1
|
Salas JR, Ryan KM, Trias AO, Chen BY, Guemes M, Galic Z, Schultz KA, Clark PM. Blocking Deoxycytidine Kinase in Activated Lymphocytes Depletes Deoxycytidine Triphosphate Pools and Alters Cell Cycle Kinetics to Yield Less Disease in a Mouse Multiple Sclerosis Model. Immunology 2025; 174:247-263. [PMID: 39710854 DOI: 10.1111/imm.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides. Deoxycytidine kinase (dCK) is the rate-limiting enzyme in the salvage pathway. In prior work, we showed that targeting dCK with the small molecule inhibitor TRE-515 limits clinical symptoms in two myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mouse models of MS and decreases the levels of activated CD4 T and B lymphocytes in vivo. However, whether targeting dCK limits disease in additional EAE models and how targeting dCK directly impacts activated and proliferating CD4 T and B cells has yet to be determined. Here, we show that dCK is activated in the lymph nodes and spleen in an EAE model induced by amino acids 139-151 of the proteolipid protein (PLP139-151) that is driven by CD4 T and B cells and is characterised by acute disease followed by disease remission. Treating this model with TRE-515 limits clinical symptoms and decreases the levels of activated CD4 T and B cells. In culture, CD4 T and B cells induce deoxyribonucleoside salvage following activation, and TRE-515 directly blocks CD4 T and B cell activation-induced proliferation and activation marker expression. TRE-515 decreases deoxycytidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP) pools and increases the length of time cells spend in S phase of the cell cycle without inducing a replication stress response in B cells. Our results suggest that dCK activity is required to supply needed dNTPs and to enable rapid cell division following lymphocyte activation against autoantigens in EAE mouse models.
Collapse
Affiliation(s)
- Jessica R Salas
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - K M Ryan
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Alyssa O Trias
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Bao Ying Chen
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Miriam Guemes
- Department of Medicine, UCLA, Los Angeles, California, USA
| | - Zoran Galic
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Peter M Clark
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Luu T, Cheung JF, Baccon J, Waldner H. Priming of myelin-specific T cells in the absence of dendritic cells results in accelerated development of Experimental Autoimmune Encephalomyelitis. PLoS One 2021; 16:e0250340. [PMID: 33891644 PMCID: PMC8064509 DOI: 10.1371/journal.pone.0250340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis (MS). Inflammatory CD4+ T cell responses directed against CNS antigens, including myelin proteolipid protein (PLP), are key mediators of EAE. Dendritic cells (DCs) are critical for the induction of T cell responses against infectious agents. However, the importance of DCs in priming self-reactive CD4+ T cells in autoimmune disease such as MS has been unclear. To determine the requirement of DCs in PLP-specific CD4+ T cell responses and EAE, we genetically deleted CD11c+ DCs in PLP T cell receptor (TCR) transgenic SJL mice constitutively. DC deficiency did not impair the development, selection or the pathogenic function of PLP-specific CD4+ T cells in these mice, and resulted in accelerated spontaneous EAE compared to DC sufficient controls. In addition, using a genetic approach to ablate DCs conditionally in SJL mice, we show that CD11c+ DCs were dispensable for presenting exogenous or endogenous myelin antigen to PLP-specific T cells and for promoting pro-inflammatory T cell responses and severe EAE. Our findings demonstrate that constitutive or conditional ablation of CD11c+ DCs diminished self-tolerance to PLP autoantigen. They further show that in the absence of DCs, non-DCs can efficiently present CNS myelin antigens such as PLP to self-reactive T cells, resulting in accelerated onset of spontaneous or induced EAE.
Collapse
Affiliation(s)
- Thaiphi Luu
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Julie F. Cheung
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jennifer Baccon
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hanspeter Waldner
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
4
|
Kapitza C, Chunder R, Scheller A, Given KS, Macklin WB, Enders M, Kuerten S, Neuhuber WL, Wörl J. Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens. Int J Mol Sci 2021; 22:ijms22063233. [PMID: 33810144 PMCID: PMC8004938 DOI: 10.3390/ijms22063233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS.
Collapse
Affiliation(s)
- Christopher Kapitza
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Rittika Chunder
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Anja Scheller
- University of Saarland, Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), 66421 Homburg, Germany;
| | - Katherine S. Given
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.S.G.); (W.B.M.)
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.S.G.); (W.B.M.)
| | - Michael Enders
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
- Department of Neuroanatomy, Institute of Anatomy, University Hospitals Bonn, University Bonn, 53115 Bonn, Germany
| | - Winfried L. Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
| | - Jürgen Wörl
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.K.); (R.C.); (M.E.); (S.K.); (W.L.N.)
- Correspondence: ; Tel.: +49-913-1852-2870
| |
Collapse
|
5
|
Govindan AN, Fitzpatrick KS, Manoharan M, Tagge I, Kohama SG, Ferguson B, Peterson SM, Wong GS, Rooney WD, Park B, Axthelm MK, Bourdette DN, Sherman LS, Wong SW. Myelin-specific T cells in animals with Japanese macaque encephalomyelitis. Ann Clin Transl Neurol 2021; 8:456-470. [PMID: 33440071 PMCID: PMC7886046 DOI: 10.1002/acn3.51303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin‐specific T cells in their central nervous system (CNS) and periphery. Methods Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non‐JME conditions were analyzed for the presence of myelin‐specific T cells and changes in interleukin 17 (IL‐17) and interferon gamma (IFNγ) expression. Results Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T‐cell responses were absent in JME peripheral blood, and in age‐ and sex‐matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. Interpretations JME possesses an immune‐mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma‐herpesvirus infection.
Collapse
Affiliation(s)
- Aparna N Govindan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kristin S Fitzpatrick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Minsha Manoharan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Ian Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.,Montreal Neurological Institute, McGill University, Montreal, QC, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Grayson S Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Dennis N Bourdette
- Department of Neurology, Multiple Sclerosis Clinic, Oregon Health & Science University, Portland, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
6
|
Zhou Y, Cui C, Ma X, Luo W, Zheng SG, Qiu W. Nuclear Factor κB (NF-κB)-Mediated Inflammation in Multiple Sclerosis. Front Immunol 2020; 11:391. [PMID: 32265906 PMCID: PMC7105607 DOI: 10.3389/fimmu.2020.00391] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling cascade has been implicating in a broad range of biological processes, including inflammation, cell proliferation, differentiation, and apoptosis. The past three decades have witnessed a great progress in understanding the impact of aberrant NF-κB regulation on human autoimmune and inflammatory disorders. In this review, we discuss how aberrant NF-κB activation contributes to multiple sclerosis, a typical inflammatory demyelinating disease of the central nervous system, and its involvement in developing potential therapeutic targets.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Choileáin SN, Kleinewietfeld M, Raddassi K, Hafler DA, Ruff WE, Longbrake EE. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. J Transl Autoimmun 2019; 3:100032. [PMID: 32743517 PMCID: PMC7388357 DOI: 10.1016/j.jtauto.2019.100032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a genetically mediated autoimmune disease characterized by inflammation in the central nervous system (CNS). Disease onset is thought to occur when autoreactive T cells orchestrate a cascade of events in the CNS resulting in white and grey matter inflammation and axonal degeneration. It is unclear what triggers the activation of CNS-reactive T cells and their polarization into inflammatory subsets. Mounting evidence from animal and human studies supports the hypothesis that the gut microbiome affects MS pathogenesis. We investigated the association between the gut microbiome and inflammatory T cell subsets in relapsing-remitting MS patients and healthy controls. Gut microbiome composition was characterized by sequencing the V4 region of the 16S rRNA gene from fecal DNA, and inflammatory T cell subsets were characterized by flow cytometry. We identified an altered gut microbiome in MS patients, including decreased abundance of Coprococcus, Clostridium, and an unidentified Ruminococcaceae genus. Among circulating immune cells, patients had increased expression of CXCR3 in both CD4 and CD8 T cells, and both CD4+CXCR3+ and CD8+CXCR3+ populations expressing the gut-homing α4β7 integrin receptor were increased. Finally, we show that alpha diversity inversely correlated with a CXCR3+ Th1 phenotype in MS. These findings indicate the presence of an aberrant gut-immune axis in patients with MS.
Collapse
Affiliation(s)
- Siobhán Ní Choileáin
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Markus Kleinewietfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), UHasselt, Campus Diepenbeek, Hasselt, Belgium
| | - Khadir Raddassi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - David A. Hafler
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - William E. Ruff
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Erin E. Longbrake
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Glatigny S, Bettelli E. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS). Cold Spring Harb Perspect Med 2018; 8:cshperspect.a028977. [PMID: 29311122 DOI: 10.1101/cshperspect.a028977] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS) leading to the progressive destruction of the myelin sheath surrounding axons. It can present with variable clinical and pathological manifestations, which might reflect the involvement of distinct pathogenic processes. Although the mechanisms leading to the development of the disease are not fully understood, numerous evidences indicate that MS is an autoimmune disease, the initiation and progression of which are dependent on an autoimmune response against myelin antigens. In addition, genetic susceptibility and environmental triggers likely contribute to the initiation of the disease. At this time, there is no cure for MS, but several disease-modifying therapies (DMTs) are available to control and slow down disease progression. A good number of these DMTs were identified and tested using animal models of MS referred to as experimental autoimmune encephalomyelitis (EAE). In this review, we will recapitulate the characteristics of EAE models and discuss how they help shed light on MS pathogenesis and help test new treatments for MS patients.
Collapse
Affiliation(s)
- Simon Glatigny
- Immunology Program, Benaroya Research Institute, Seattle, Washington 98101.,Department of Immunology, University of Washington, Seattle, Washington 98109
| | - Estelle Bettelli
- Immunology Program, Benaroya Research Institute, Seattle, Washington 98101.,Department of Immunology, University of Washington, Seattle, Washington 98109
| |
Collapse
|
9
|
Abstract
Multiple sclerosis (MS) has long been considered a CD4 T-cell disease, primarily because of the findings that the strongest genetic risk for MS is the major histocompatibility complex (MHC) class II locus, and that T cells play a central role in directing the immune response. The importance that the T helper (Th)1 cytokine, interferon γ (IFN-γ), and the Th17 cytokine, interleukin (IL)-17, play in MS pathogenesis is indicated by recent clinical trial data by the enhanced presence of Th1/Th17 cells in central nervous system (CNS) tissue, cerebrospinal fluid (CSF), and blood, and by research on animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Although the majority of research on MS pathogenesis has centered on the role of effector CD4 T cells, accumulating data suggests that CD8 T cells may play a significant role in the human disease. In fact, in contrast to most animal models, the primary T cell found in the CNS in patients with MS, is the CD8 T cell. As patient-derived effector T cells are also resistant to mechanisms of dominant tolerance such as that induced by interaction with regulatory T cells (Tregs), their reduced response to regulation may also contribute to the unchecked effector T-cell activity in patients with MS. These concepts will be discussed below.
Collapse
Affiliation(s)
- Belinda J Kaskow
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Clare Baecher-Allan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Lee PW, Smith AJ, Yang Y, Selhorst AJ, Liu Y, Racke MK, Lovett-Racke AE. IL-23R-activated STAT3/STAT4 is essential for Th1/Th17-mediated CNS autoimmunity. JCI Insight 2017; 2:91663. [PMID: 28878115 DOI: 10.1172/jci.insight.91663] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
The factors that promote the differentiation of pathogenic T cells in autoimmune diseases are poorly defined. Use of genetically modified mice has provided insight into molecules necessary for the development of autoimmunity, but the sum of the data has led to contradictory observations based on what is currently known about specific molecules in specific signaling pathways. To define the minimum signals required for development of encephalitogenic T cells that cause CNS autoimmunity, myelin-specific T cells were differentiated with various cytokine cocktails, and pathogenicity was determined by transfer into mice. IL-6+IL-23 or IL-12+IL-23 generated encephalitogenic T cells and recapitulated the essential cytokine signals provided by antigen-presenting cells, and both IL-6 and IL-12 induced IL-23 receptor expression on both mouse and human naive T cells. IL-23 signaled through both STAT3 and STAT4, and disruption in STAT4 signaling impaired CNS autoimmunity independent of IL-12. These data explain why IL-12-deficient mice develop CNS autoimmunity, while STAT4-deficient mice are resistant. CD4+ memory T cells from multiple sclerosis patients had significantly higher levels of p-STAT3/p-STAT4, and p-STAT3/p-STAT4 heterodimers were observed upon IL-23 signaling, suggesting that p-STAT3/p-STAT4 induced by IL-23 signaling orchestrate the generation of pathogenic T cells in CNS autoimmunity, regardless of Th1 or Th17 phenotype.
Collapse
Affiliation(s)
- Priscilla W Lee
- Department of Microbial Infection and Immunity.,Molecular, Cellular and Developmental Biology Program
| | | | | | | | - Yue Liu
- Department of Microbial Infection and Immunity
| | - Michael K Racke
- Department of Neurology, and.,Department of Neuroscience, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity.,Department of Neuroscience, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Tolpeeva OA, Zakharova MN. The diagnostic significance of antibodies to myelin proteins in demyelinating diseases of the central nervous system. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Khaibullin T, Ivanova V, Martynova E, Cherepnev G, Khabirov F, Granatov E, Rizvanov A, Khaiboullina S. Elevated Levels of Proinflammatory Cytokines in Cerebrospinal Fluid of Multiple Sclerosis Patients. Front Immunol 2017; 8:531. [PMID: 28572801 PMCID: PMC5435759 DOI: 10.3389/fimmu.2017.00531] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/20/2017] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease characterized by chronic brain inflammation. Leukocyte infiltration of brain tissue causes inflammation, demyelination, and the subsequent formation of sclerotic plaques, which are a hallmark of MS. Activation of proinflammatory cytokines is essential for regulation of lymphocyte migration across the blood–brain barrier. We demonstrate increased levels of many cytokines, including IL-2RA, CCL5, CCL11, MIF, CXCL1, CXCL10, IFNγ, SCF, and TRAIL, were upregulated in cerebrospinal fluid (CSF), whereas IL-17, CCL2, CCL3, CCL4, and IL-12(p40) were activated in MS serum. Interaction analysis of cytokines in CSF demonstrated a connection between IFNγ and CCL5 as well as MIF. Many cells can contribute to production of these cytokines including CD8 and Th1 lymphocytes and astrocytes. Therefore, we suggest that IFNγ released by Th1 lymphocytes can activate astrocytes, which then produce chemoattractants, including CCL5 and MIF. These chemokines promote an inflammatory milieu and interact with multiple chemokines including CCL27 and CXCL1. Of special note, upregulation of CCL27 was found in CSF of MS cases. This observation is the first to demonstrate CCL27 as a potential contributor of brain pathology in MS. Our data suggest that CCL27 may be involved in activation and migration of autoreactive encephalitogenic immune effectors in the brain. Further, our data support the role of Th1 lymphocytes in the pathogenesis of brain inflammation in MS, with several cytokines playing a central role.
Collapse
Affiliation(s)
| | - Vilena Ivanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Georgy Cherepnev
- University Kazan Clinic, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | | | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation.,Nevada Center for Biomedical Research, Reno, NV, USA
| |
Collapse
|
13
|
Lemus HN, Warrington AE, Denic A, Wootla B, Rodriguez M. Treatment with a recombinant human IgM that recognizes PSA-NCAM preserves brain pathology in MOG-induced experimental autoimmune encephalomyelitis. Hum Antibodies 2017; 25:121-129. [PMID: 28269761 DOI: 10.3233/hab-170313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A single peripheral dose of CNS-binding IgMs promote remyelination and preserve axons in a number of animal models of neurologic disease. A myelin-binding recombinant human IgM (rHIgM22) is presently in a safety trial in MS patients following an acute MS exacerbation. rHIgM22 (directed against oligodendrocytes) or rHIgM12 (directed against neurons) were administered to mice with MOG-induced experimental autoimmune encephalomyelitis (EAE) with study endpoints: clinical deficits and brain and spinal cord pathology. IgMs were administered at a therapeutic dose of 100 μ g intra peritoneal at the time of immunization (day -1, 0, +$1), disease onset (15 days) or peak of the disease (28 days). Disease course was not worsened by either human IgM regardless of the time of treatment. Of note, the human IgM that recognizes a carbohydrate epitope on gangliosides and NCAM, rHIgM12, reduced brain pathology when given at time of immunization or at onset of disease, but did not reduce clinical deficits or spinal cord disease burden. Hence, treatment with rHIgM12 resulted in marked reduction in meningeal inflammation. Data consistent with the hypothesis that in the EAE model this molecule has an immune-modulatory effect. Treatment with an anti-CD4 blocking IgG prevented both clinical course and CNS pathology. This pre-clinical study further supports the safety of therapeutic CNS-binding human IgMs in the presence of autoimmunity and clearly differentiates them from IgGs directed against MOG or aquaporin-4 that worsen neurologic disease.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- Cognitive Dysfunction/chemically induced
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/immunology
- Cognitive Dysfunction/pathology
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Drug Administration Schedule
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Freund's Adjuvant/administration & dosage
- Humans
- Immunoglobulin M/pharmacology
- Immunologic Factors/pharmacology
- Injections, Intraperitoneal
- Mice
- Mice, Inbred C57BL
- Myelin Sheath/drug effects
- Myelin Sheath/immunology
- Myelin Sheath/pathology
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- Neural Cell Adhesion Molecule L1/immunology
- Neural Cell Adhesion Molecule L1/metabolism
- Neurons/drug effects
- Neurons/immunology
- Neurons/pathology
- Neuroprotective Agents/pharmacology
- Oligodendroglia/drug effects
- Oligodendroglia/immunology
- Oligodendroglia/pathology
- Peptide Fragments/administration & dosage
- Protein Binding
- Recombinant Proteins/pharmacology
- Sialic Acids/immunology
- Sialic Acids/metabolism
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
Collapse
Affiliation(s)
| | | | | | - Bharath Wootla
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Multiple Sclerosis and Obesity: Possible Roles of Adipokines. Mediators Inflamm 2016; 2016:4036232. [PMID: 27721574 PMCID: PMC5046034 DOI: 10.1155/2016/4036232] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disorder of the Central Nervous System that has been associated with several environmental factors, such as diet and obesity. The possible link between MS and obesity has become more interesting in recent years since the discovery of the remarkable properties of adipose tissue. Once MS is initiated, obesity can contribute to increased disease severity by negatively influencing disease progress and treatment response, but, also, obesity in early life is highly relevant as a susceptibility factor and causally related risk for late MS development. The aim of this review was to discuss recent evidence about the link between obesity, as a chronic inflammatory state, and the pathogenesis of MS as a chronic autoimmune and inflammatory disease. First, we describe the main cells involved in MS pathogenesis, both from neural tissue and from the immune system, and including a new participant, the adipocyte, focusing on their roles in MS. Second, we concentrate on the role of several adipokines that are able to participate in the mediation of the immune response in MS and on the possible cross talk between the latter. Finally, we explore recent therapy that involves the transplantation of adipocyte precursor cells for the treatment of MS.
Collapse
|
15
|
Diaz I, Bolloré K, Tuaillon E, Lapalud P, Giansily-Blaizot M, Vendrell JP, Schved JF, Lavigne-Lissalde G. Circulating FVIII-specific IgG, IgA and IgM memory B cells from haemophilia A patients. Haemophilia 2016; 22:799-805. [DOI: 10.1111/hae.12958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 01/02/2023]
Affiliation(s)
- I. Diaz
- Laboratory of Hematology; University Hospital of Montpellier; Montpellier France
- Institute of Research in Biotherapy; Montpellier France
| | - K. Bolloré
- Institute of Research in Biotherapy; Montpellier France
- INSERM U1058; Montpellier 1 University; Montpellier France
| | - E. Tuaillon
- Institute of Research in Biotherapy; Montpellier France
- INSERM U1058; Montpellier 1 University; Montpellier France
| | - P. Lapalud
- UMR 3145 SysDiag CNRS/Biorad; Montpellier France
| | | | - J. P. Vendrell
- INSERM U1058; Montpellier 1 University; Montpellier France
| | - J. F. Schved
- Laboratory of Hematology; University Hospital of Montpellier; Montpellier France
- Regional Hemophilia Treatment Center; Montpellier France
| | - G. Lavigne-Lissalde
- UMR 3145 SysDiag CNRS/Biorad; Montpellier France
- Regional Hemophilia Treatment Center; Montpellier France
| |
Collapse
|
16
|
Bourdette DN, Edmonds E, Smith C, Bowen JD, Guttmann CRG, Nagy ZP, Simon J, Whitham R, Lovera J, Yadav V, Mass M, Spencer L, Culbertson N, Bartholomew RM, Theofan G, Milano J, Offner H, Vandenbark AA. A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Mult Scler 2016; 11:552-61. [PMID: 16193893 DOI: 10.1191/1352458505ms1225oa] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: T cell receptor (TCR) peptide vaccination is a novel approach to treating multiple sclerosis (MS). The low immunogenicity of previous vaccines has hindered the development of TCR peptide vaccination for MS. Objective: To compare the immunogenicity of intramuscular injections of TCR BV5S2, BV6S5 and BV13S1 CDR2 peptides in incomplete Freund’s adjuvant (IFA) with intradermal injections of the same peptides without IFA. Methods: MS subjects were randomized to receive TCR peptides/IFA, TCR peptides/saline or IFA alone. Subjects were on study for 24 weeks. Results: The TCR peptides/IFA vaccine induced vigorous T cell responses in 100% of subjects completing the 24-week study (9/9) compared with only 20% (2/10) of those receiving the TCR peptides/saline vaccine (P =0.001). IFA alone induced a weak response in only one of five subjects. Aside from injection site reactions, there were no significant adverse events attributable to the treatment. Conclusions: The trivalent TCR peptide in IFA vaccine represents a significant improvement in immunogenicity over previous TCR peptide vaccines and warrants investigation of its ability to treat MS.
Collapse
Affiliation(s)
- D N Bourdette
- Department of Neurology L226, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhu J, Bengtsson BO, Mix E, Thorell LH, Olsson T, Link H. Peripheral Nerve Myelin Modulates the Effect of Antidepressants on Major Histocompatibility Complex Expression on Macrophages in Experimental Allergic Neuritis. Int J Immunopathol Pharmacol 2016. [DOI: 10.1177/039463209500800305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of bovine peripheral nerve myelin (BPM) used for induction of experimental allergic neuritis (EAN) in Lewis rats, on antidepressants' modulation of interferon-gamma (IFN-γ)-induced major histocompatibility complex (MHC) class I and II antigen expression on peritoneal macrophages in EAN rats was studied. Antidepressants with different profiles concerning inhibition of the neuronal reuptake of the monoamines serotonin (5-HT) and noradrenalin (NA), respectively, in concentrations of 10−4 to 10−8 M were used. At the concentration of 1.0 U/ml IFN-γ, most antidepressants significantly enhanced both MHC class I and class II expression, except maprotiline, a selective NA reuptake inhibiting antidepressant that suppressed MHC class I expression. Zimeldine, a selective 5-HT reuptake inhibitor did not affect MHC class II expression. BPM in general had an enhancing effect on modulation of both MHC class I and class II expression by antidepressants. By itself BPM enhanced MHC class I expression, but did not affect class II expression at IFN-γ 1.0 U/ml. The modulating effect of BPM on regulation of MHC expression by antidepressants could be the result of contaminating T cells and release of IFN-γ into cultures. The modulatory effect of antidepressants on MHC expression may to some extent be exerted by the action on 5-HT and/or NA regulation, but also by direct effects of antidepressants on macrophages. They probably play a role in zimeldine-induced Guillain-Barré syndrome in some patients and in the suppression of clinical signs of EAN in Lewis rats reported for some antidepressants.
Collapse
Affiliation(s)
- J. Zhu
- Department of Neurology, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Stockholm, Sweden
| | - B.-O. Bengtsson
- Department of Psychiatry, Faculty of Health Sciences, University Hospital, S-581 85 Linköping, Sweden
| | - E. Mix
- Department of Neurology, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Stockholm, Sweden
| | - L.-H. Thorell
- Department of Psychiatry, Faculty of Health Sciences, University Hospital, S-581 85 Linköping, Sweden
| | - T. Olsson
- Department of Neurology, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Stockholm, Sweden
| | - H. Link
- Department of Neurology, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
18
|
Khaiboullina SF, Gumerova AR, Khafizova IF, Martynova EV, Lombardi VC, Bellusci S, Rizvanov AA. CCL27: Novel Cytokine with Potential Role in Pathogenesis of Multiple Sclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:189638. [PMID: 26295034 PMCID: PMC4532821 DOI: 10.1155/2015/189638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of unknown etiology. Leukocyte infiltration of brain tissue and the subsequent inflammation, demyelination, axonal damage, and formation of sclerotic plaques is a hallmark of MS. Upregulation of proinflammatory cytokines has been suggested to play an essential role in regulating lymphocyte migration in MS. Here we present data on serum cytokine expression in MS cases. Increased serum levels of IL-17 and IL-23 were observed, suggesting activation of the Th17 population of immune effector cells. Additionally, increased levels of IL-22 were observed in the serum of those with acute phase MS. Unexpectedly, we observed an upregulation of the serum chemokine CCL27 in newly diagnosed and acute MS cases. CCL27 is an inflammatory chemokine associated with homing of memory T cells to sites of inflammation. Therefore, its upregulation in association with MS suggests a potential role in disease pathogenesis. Our data supports previous reports showing IL-17 and -23 upregulation in association with MS and potentially identify a previously unknown involvement for CCL27.
Collapse
Affiliation(s)
- Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420008, Russia
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- WP Institute, Reno, NV 89557, USA
| | - Aigul R. Gumerova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420008, Russia
- Kazan State Medical University, 49 Butlerova Street, Kazan, Tatarstan 420012, Russia
| | - Irina F. Khafizova
- Kazan State Medical University, 49 Butlerova Street, Kazan, Tatarstan 420012, Russia
| | - Ekaterina V. Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420008, Russia
- Kazan State Medical University, 49 Butlerova Street, Kazan, Tatarstan 420012, Russia
| | - Vincent C. Lombardi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420008, Russia
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- WP Institute, Reno, NV 89557, USA
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University, Aulweg 130, 35392 Giessen, Germany
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420008, Russia
| |
Collapse
|
19
|
Multiple Sclerosis and T Lymphocytes: An Entangled Story. J Neuroimmune Pharmacol 2015; 10:528-46. [PMID: 25946987 DOI: 10.1007/s11481-015-9614-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/29/2015] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is the prototypic inflammatory disease of the central nervous system (CNS) characterized by multifocal areas of demyelination, axonal damage, activation of glial cells, and immune cell infiltration. Despite intensive years of research, the etiology of this neurological disorder remains elusive. Nevertheless, the abundance of immune cells such as T lymphocytes and their products in CNS lesions of MS patients supports the notion that MS is an immune-mediated disorder. An important body of evidence gathered from MS animal models such as experimental autoimmune encephalomyelitis (EAE), points to the central contribution of CD4 T lymphocytes in disease pathogenesis. Both Th1 (producing interferon-γ) and Th17 (producing interleukin 17) CD4 T lymphocytes targeting CNS self-antigens have been implicated in MS and EAE pathobiology. Moreover, several publications suggest that CD8 T lymphocytes also participate in the development of MS lesions. The migration of activated T lymphocytes from the periphery into the CNS has been identified as a crucial step in the formation of MS lesions. Several factors promote such T cell extravasation including: molecules (e.g., cell adhesion molecules) implicated in the T cell-blood brain barrier interaction, and chemokines produced by neural cells. Finally, once in the CNS, T lymphocytes need to be reactivated by local antigen presenting cells prior to enter the parenchyma where they can initiate damage. Further investigations will be necessary to elucidate the impact of environmental factors (e.g., gut microbiota) and CNS intrinsic properties (e.g., microglial activation) on this inflammatory neurological disease.
Collapse
|
20
|
Lee PW, Yang Y, Racke MK, Lovett-Racke AE. Analysis of TGF-β1 and TGF-β3 as regulators of encephalitogenic Th17 cells: Implications for multiple sclerosis. Brain Behav Immun 2015; 46:44-9. [PMID: 25499467 PMCID: PMC4414699 DOI: 10.1016/j.bbi.2014.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022] Open
Abstract
The phenotype of the CD4(+) T cells that mediate the CNS pathology in multiple sclerosis is still unclear, and yet a vital question for developing therapies. One of the conundrums is the role of TGF-β in the development of encephalitogenic Th17 cells. In the present study, TGF-β1 and TGF-β3 were directly compared in their capacity to promote the differentiation of myelin-specific Th17 cells that could induce experimental autoimmune encephalomyelitis (EAE). Myelin-specific CD4(+) T cell receptor transgenic cells differentiated with antigen in the presence of IL-6+TGF-β1 or IL-6+TGF-β3 generated T cells that produced robust amounts of IL-17, but were incapable of inducing EAE when transferred into mice. Further analysis of these non-encephalitogenic Th17 cells found that they expressed lower amounts of GM-CSF or IL-23R, both molecules necessary for encephalitogenicity. Thus, TGF-β, irrespective of isoform, negatively regulates the differentiation of encephalitogenic Th17 cells.
Collapse
Affiliation(s)
- Priscilla W. Lee
- Molecular Cellular and Developmental Biology Graduate Program, Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Room 660, Columbus, OH, USA
| | - Yuhong Yang
- Department of Neurology, The Ohio State University Wexner Medical Center, 460 W 12th Ave, Room 660, Columbus, OH, USA.
| | - Michael K. Racke
- Department of Neurology, Department of Neuroscience, The Ohio State University Wexner Medical Center, 460 W 12th Ave, Room 686, Columbus, OH, USA
| | - Amy E. Lovett-Racke
- Corresponding Author: Amy E. Lovett-Racke, Department of Microbial Infection and Immunity, Department of Neuroscience, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Ave, Room 684, Columbus, OH 43210, USA. Phone: (614) 688-5647; Fax: (614) 292-7544,
| |
Collapse
|
21
|
Racke MK, Yang Y, Lovett-Racke AE. Is T-bet a potential therapeutic target in multiple sclerosis? J Interferon Cytokine Res 2015; 34:623-32. [PMID: 25084179 DOI: 10.1089/jir.2014.0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treatments for multiple sclerosis (MS) have changed over the past years as our understanding of immunology and neuroscience has evolved. Experimental autoimmune encephalomyelitis (EAE) continues to remain the major model for MS and has been a major vehicle in the development of new therapeutic targets for MS, including new agents such as natalizumab, fingolimod, and dimethyl fumarate. As progress in the molecular understanding of immunology continues, many observations in EAE are pursued with the ultimate goal of defining the pathophysiology of MS and development of innovative treatments for the disease. Although many consider MS to be a T cell-mediated autoimmune disease directed against myelin antigens, the exact cause of the disease is still unknown. For many years, it was thought that myelin-specific T cells that secreted interferon-γ and were proinflammatory were the major T cell subset that mediated the disease, but recent studies on the cytokine phenotype of pathogenic T cells in EAE and MS have opened debate on this issue. Work over the past several years suggests that the transcription factor T-bet appears to be an important factor in T cell encephalitogenicity; however, recent data suggest that it is also dispensable in certain situations, particularly for Th17 cells. Understanding the molecular mechanisms responsible for T cell encephalitogenicity in MS and other autoimmune diseases will be essential in the development of specific therapies for these inflammatory diseases.
Collapse
Affiliation(s)
- Michael K Racke
- 1 Department of Neurology, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | | | | |
Collapse
|
22
|
Fakhfouri G, Mousavizadeh K, Mehr SE, Dehpour AR, Zirak MR, Ghia JE, Rahimian R. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists. Mol Neurobiol 2014; 52:1670-1679. [DOI: 10.1007/s12035-014-8957-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/21/2014] [Indexed: 01/11/2023]
|
23
|
Fraussen J, Claes N, de Bock L, Somers V. Targets of the humoral autoimmune response in multiple sclerosis. Autoimmun Rev 2014; 13:1126-37. [DOI: 10.1016/j.autrev.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 01/09/2023]
|
24
|
Hohmann C, Milles B, Schinke M, Schroeter M, Ulzheimer J, Kraft P, Kleinschnitz C, Lehmann PV, Kuerten S. Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood. Acta Neuropathol Commun 2014; 2:138. [PMID: 25597707 PMCID: PMC4177072 DOI: 10.1186/s40478-014-0138-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022] Open
Abstract
Introduction B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Results Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). Conclusions Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients.
Collapse
|
25
|
The node of Ranvier in CNS pathology. Acta Neuropathol 2014; 128:161-75. [PMID: 24913350 PMCID: PMC4102831 DOI: 10.1007/s00401-014-1305-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte damage in the white matter. However, recent studies have highlighted changes that occur in pathological conditions at the node of Ranvier, and at the associated paranodal and juxtaparanodal regions where neurons and myelinating glial cells interact. Lengthening of the node of Ranvier, failure of the electrically resistive seal between the myelin and the axon at the paranode, and retraction of myelin to expose voltage-gated K+ channels in the juxtaparanode, may contribute to altering the function of myelinated axons in a wide range of diseases, including stroke, spinal cord injury and multiple sclerosis. Here, we review the principles by which the node of Ranvier operates and its molecular structure, and thus explain how defects at the node and paranode contribute to neurological disorders.
Collapse
|
26
|
Nicholas JA, Boster AL, Imitola J, O'Connell C, Racke MK. Design of oral agents for the management of multiple sclerosis: benefit and risk assessment for dimethyl fumarate. Drug Des Devel Ther 2014; 8:897-908. [PMID: 25045248 PMCID: PMC4094574 DOI: 10.2147/dddt.s50962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is the most recent oral disease-modifying therapy approved by the US Food and Drug Administration and is indicated for the treatment of relapsing forms of multiple sclerosis (MS). Prior to approval for use in MS, DMF and its active metabolite, monomethyl fumarate, had been used for decades as two of the fumaric acid esters in Fumaderm, a medication used in Europe for the treatment of psoriasis. The unique mechanism of action of DMF remains under evaluation; however, it has been shown to act through multiple pathways leading to shifts away from the Th1 proinflammatory response to the less inflammatory Th2 response. Preliminary data suggest that DMF may induce neuroprotective effects in central nervous system white matter, although further studies are needed to demonstrate these effects on inflammatory demyelination. The DMF Phase III clinical trials demonstrated its efficacy with regard to a reduction in the annualized relapse rate and reductions in new or enlarging T2 lesions and numbers of gadolinium-enhancing lesions on magnetic resonance imaging. DMF has a well-defined safety profile, given the experience with its use in the treatment of psoriasis, and more recently from the DMF clinical trials program and post-marketing era for treatment of MS. The safety profile and oral mode of administration of DMF place it as an attractive first-line therapy option for the treatment of relapsing forms of MS. Long-term observational studies will be needed to determine the effects of DMF on progression of disability in MS.
Collapse
Affiliation(s)
- Jacqueline Ann Nicholas
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Lee Boster
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA
| | - Jaime Imitola
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA ; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Colleen O'Connell
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA
| | - Michael Karl Racke
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA ; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Levin MC, Douglas JN, Meyers L, Lee S, Shin Y, Gardner LA. Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degener Neurol Neuromuscul Dis 2014; 4:49-63. [PMID: 32669900 PMCID: PMC7337253 DOI: 10.2147/dnnd.s54391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease that impairs the central nervous system (CNS). The neurological disability and clinical course of the disease is highly variable and unpredictable from one patient to another. The cause of MS is still unknown, but it is thought to occur in genetically susceptible individuals who develop disease due to a nongenetic trigger, such as altered metabolism, a virus, or other environmental factors. MS patients develop progressive, irreversible, neurological disability associated with neuronal and axonal damage, collectively known as neurodegeneration. Neurodegeneration was traditionally considered as a secondary phenomenon to inflammation and demyelination. However, recent data indicate that neurodegeneration develops along with inflammation and demyelination. Thus, MS is increasingly recognized as a neurodegenerative disease triggered by an inflammatory attack of the CNS. While both inflammation and demyelination are well described and understood cellular processes, neurodegeneration might be defined by a diverse pool of any of the following: neuronal cell death, apoptosis, necrosis, and virtual hypoxia. In this review, we present multiple theories and supporting evidence that identify common biological processes that contribute to neurodegeneration in MS.
Collapse
Affiliation(s)
- Michael C Levin
- Veterans Administration Medical Center.,Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua N Douglas
- Veterans Administration Medical Center.,Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Sangmin Lee
- Veterans Administration Medical Center.,Department of Neurology
| | - Yoojin Shin
- Veterans Administration Medical Center.,Department of Neurology
| | - Lidia A Gardner
- Veterans Administration Medical Center.,Department of Neurology
| |
Collapse
|
28
|
Abstract
This review, focused on demyelination in multiple sclerosis, is divided in two parts. The first part addresses the many and not exclusive mechanisms leading to demyelination in the central nervous system. Although the hypothesis that a primary oligodendrocyte or myelin injury induces a secondary immune response in the central nervous system is still a matter of debate, most recent advances underline the influence of a primary immune response against myelin antigen(s), with a diversity of potential targets. Whereas multiple sclerosis was long considered as a T cell-mediated disease, the role of B lymphocytes is now increasingly recognized, and the influence of antibodies on tissue damage actively investigated. The second part of the review describes the axonal consequences of demyelination. Segmental demyelination results in conduction block or slowing of conduction through adaptative responses, notably related to modifications in the distribution of voltage gated sodium channels along the denuded axon. If demyelination persists, these changes, as well as the loss of trophic and metabolic support, will lead to irreversible axonal damage and loss. In this respect, favouring early myelin repair, during a window of time when axonal damage is still reversible, might pave the way for neuroprotection.
Collapse
Affiliation(s)
- Catherine Lubetzki
- Correspondence to: Professeur Catherine Lubetzki, CRICM, UPMC/Inserm UMR_S975, GH Pitié-Salpêtrière, Bâtiment ICM, 47 Bld de l'Hôpital, 75651 Paris cedex 13, France. Tel: + 33-01-57-27-44-65
| | | |
Collapse
|
29
|
Olsson T. Role of cytokines in multiple sclerosis and experimental autoimmune encephalomyelitis. Eur J Neurol 2013; 1:7-19. [PMID: 24283424 DOI: 10.1111/j.1468-1331.1994.tb00045.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T Olsson
- Division of Neurology, Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| |
Collapse
|
30
|
Autoimmune T-cell reactivity to myelin proteolipids and glycolipids in multiple sclerosis. Mult Scler Int 2013; 2013:151427. [PMID: 24312732 PMCID: PMC3839122 DOI: 10.1155/2013/151427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022] Open
Abstract
Central nervous system (CNS) myelin, the likely major target of autoimmune attack in multiple sclerosis (MS), contains a number of unique components that are potential targets of the attack. Two classes of molecules that are greatly enriched in CNS myelin compared to other parts of the body are certain types of proteolipids and glycolipids. Due to the hydrophobic nature of both of these classes of molecules, they present challenges for use in immunological assays and have therefore been somewhat neglected in studies of T-cell reactivity in MS compared to more soluble molecules such as the myelin basic proteins and the extracellular domain of myelin oligodendrocyte glycoprotein. This review firstly looks at the makeup of CNS myelin, with an emphasis on proteolipids and glycolipids. Next, a retrospective of what is known of T-cell reactivity directed against proteolipids and glycolipids in patients with MS is presented, and the implications of the findings are discussed. Finally, this review considers the question of what would be required to prove a definite role for autoreactivity against proteolipids and glycolipids in the pathogenesis of MS.
Collapse
|
31
|
Aminian A, Noorbakhsh F, Ghazi-Khansari M, Kafami L, Javadi S, Hassanzadeh G, Rahimian R, Dehpour A, Mehr S. Tropisetron diminishes demyelination and disease severity in an animal model of multiple sclerosis. Neuroscience 2013; 248:299-306. [DOI: 10.1016/j.neuroscience.2013.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
|
32
|
Abstract
Although the immune system evolved to protect the host from foreign infection, it can sometimes recognize and attack host tissues, a phenomenon known as autoimmunity. In addition to genetic factors, environmental elements such as viruses and bacteria are thought to play a role in the development of autoimmune diseases. The major hypothesized mechanism by which infection with these agents can lead to autoimmunity is termed molecular mimicry. Here, immune responses initiated against foreign antigens are cross-reactive with self-antigens. This is thought to occur especially if the foreign antigen is similar in structure or amino acid sequence to the self-antigen. In this review, we explore evidence for the role of molecular mimicry in neurological diseases.
Collapse
Affiliation(s)
- Anne M Ercolini
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
33
|
Raphael I, Mahesula S, Kalsaria K, Kotagiri V, Purkar AB, Anjanappa M, Shah D, Pericherla V, Jadhav YLA, Raghunathan R, Vaynberg M, Noriega D, Grimaldo NH, Wenk C, Gelfond JAL, Forsthuber TG, Haskins WE. Microwave and magnetic (M(2) ) proteomics of the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Electrophoresis 2013; 33:3810-9. [PMID: 23161666 DOI: 10.1002/elps.201200200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/12/2022]
Abstract
We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating rapid microwave and magnetic (M(2) ) sample preparation, could enable relative protein expression to be correlated to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, microwave-assisted reduction/alkylation/digestion of proteins from brain tissue lysates bound to C8 magnetic beads and microwave-assisted isobaric chemical labeling were performed of released peptides, in 90 s prior to unbiased proteomic analysis. Disease progression in EAE was assessed by scoring clinical EAE disease severity and confirmed by histopathologic evaluation for central nervous system inflammation. Decoding the expression of 283 top-ranked proteins (p <0.05) at each time point relative to their expression at the peak of disease, from a total of 1191 proteins observed in four technical replicates, revealed a strong statistical correlation to EAE disease score, particularly for the following four proteins that closely mirror disease progression: 14-3-3ε (p = 3.4E-6); GPI (p = 2.1E-5); PLP1 (p = 8.0E-4); PRX1 (p = 1.7E-4). These results were confirmed by Western blotting, signaling pathway analysis, and hierarchical clustering of EAE risk groups. While validation in a larger cohort is underway, we conclude that M(2) proteomics is a rapid method to quantify putative prognostic/predictive protein biomarkers and therapeutic targets of disease progression in the EAE animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Induction of antigen-specific tolerance through hematopoietic stem cell-mediated gene therapy: the future for therapy of autoimmune disease? Autoimmun Rev 2012; 12:195-203. [PMID: 23047179 DOI: 10.1016/j.autrev.2011.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 12/29/2022]
Abstract
Based on the principle that immune ablation followed by HSC-mediated recovery purges disease-causing leukocytes to interrupt autoimmune disease progression, hematopoietic stem cell transplantation (HSCT) has been increasingly used as a treatment for severe autoimmune diseases. Despite clinically-relevant outcomes, HSCT is associated with serious iatrogenic risks and is suitable only for the most serious and intractable diseases. A further limitation of autologous HSCT is that relapse rates can be high, suggesting disease-causing leukocytes are incompletely purged or the environmental and genetic determinants that drive disease remain active. Incorporation of antigen-specific tolerance approaches that synergise with autologous HSCT could reduce or prevent relapse. Further, by reducing the requirement for highly toxic immune-ablation and instead relying on antigen-specific tolerance, the clinical utility of HSCT could be significantly diversified. Substantial progress has been made exploring HSCT-mediated induction of antigen-specific tolerance in animal models but studies have focussed on primarily on prevention of autoimmune diseases. However, as diagnosis of autoimmune disease is often not made until autoimmune disease is well developed and populations of autoantigen-specific pathogenic effector and memory T cells have become well established, immunotherapies must be developed to address effector and memory T-cell responses which have traditionally been considered the key impediment to immunotherapy. Here, focusing on T-cell mediated autoimmune diseases we review progress made in antigen-specific immunotherapy using HSCT-mediated approaches, induction of tolerance in effector and memory T cells and the challenges for progression and clinical application of antigen-specific 'tolerogenic' HSCT therapy.
Collapse
|
35
|
Abstract
Summary: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that affects about 0.1% of the worldwide population. This deleterious disease is marked by infiltration of myelin‐specific T cells that attack the protective myelin sheath that surrounds CNS nerve axons. Upon demyelination, saltatory nerve conduction is disrupted, and patients experience neurologic deficiencies. The exact cause for MS remains unknown, although most evidence supports the hypothesis that both genetic and environmental factors contribute to disease development. Epidemiologic evidence supports a role for environmental pathogens, such as viruses, as potentially key contributors to MS induction. Pathogens can induce autoimmunity via several well‐studied mechanisms with the most postulated being molecular mimicry. Molecular mimicry occurs when T cells specific for peptide epitopes derived from pathogens cross‐react with self‐epitopes, leading to autoimmune tissue destruction. In this review, we discuss an in vivo virus‐induced mouse model of MS developed in our laboratory, which has contributed greatly to our understanding of the mechanisms underlying molecular mimicry‐induced CNS autoimmunity.
Collapse
Affiliation(s)
- Emily M L Chastain
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
36
|
Zhang X, Liu JQ, Shi Y, Reid HH, Boyd RL, Khattabi M, El-Omrani HY, Zheng P, Liu Y, Bai XF. CD24 on thymic APCs regulates negative selection of myelin antigen-specific T lymphocytes. Eur J Immunol 2012; 42:924-35. [PMID: 22213356 PMCID: PMC3359065 DOI: 10.1002/eji.201142024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/18/2011] [Accepted: 12/02/2011] [Indexed: 01/18/2023]
Abstract
Negative selection plays a key role in the clonal deletion of autoreactive T cells in the thymus. However, negative selection is incomplete; as high numbers of autoreactive T cells can be detected in normal individuals, mechanisms that regulate negative selection must exist. In this regard, we previously reported that CD24, a GPI-anchored glycoprotein, is required for thymic generation of autoreactive T lymphocytes. The CD24-deficient 2D2 TCR transgenic mice (2D2(+) CD24(-/-) ), whose TCR recognizes myelin oligodendrocyte glycoprotein (MOG), fail to generate functional 2D2 T cells. However, it was unclear if CD24 regulated negative selection, and if so, what cellular mechanisms were involved. Here, we show that elimination of MOG or Aire gene expression in 2D2(+) CD24(-/-) mice - through the creation of 2D2(+) CD24(-/-) MOG(-/-) or 2D2(+) CD24(/) ∼Aire(-/-) mice - completely restores thymic cellularity and function of 2D2 T cells. Restoration of CD24 expression on DCs, but not on thymocytes also partially restores 2D2 T-cell generation in 2D2(+) CD24(-/-) mice. Taken together, we propose that CD24 expression on thymic antigen-presenting cells (mTECs, DCs) down-regulates autoantigen-mediated clonal deletion of autoreactive thymocytes.
Collapse
Affiliation(s)
- Xuejun Zhang
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA
- Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA
| | - Yun Shi
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hugh H. Reid
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Richard L. Boyd
- Monash Immunology and Stem Cell Laboratories, Monash University, Victoria, Australia
| | - Mazin Khattabi
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA
| | - Hani Y. El-Omrani
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA
| | - Pan Zheng
- Department of Surgery and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Yang Liu
- Department of Surgery and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
37
|
Computational analysis of high-density peptide microarray data with application from systemic sclerosis to multiple sclerosis. Autoimmun Rev 2012; 11:180-90. [DOI: 10.1016/j.autrev.2011.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Beyer NH, Lueking A, Kowald A, Frederiksen JL, Heegaard NHH. Investigation of autoantibody profiles for cerebrospinal fluid biomarker discovery in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2011; 242:26-32. [PMID: 22177943 DOI: 10.1016/j.jneuroim.2011.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022]
Abstract
Using the UNIarray® marker technology platform, cerebrospinal fluid immunoglobulin G reactivities of 15 controls and 17 RRMS patients against human recombinant proteins were investigated. Patient cerebrospinal fluids were oligoclonal band positive and reactivities were compared to that of sex- and age-matched controls. We hereby aimed at the characterization of autoreactivity in patients with RRMS. Differences in autoreactivities between control and RRMS samples were identified comprising autoantigens identified in this study only and previously reported autoantigens as well. A combination of the 10-15 most significant proteins may be investigated further as autoantigens for diagnostic purposes. Additional investigations may include minimizing the number of proteins used in such diagnostic tests.
Collapse
Affiliation(s)
- Natascha Helena Beyer
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Ghazavi A, Mosayebi G. The mechanism of sesame oil in ameliorating experimental autoimmune encephalomyelitis in C57BL/6 mice. Phytother Res 2011; 26:34-8. [PMID: 21538630 DOI: 10.1002/ptr.3515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/22/2011] [Indexed: 01/22/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease of the CNS that serves as an animal model for multiple sclerosis (MS). The study investigated the effectiveness of treatment with sesame oil on the development of EAE. EAE was induced in 8 week old C57BL/6 mice with an emulsion of MOG35-55. Therapy with sesame oil (4 mL/kg/day as oral gavage) was started on day 3 before the immunization. IFN-gamma and IL-10 production from cultured spleen supernatants were determined by the ELISA method. The results showed that daily oral gavage of sesame oil significantly reduced the clinical symptoms of EAE in C57BL/6 mice. In addition, sesame oil-treated mice displayed a significantly delayed disease onset. Mononuclear cells isolated from spleen of sesame oil-treated mice showed a significant decrease in the production of IFN-gamma compared with control mice (p = 0.001). IL-10 production was also enhanced in splenic mononuclear cells in sesame oil-treated mice. The ratio of IFN-gamma to IL-10 in sesame oil-treated EAE mice was significantly less than in non-treated EAE mice (p = 0.01). This report indicates that sesame oil therapy protected mice from developing EAE by reducing IFN-gamma secretion. Thus, sesame oil treatment may be effective in MS patients by immunomodulating the Th1 immune response.
Collapse
Affiliation(s)
- A Ghazavi
- Infectious Disease Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | |
Collapse
|
40
|
Wang WZ, Fredrikson S, Xiao BG, Sun JB, Kostulas V, Link H. Lyme neuroborreliosis: cerebrospinal fluid contains myelin protein-reactive cells secreting interferon-γ. Eur J Neurol 2011. [DOI: 10.1111/j.1468-1331.1996.tb00203.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Abstract
The thymus serves as the central organ of immunologic self-nonself discrimination. Thymocytes undergo both positive and negative selection, resulting in T cells with a broad range of reactivity to foreign antigens but with a lack of reactivity to self-antigens. The thymus is also the source of a subset of regulatory T cells that inhibit autoreactivity of T-cell clones that may escape negative selection. As a result of these functions, the thymus has been shown to be essential for the induction of tolerance in many rodent and large animal models. Proper donor antigen presentation in the thymus after bone marrow, dendritic cell, or solid organ transplantation has been shown to induce tolerance to allografts. The molecular mechanisms of positive and negative selection and regulatory T-cell development must be understood if a tolerance-inducing therapeutic intervention is to be designed effectively. In this brief and selective review, we present some of the known information on T-cell development and on the role of the thymus in experimental models of transplant tolerance. We also cite some clinical attempts to induce tolerance to allografts using pharmacologic or biologic interventions.
Collapse
|
42
|
Lovett-Racke AE, Yang Y, Racke MK. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta Mol Basis Dis 2010; 1812:246-51. [PMID: 20600875 DOI: 10.1016/j.bbadis.2010.05.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/17/2010] [Indexed: 12/01/2022]
Abstract
Our understanding of the pathophysiology of multiple sclerosis (MS) has evolved significantly over the past two decades as the fields of immunology and neurobiology provide new avenues of exploration into the cause and mechanism of the disease. It has been known for decades that T cells have different cytokine phenotypes, yet the cytokine phenotype of pathogenic T cells in MS is still an area of debate. In EAE, it appears that IFNγ and IL-17, produced by Th1 and Th17 cells respectively, are not the critical factor that determines T cell encephalitogenicity. However, there are molecules such as IL-23, T-bet and STAT4, that appear to be critical, yet it is unclear whether all these molecules contribute to a common, yet undefined pathway, or act in a synergistic manner which culminates in encephalitogenicity has still to be determined. Therefore, the focus of research on effector T cells in MS should focus on pathways upstream of the cytokines that define Th1 and Th17 cells, since downstream products, such as IFNγ and IL-17, probably are not critical determinants of whether an effector T cells is capable of trafficking to the CNS and inducing inflammatory demyelination.
Collapse
Affiliation(s)
- Amy E Lovett-Racke
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
43
|
Hellings N, Raus J, Stinissen P. T-cell-based immunotherapy in multiple sclerosis: induction of regulatory immune networks by T-cell vaccination. Expert Rev Clin Immunol 2010; 2:705-16. [PMID: 20477626 DOI: 10.1586/1744666x.2.5.705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS with presumed autoimmune origin. Pathogenic autoimmune responses in MS are thought to be the result of a breakdown of self tolerance. Several mechanisms account for the natural state of immunological tolerance to self antigens, including clonal deletion of self-reactive T cells in the thymus. However, autoimmune T cells are also part of the normal T-cell repertoire, supporting the existence of peripheral regulatory mechanisms that keep these potentially pathogenic T cells under control. One such mechanism involves active suppression by regulatory T cells. It has been indicated that regulatory T cells do not function properly in autoimmune disease. Immunization with attenuated autoreactive T cells, T-cell vaccination, may enhance or restore the regulatory immune networks to specifically suppress autoreactive T cells, as shown in experimental autoimmune encephalomyelitis, an animal model for MS. In the past decade, T-cell vaccination has been tested for MS in several clinical trials. This review summarizes these clinical trials and updates our current knowledge on the induction of regulatory immune networks by T cell vaccination.
Collapse
Affiliation(s)
- Niels Hellings
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium.
| | | | | |
Collapse
|
44
|
Thangavelu G, Smolarchuk C, Anderson CC. Co-inhibitory molecules: Controlling the effectors or controlling the controllers? SELF NONSELF 2010; 1:77-88. [PMID: 21487510 DOI: 10.4161/self.1.2.11548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
Nearly forty years ago the concept was proposed that lymphocytes are negatively regulated by what are now called co-inhibitory signals. Nevertheless, it is only the more recent identification of numerous co-inhibitors and their critical functions that has brought co-inhibition to the forefront of immunologic research. Although co-inhibitory signals have been considered to directly regulate conventional T cells, more recent data has indicated a convergence between co-inhibitory signals and the other major negative control mechanism in the periphery that is mediated by regulatory T cells. Furthermore, it is now clear that lymphocytes are not the sole domain of co-inhibitory signals, as cells of the innate immune system, themselves controllers of immunity, are regulated by co-inhibitors they express. Thus, in order to better understand negative regulation in the periphery and apply this knowledge to the treatment of disease, a major focus for the future should be the definition of the conditions where co-inhibition controls effector cells intrinsically versus extrinsically (via regulatory or innate cells).
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Surgery; Alberta Diabetes Institute; University of Alberta; Edmonton, Alberta Canada
| | | | | |
Collapse
|
45
|
Buenafe AC, Andrew S, Afentoulis M, Offner H, Vandenbark AA. Prevention and treatment of experimental autoimmune encephalomyelitis with clonotypic CDR3 peptides: CD4(+) Foxp3(+) T-regulatory cells suppress interleukin-2-dependent expansion of myelin basic protein-specific T cells. Immunology 2010; 130:114-24. [PMID: 20059576 DOI: 10.1111/j.1365-2567.2009.03218.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
T-cell receptor (TCR)-derived peptides are recognized by the immune system and are capable of modulating autoimmune responses. Using the myelin basic protein (MBP) TCR 1501 transgenic mouse model, we demonstrated that TCR CDR3 peptides from the transgenic TCR can provide a protective effect when therapy is initiated before the induction of experimental autoimmune encephalomyelitis (EAE). More importantly, TCR CDR3 peptide therapy can ameliorate the disease when administered after EAE onset. Concurrent with the therapeutic effects, we observed reduced T-cell proliferation and reduced interleukin-2 (IL-2) levels in response to stimulation with MBP-85-99 peptide in splenocyte cultures from mice receiving TCR CDR3 peptides compared with that of control mice. Moreover, we found that Foxp3(+) CD4 T cells from mice protected with TCR CDR3 peptide are preferentially expanded in the presence of IL-2. This is supportive of a proposed mechanism where Foxp3(+) T-regulatory cells induced by therapy with MBP-85-99 TCR CDR3 peptides limit expansion and the encephalitogenic activity of MBP-85-99-specific T cells by regulating the levels of secreted IL-2.
Collapse
Affiliation(s)
- Abigail C Buenafe
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
A large proportion of hemophilia A patients who receive replacement therapy, develop an immune response toward the infused factor VIII (FVIII). In this review, we discuss recent progress in several aspects of the anti-FVIII immune response, focusing on the sites of FVIII endocytosis (marginal zone of the spleen and bleeding site), the type of antigen-presenting cells (dendritic cells, macrophages and B cells) and endocytic receptors, implicated in FVIII presentation to T cells during primary and secondary immune response. Although it is becoming increasingly clear that regulatory T cells are involved in FVIII tolerance in healthy subjects and potentially in patients without inhibitors, we would like to demonstrate that little is known about the different T cells subsets and the cytokines network, which are also crucial for the development of allo- and autoimmune diseases. As more information on these issues becomes available, a better understanding of the role of each immune cells compartment in promoting FVIII tolerance or inhibitors development might lead to new strategies to promote FVIII tolerance in hemophilia A patients.
Collapse
|
47
|
Oral administration of triptolide ameliorates the clinical signs of experimental autoimmune encephalomyelitis (EAE) by induction of HSP70 and stabilization of NF-κB/IκBα transcriptional complex. J Neuroimmunol 2009; 217:28-37. [DOI: 10.1016/j.jneuroim.2009.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 11/15/2022]
|
48
|
Inflammation on the mind: visualizing immunity in the central nervous system. Curr Top Microbiol Immunol 2009; 334:227-63. [PMID: 19521688 DOI: 10.1007/978-3-540-93864-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) is a remarkably complex structure that utilizes electrochemical signaling to coordinate activities throughout the entire body. Because the nervous system contains nonreplicative cells, it is postulated that, through evolutionary pressures, this compartment has acquired specialized mechanisms to limit damage. One potential source of damage comes from our immune system, which has the capacity to survey the CNS and periphery for the presence of foreign material. The immune system is equipped with numerous effector mechanisms and can greatly alter the homeostasis and function of the CNS. Degeneration, autoimmunity, and pathogen infection can all result in acute, and sometimes chronic, inflammation within the CNS. Understanding the specialized functionality of innate and adaptive immune cells within the CNS is critical to the design of more efficacious treatments to mitigate CNS inflammatory conditions. Much of our knowledge of CNS-immune interactions stems from seminal studies that have used static and dynamic imaging approaches to visualize inflammatory cells responding to different CNS conditions. This review will focus on how imaging techniques have elevated our understanding of CNS inflammation as well as the exciting prospects that lie ahead as we begin to pursue investigation of the inflamed CNS in real time.
Collapse
|
49
|
Affiliation(s)
- Thomas Berger
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria.
| |
Collapse
|
50
|
Yang Y, Weiner J, Liu Y, Smith AJ, Huss DJ, Winger R, Peng H, Cravens PD, Racke MK, Lovett-Racke AE. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. ACTA ACUST UNITED AC 2009; 206:1549-64. [PMID: 19546248 PMCID: PMC2715092 DOI: 10.1084/jem.20082584] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extent to which myelin-specific Th1 and Th17 cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is controversial. Combinations of interleukin (IL)-1β, IL-6, and IL-23 with transforming growth factor β were used to differentiate myelin-specific T cell receptor transgenic T cells into Th17 cells, none of which could induce EAE, whereas Th1 cells consistently transferred disease. However, IL-6 was found to promote the differentiation of encephalitogenic Th17 cells. Further analysis of myelin-specific T cells that were encephalitogenic in spontaneous EAE and actively induced EAE demonstrated that T-bet expression was critical for pathogenicity, regardless of cytokine expression by the encephalitogenic T cells. These data suggest that encephalitogenicity of myelin-specific T cells appears to be mediated by a pathway dependent on T-bet and not necessarily pathway-specific end products, such as interferon γ and IL-17.
Collapse
Affiliation(s)
- Yuhong Yang
- Department of Neurology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|