-I dependent and is mediated by at least three cytokines, IL-12, IL-18, and IFN-gamma. As for IFN-I, these three cytokines are nonstimulatory for purified T cells and under in vivo conditions probably act via production of IL-15.
Collapse
Affiliation(s)
- D F Tough
- Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, United Kingdom.
| | | | | |
Collapse
|
39
|
Sun S, Sprent J. Role of type I interferons in T cell activation induced by CpG DNA. Curr Top Microbiol Immunol 2000; 247:107-17. [PMID: 10689782 DOI: 10.1007/978-3-642-59672-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S Sun
- R.W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
40
|
Sprent J, Zhang X, Sun S, Tough D. T-cell proliferation in vivo and the role of cytokines. Philos Trans R Soc Lond B Biol Sci 2000; 355:317-22. [PMID: 10794049 PMCID: PMC1692740 DOI: 10.1098/rstb.2000.0568] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike typical naive T cells, T cells with an activated (CD44hi) memory phenotype show a rapid rate of proliferation in vivo. The turnover of memory-phenotype CD8+ T cells can be considerably augmented by injecting mice with various compounds, including polyinosinic polycytidylic acid, lipopolysaccharide and immunostimulatory DNA (CpG DNA). Certain cytokines, notably type I (alpha, beta) interferons (IFN-I), have a similar effect. These agents appear to induce proliferation of CD44hi CD8+ cells in vivo by an indirect process involving production of effector cytokines, possibly interleukin-15, by antigen-presenting cells. Although none of the agents tested induces proliferation of naive-phenotype T cells, IFN-I has the capacity to cause upregulation of surface markers on purified naive T cells. Depending upon the experimental conditions used, IFN-I can either inhibit or enhance primary responses of naive T cells to specific antigen.
Collapse
Affiliation(s)
- J Sprent
- Department of Immunology, IMM4, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
41
|
Cyclophosphamide induces type I interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 2000. [DOI: 10.1182/blood.v95.6.2024] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In a previous study, we reported that a single injection of cyclophosphamide (CTX) in tumor-bearing mice resulted in tumor eradication when the animals were subsequently injected with tumor-sensitized lymphocytes. Notably, CTX acted by inducing bystander effects on T cells, and the response to the combined CTX/adoptive immunotherapy regimen was inhibited in mice treated with antibodies to mouse interferon (IFN)–/β. In the present study, we have investigated whether CTX induced the expression of type I IFN, and we have characterized the CTX effects on the phenotype of T cells in normal mice. CTX injection resulted in an accumulation of type I IFN messenger RNA in the spleen of inoculated mice, at 24 to 48 hours, that was associated with IFN detection in the majority of the animals. CTX also enhanced the expression of the Ly-6C on spleen lymphocytes. This enhancement was inhibited in mice treated with anti–type I IFN antibodies. Moreover, CTX induced a long-lasting increase in in vivo lymphocyte proliferation and in the percentage of CD44hiCD4+ and CD44hiCD8+T lymphocytes. These results demonstrate that CTX is an inducer of type I IFN in vivo and enhances the number of T cells exhibiting the CD44hi memory phenotype. Since type I IFN has been recently recognized as the important cytokine for the in vivo expansion and long-term survival of memory T cells, we suggest that induction of this cytokine may explain at least part of the immunomodulatory effects observed after CTX treatment. Finally, these findings provide a new rationale for combined treatments with CTX and adoptive immunotherapy in cancer patients.
Collapse
|
42
|
Abstract
Mature T cells can be classified on the basis of cell surface markers into naïve- and memory-phenotype cells. These phenotypically-defined subsets exhibit distinct kinetic behaviour in vivo. Thus, naïve-phenotype T cells persist long-term in a non-dividing state, while memory-phenotype T cells include cycling cells and have a more rapid rate of turnover. We have investigated the possibility that the different kinetic behaviour of naïve- and memory-phenotype T cells reflects a differential responsiveness to cytokines. It was discovered that memory-, but not naïve-, phenotype T cells were stimulated to proliferate by a variety of infection-induced cytokines. These results suggest that cytokines contribute to the high background rate of turnover exhibited by memory T cells.
Collapse
Affiliation(s)
- D F Tough
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, UK.
| | | | | | | |
Collapse
|
43
|
Abstract
On the basis of cell surface markers, mature T cells are considered to have either a naïve or a memory phenotype. These cells exhibit distinct types of kinetic behaviour in vivo. While naïve-phenotype cells persist long term in a non-dividing state, memory-phenotype T cells include cycling cells and exhibit a more rapid rate of turnover; this has also been shown to be true for cells that can be definitively identified as naïve or memory T cells respectively. The number of memory-phenotype (CD44hi) CD8+ T cells entering cell cycle is greatly increased after in vivo exposure to viruses, bacteria or components of bacteria. Accelerated turnover of memory T cells also occurs after the injection of a variety cytokines that are induced by infectious agents, including type I interferon (IFN-I). Although naïve-phenotype T cells do not divide in response to these cytokines, they do exhibit signs of activation, including upregulation of CD69 after exposure to IFN-I. These findings suggest that the dissimilar in vivo kinetics of naïve- and memory-phenotype T cells might reflect their divergent responses to cytokines. Furthermore, the ability of infection-induced cytokines to stimulate non-specific proliferation of memory-phenotype T cells and partial activation of naïve-phenotype T cells implies that they play a complex role during primary immune responses to infectious agents.
Collapse
Affiliation(s)
- D F Tough
- Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, England.
| | | | | | | |
Collapse
|
44
|
Sun S, Zhang X, Tough DF, Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 1998; 188:2335-42. [PMID: 9858519 PMCID: PMC2212431 DOI: 10.1084/jem.188.12.2335] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/1998] [Revised: 10/21/1998] [Indexed: 01/13/2023] Open
Abstract
Immunostimulatory DNA and oligodeoxynucleotides containing unmethylated CpG motifs (CpG DNA) are strongly stimulatory for B cells and antigen-presenting cells (APCs). We report here that, as manifested by CD69 and B7-2 upregulation, CpG DNA also induces partial activation of T cells, including naive-phenotype T cells, both in vivo and in vitro. Under in vitro conditions, CpG DNA caused activation of T cells in spleen cell suspensions but failed to stimulate highly purified T cells unless these cells were supplemented with APCs. Three lines of evidence suggested that APC-dependent stimulation of T cells by CpG DNA was mediated by type I interferons (IFN-I). First, T cell activation by CpG DNA was undetectable in IFN-IR-/- mice. Second, in contrast to normal T cells, the failure of purified IFN-IR-/- T cells to respond to CpG DNA could not be overcome by adding normal IFN-IR+ APCs. Third, IFN-I (but not IFN-gamma) caused the same pattern of partial T cell activation as CpG DNA. Significantly, T cell activation by IFN-I was APC independent. Thus, CpG DNA appeared to stimulate T cells by inducing APCs to synthesize IFN-I, which then acted directly on T cells via IFN-IR. Functional studies suggested that activation of T cells by IFN-I was inhibitory. Thus, exposing normal (but not IFN-IR-/-) T cells to CpG DNA in vivo led to reduced T proliferative responses after TCR ligation in vitro.
Collapse
Affiliation(s)
- S Sun
- The R.W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Immune responses to infectious agents, especially viruses, are often associated with extensive proliferation of T cells and transient enlargement of the lymphoid tissues. Since the precursor frequency of T cells for specific antigen is low, the bulk of the T cells proliferating in the primary response are presumably stimulated via non-antigen-specific mechanisms, e.g. via cytokines elicited by the infectious agent concerned. Such 'bystander' stimulation of T cells occurs in mice injected with agents that elicit production of type I interferon (IFN I). Induction of IFN I in vivo causes marked stimulation of the CD44hi subset of CD8+ T cells and is prominent after injection of live viruses or products of bacteria such as lipopolysaccharide. Cytokines elicited by infectious agents may act as adjuvants during the primary response and could serve to boost the survival of long-lived memory cells.
Collapse
Affiliation(s)
- D F Tough
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
46
|
Lin Q, Dong C, Cooper MD. Impairment of T and B cell development by treatment with a type I interferon. J Exp Med 1998; 187:79-87. [PMID: 9419213 PMCID: PMC2199191 DOI: 10.1084/jem.187.1.79] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1997] [Revised: 11/03/1997] [Indexed: 02/05/2023] Open
Abstract
Type I interferons alpha and beta, naturally produced regulators of cell growth and differentiation, have been shown to inhibit IL-7-induced growth and survival of B cell precursors in vitro. After confirming an inhibitory effect on B lymphopoiesis in an ex vivo assay, we treated newborn mice with an active IFN-alpha2/alpha1 hybrid molecule to assess its potential for regulating B and T cell development in vivo. Bone marrow and splenic cellularity was greatly reduced in the IFN-alpha2/alpha1-treated mice, and B lineage cells were reduced by >80%. The bone marrow progenitor population of CD43+B220+HSA- cells was unaffected, but development of the CD19+ pro-B cells and their B lineage progeny was severely impaired. Correspondingly, IL-7-responsive cells in the bone marrow were virtually eliminated by the interferon treatment. Thymus cellularity was also reduced by >80% in the treated mice. Phenotypic analysis of the residual thymocytes indicated that the inhibitory effect was exerted during the pro-T cell stage in differentiation. In IFN-alpha/beta receptor-/- mice, T and B cell development were unaffected by the IFN-alpha2/alpha1 treatment. The data suggest that type I interferons can reversibly inhibit early T and B cell development by opposing the essential IL-7 response.
Collapse
Affiliation(s)
- Q Lin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
47
|
Tough DF, Sun S, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med 1997; 185:2089-94. [PMID: 9182680 PMCID: PMC2196347 DOI: 10.1084/jem.185.12.2089] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/1997] [Revised: 04/08/1997] [Indexed: 02/04/2023] Open
Abstract
Lipopolysaccharide (LPS) from gram-negative bacteria causes polyclonal activation of B cells and stimulation of macrophages and other APC. We show here that, under in vivo conditions, LPS also induces strong stimulation of T cells. As manifested by CD69 upregulation, LPS injection stimulates both CD4 and CD8(+) T cells, and, at high doses, stimulates naive (CD44(lo)) cells as well as memory (CD44(hi)) cells. However, in terms of cell division, the response of T cells after LPS injection is limited to the CD44(hi) subset of CD8(+) cells. In contrast with B cells, proliferative responses of CD44(hi) CD8(+) cells require only very low doses of LPS (10 ng). Based on studies with LPS-nonresponder and gene-knockout mice, LPS-induced proliferation of CD44(hi) CD8(+) cells appears to operate via an indirect pathway involving LPS stimulation of APC and release of type I (alpha, beta) interferon (IFN-I). Similar selective stimulation of CD44(hi) CD8(+) cells occurs in viral infections and after injection of IFN-I, implying a common mechanism. Hence, intermittent exposure to pathogens (gram-negative bacteria and viruses) could contribute to the high background proliferation of memory-phenotype CD8(+) cells found in normal animals.
Collapse
Affiliation(s)
- D F Tough
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
48
|
Abstract
Most of the T cells participating in the primary immune response are rapidly eliminated, but small numbers of these cells survive and differentiate into long-lived memory cells. Information on the life history of memory cells can be obtained by studying the component of memory-phenotype T cells found in normal animals; these cells are presumed to represent memory cells specific for various environmental antigens. For CD8+ cells, in vivo exposure to viruses and certain other infectious agents causes a large proportion of memory-phenotype (CD44hi) cells to enter the cell cycle. In this situation, stimulation of CD44hi CD8+ cells does not seem to require T-cell receptor ligation and appears to reflect release of various cytokines, especially type I interferon. The capacity of infectious agents to induce non-antigen-specific stimulation of T cells may play a role in boosting the survival of memory cells and perhaps also in providing an adjuvant function during the primary response.
Collapse
Affiliation(s)
- J Sprent
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
49
|
Goes N, Urmson J, Hobart M, Halloran PF. The unique role of interferon-gamma in the regulation of MHC expression on arterial endothelium. Transplantation 1996; 62:1889-94. [PMID: 8990382 DOI: 10.1097/00007890-199612270-00036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the expression of MHC class I and II in the arterial endothelium of interferon-gamma (IFN-gamma, GKO) and IFN-gamma-R (IFN-gamma-R, GRKO) gene knockout mice in comparison with mice with intact IFN-gamma and IFN-gamma-R genes, BALB/c and 129Sv/J wild-type, respectively. The GKO and GRKO were produced by gene targeting. MHC class I and II expression was assessed by mAb binding to frozen tissue (kidney, spleen, heart, liver) sections by immunoperoxidase staining in the basal state and after various stimuli: allogeneic cells, oxazolone skin sensitization, LPS, and rIFN-gamma. As controls, we also examined the expression of two other IFN-gamma inducible genes present in the endothelium, Ly-6 and ICAM-1. We found that basal class I expression was present in the small arteries and arterioles of BALB/c and 129Sv/J wild-type mice but absent from arterial endothelium of GKO and GRKO mice. Class I was induced in the endothelium of BALB/c and 129Sv/J wild-type mice by three in vivo stimuli: allogeneic, LPS, and oxazolone, whereas class II was only induced after allogeneic stimulus. Administration of rIFN-gamma induced class I in the endothelium of GKO and BALB/c wild-type mice. The basal expression of Ly-6 and ICAM-1 was similar in the arteries of GKO and BALB/c wild-type mice, indicating that, the basal expression of these proteins in endothelium is IFN-gamma independent, unlike class I. In summary, basal class I expression in arterial endothelium is not constitutive as previously believed, but is dependent on basal IFN-gamma production. IFN-gamma has an essential role in the induction of class I and II expression in arterial endothelium. The fact that MHC class I is induced in endothelium may be useful therapeutically for reduction of immune recognition in transplantation.
Collapse
Affiliation(s)
- N Goes
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
50
|
Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996; 272:1947-50. [PMID: 8658169 DOI: 10.1126/science.272.5270.1947] [Citation(s) in RCA: 850] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
T cell proliferation in vivo is presumed to reflect a T cell receptor (TCR)-mediated polyclonal response directed to various environmental antigens. However, the massive proliferation of T cells seen in viral infections is suggestive of a bystander reaction driven by cytokines instead of the TCR. In mice, T cell proliferation in viral infections preferentially affected the CD44hi subset of CD8+ cells and was mimicked by injection of polyinosinic-polycytidylic acid [poly(I:C)], an inducer of type I interferon (IFN I), and also by purified IFN I; such proliferation was not associated with up-regulation of CD69 or CD25 expression, which implies that TCR signaling was not involved. IFN I [poly(I:C)]-stimulated CD8+ cells survived for prolonged periods in vivo and displayed the same phenotype as did long-lived antigen-specific CD8+ cells. IFN I also potentiated the clonal expansion and survival of CD8+ cells responding to specific antigen. Production of IFN I may thus play an important role in the generation and maintenance of specific memory.
Collapse
Affiliation(s)
- D F Tough
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|