1
|
Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int J Pharm 2018; 550:35-44. [DOI: 10.1016/j.ijpharm.2018.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/30/2023]
|
2
|
Abstract
Although vaccine adjuvants have been used for almost a century, alum is the only adjuvant licensed by the US FDA for human vaccine use. Many adjuvants studied to date have generalized inflammatory properties and lack specificity in terms of targeting immune compartments and cell populations. Indeed, such adjuvants have often been crude in formulation, their effects usually restricted to T-helper 2-type immunity and their use limited owing to inherent toxicity. However, recent advances in immunology have resulted in a number of potential adjuvant candidates that are able to modulate the immune response in a more controlled and specific manner. These novel adjuvants are attractive for inclusion in current and future vaccine strategies since they have better-defined mechanisms of action. In this article, we review several compounds that target specific immune components, such as cells, receptors or signaling pathways, and have termed such reagents 'smart adjuvants'.
Collapse
Affiliation(s)
- Clint S Schmidt
- Scientist II, Dendreon Corporation, 3005 1st Avenue, Seattle, WA 98121, USA.
| | | | | |
Collapse
|
3
|
Immunogenicity of two FMDV nonameric peptides encapsulated in liposomes in mice and the protective efficacy in guinea pigs. PLoS One 2013; 8:e68658. [PMID: 23874709 PMCID: PMC3706604 DOI: 10.1371/journal.pone.0068658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
It has been predicted that nonameric peptides I (VP126–34, RRQHTDVSF), II (VP1157–165, RTLPTSFNY) and III (VP145–53, KEQVNVLDL) from the VP1 capsid protein of the foot-and-mouth disease virus (FMDV) are T cell epitopes. To investigate whether these peptides have immunological activity, BALB/c mice were immunized with peptide I, II or III conjugated with immunostimulating complexes (ISCOMs). A cytotoxic T lymphocyte assay was used to evaluate the cytotoxic activity induced by peptides along with by measuring peptide-specific T-cell proliferation and CD8+ T lymphocyte numbers in whole blood and interferon (IFN)-γ production in peripheral blood mononuclear cells induced by peptides. To further identify the protective efficacy of peptides, an FMDV challenge assay was done in guinea pigs. Peptides I and II stimulated significant increases in T-cell proliferation, CD8+ T lymphocytes, and IFN-γ secretion and cytotoxic activity compared to controls. The FMDV challenge assay indicated peptides I and II can protect over 60% of animals from virus attack. The results demonstrate that peptides I and II encapsulated in liposomes should be CTL epitopes of FMDV and can protect animals from virus attack to some extent.
Collapse
|
4
|
Cruz-Bustos T, González-González G, Morales-Sanfrutos J, Megía-Fernández A, Santoyo-González F, Osuna A. Functionalization of immunostimulating complexes (ISCOMs) with lipid vinyl sulfones and their application in immunological techniques and therapy. Int J Nanomedicine 2012; 7:5941-56. [PMID: 23233802 PMCID: PMC3518286 DOI: 10.2147/ijn.s35556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Immunostimulating complexes (ISCOM)-type nanocapsules have been functionalized with lipid vinyl sulfones that anchor to them via the hydrophobic zone of their structure and can be charged with pharmacologically active molecules or macromolecules. These functionalized nanocapsules can incorporate protein A and bind to G immunoglobulins (IgGs) to make vehicles directed at the surface antigens of infectious agents, tumor cells, or receptor cells and deliver the encapsulated molecules in a highly specific way. They may be of particular use in pharmacological treatments with highly toxic molecules that should not be used in solution whenever it can be avoided. When bound to antibodies they can be used in biological processes that require the delivery or presentation of macromolecules to certain specific cells, in immunization processes for instance, or in diagnostic immunological techniques, as they are able to transport both the secondary antibodies and the reaction labels. Methods and results We describe the preparation of ISCOMs, the binding to the ISCOMS of newly synthesized compounds composed of chain alkyl vinyl sulfone, and the subsequent binding of the vinyl-sulfone compounds to IgGs. Within this context, a compound deriving from cholesterol functionalized with vinyl sulfone and used together with cholesterol in varying proportions has been linked to the structure of the ISCOMs and bound to protein A–IgG. This functionalization in no way altered the form or structure of the ISCOMs and allowed the nanocapsules carrying the specific IgGs to bind to forms of Trypanosoma cruzi against which antibodies had been developed. The fact that functionalized ISCOMs containing antibodies could deliver actinomycin D directly to the parasite meant that the effective dose of the antibiotic could be reduced very significantly. Conclusion We have developed ISCOM-type nanocapsules functionalized with lipid vinyl sulfone capable of anchoring to the surface of functional IgGs, which favors the recognition and transport of these nanocapsules precisely to certain kinds of cell.
Collapse
Affiliation(s)
- Teresa Cruz-Bustos
- Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, Hook S. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res 2011; 22:193-204. [DOI: 10.3109/08982104.2011.637502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Posintro™-HBsAg, a modified ISCOM including HBsAg, induces strong cellular and humoral responses. Int J Pharm 2011; 414:312-20. [DOI: 10.1016/j.ijpharm.2011.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 01/12/2023]
|
8
|
Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev Vaccines 2009; 8:1379-98. [PMID: 19803760 DOI: 10.1586/erv.09.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complex antigen structures currently represent the most-studied approach for prophylactic as well as therapeutic vaccines. Different types of complex vaccines, including virus-like particles and virosomes, have been developed depending on the nature of the viral pathogen they are trying to replicate (enveloped vs naked) or the modality to express antigenic epitopes (i.e., the binding of envelope protein on liposomic structures). The complex structure of these vaccines provides them with some adjuvanted properties, not uniformly present for all virus-like particle types. The further inclusion of specific adjuvants in vaccine preparations can modify the presentation modality of such particles to the immune system with a specific Th1 versus Th2 polarization efficacy. A paradigm of the relevance of these new adjuvants are the immunological results obtained with the inclusion of monophosphoryl lipid A adjuvant in the formulation of L1-based human papillomavirus-naked virus-like particles to reduce a Th1 cellular immunity impairment, peculiar for alum-derived adjuvants, along with the induction of highly enhanced humoral and memory B-cellular immunity.
Collapse
Affiliation(s)
- Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | |
Collapse
|
9
|
Myschik J, Mcburney WT, Hennessy T, Phipps-Green A, Rades T, Hook S. Immunostimulatory biodegradable implants containing the adjuvant Quil-A—Part II:In vivoevaluation. J Drug Target 2008; 16:224-32. [DOI: 10.1080/10611860701848886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Primary CD8+ T-cell response to soluble ovalbumin is improved by chloroquine treatment in vivo. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1497-504. [PMID: 18753338 DOI: 10.1128/cvi.00166-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The efficiency of cross-presentation of exogenous antigens by dendritic cells (DCs) would seem to be related to the level of antigen escape from massive degradation mediated by lysosomal proteases in an acidic environment. Here, we demonstrate that a short course of treatment with chloroquine in mice during primary immunization with soluble antigens improved the cross-priming of naïve CD8(+) T lymphocytes in vivo. More specifically, priming of chloroquine-treated mice with soluble ovalbumin (OVA), OVA associated with alum, or OVA pulsed on DCs was more effective in inducing OVA-specific CD8(+) T lymphocytes than was priming of untreated mice. We conclude that chloroquine treatment improves the cross-presentation capacity of DCs and thus the size of effector and memory CD8(+) T cells during vaccination.
Collapse
|
11
|
McBurney WT, Lendemans DG, Myschik J, Hennessy T, Rades T, Hook S. In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine 2008; 26:4549-56. [DOI: 10.1016/j.vaccine.2008.06.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
|
12
|
Abstract
The development of more advanced and effective vaccines is of great interest in modern medicine. These new-generation vaccines, based on recombinant proteins or DNA, are often less reactogenic and immunogenic than traditional vaccines. Thus, there is an urgent need for the development of new and improved adjuvants. Besides many other immunostimulatory components, the bacterial ghost (BG) system is currently under investigation as a potent vaccine delivery system with intrinsic adjuvant properties. BGs are nonliving cell envelope preparations from Gram-negative cells, devoid of cytoplasmic contents, while their cellular morphology and native surface antigenic structures remain preserved. Owing to the particulate nature of BGs and the fact that they contain many well known immune-stimulating compounds, BGs have the potential to enhance immune responses against ghost-delivered target antigens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Chemistry, Pharmaceutical
- Drug Carriers
- Genetic Vectors
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/immunology
- Humans
- Immunity, Mucosal
- Technology, Pharmaceutical/trends
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Eva M Riedmann
- Department of Chromosome Biology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
13
|
Luria-Perez R, Cedillo-Barron L, Santos-Argumedo L, Ortiz-Navarrete VF, Ocaña-Mondragon A, Gonzalez-Bonilla CR. A fusogenic peptide expressed on the surface of Salmonella enterica elicits CTL responses to a dengue virus epitope. Vaccine 2007; 25:5071-85. [PMID: 17543427 DOI: 10.1016/j.vaccine.2007.03.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 03/23/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
Attenuated Salmonella strains are used widely as live carriers of antigens because they elicit both mucosal and systemic immunity against passenger antigens. However, they generally evoke poor cytotoxic T cell (CTL) responses because Salmonella resides within vacuolar compartments and the passenger antigens must travel to the cytosol and be processed through the MHC class I-dependent pathway to simulate CTLs. To address this problem, we designed a fusion protein to destabilize the phagosome membrane and allow a dengue epitope to reach the cytosol. The fusion protein was displayed on the bacterial surface of Salmonella enterica serovar Typhimurium SL3261 through the beta domain of the autotransporter MisL. The passenger alpha domain contained, from the N-terminus, a fusogenic sequence, the NS3 protein 298-306-amino acid CTL epitope from the dengue virus type 2, a molecular tag, and a recognition site for the protease OmpT to release it to the milieu. Display of the fusion protein on the bacterial surface was demonstrated by IFA and flow cytometry using antibodies against the molecular tag. Cleavage of the fusogenic protein-dengue peptide was demonstrated by flow cytometry using OmpT+ Escherichia coli strains. The recombinant Salmonella strains displaying the fusogenic-dengue peptide were able to lyse erythrocytes, induced specific proliferative responses, and elicited CTL responses. These results suggest that the recombinant fusion proteins containing fusogenic sequences provide a promising system to induce CTLs by live vector vaccines.
Collapse
Affiliation(s)
- R Luria-Perez
- Medical Research Unit on Immunology and Infectious Diseases, Infectology Hospital, National Medical Center La Raza, IMSS, México City, Mexico
| | | | | | | | | | | |
Collapse
|
14
|
Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A 2007; 81:652-62. [PMID: 17187395 DOI: 10.1002/jbm.a.31019] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The purpose of this research was to investigate the use of biodegradable poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA-NP) as a vaccine delivery system to codeliver antigen, ovalbumin (OVA) along with monophosphoryl lipid A (MPLA) as adjuvant for induction of potent CD4(+) and CD8(+) T cell responses. The primary CD4(+) T responses to OVA/MPLA NP were investigated using OVA-specific T cells from DO11.10 transgenic mice. Following adoptive transfer of these cells, mice were immunized s.c. by NP formulations. For assessing the CD8(+) responses, bone marrow derived dendritic cells (DCs) were pulsed with different OVA formulations, then, cocultured with CD8(+) T cells from OT-1 mice. T cell proliferation/activation and IFN-gamma secretion profile have been examined. Particulate delivery of OVA and MPLA to the DCs lead to markedly increase in in vitro CD8(+) T cell T cell proliferative responses (stimulation index >3000) and >13-folds increase in in vivo clonal expanded CD4(+) T cells. The expanded T cells were capable of cytokine secretion and expressed an activation and memory surface phenotype (CD62L(lo), CD11a(hi), and CD44(hi)). Codelivery of antigen and MPLA in PLGA-NP offers an effective method for induction of potent antigen specific CD4(+) and CD8(+) T cell responses.
Collapse
Affiliation(s)
- Samar Hamdy
- Faculty of Pharmacy and Pharmaceutical Sciences, 3133 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| | | | | | | | | | | |
Collapse
|
15
|
Aguila A, Donachie AM, Peyre M, McSharry CP, Sesardic D, Mowat AM. Induction of protective and mucosal immunity against diphtheria by a immune stimulating complex (ISCOMS) based vaccine. Vaccine 2006; 24:5201-10. [PMID: 16650917 DOI: 10.1016/j.vaccine.2006.03.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/21/2006] [Accepted: 03/27/2006] [Indexed: 11/30/2022]
Abstract
There is increasing concern over the efficacy of existing vaccines for diphtheria and there is interest in the development of a mucosally active formulation which might improve local protection. Lipophilic immune stimulating complexes (ISCOMS) containing Quil A are active by both parenteral and mucosal routes and here we have established methods for incorporating palmitified diphtheria toxoid (DT) into ISCOMS. The resulting formulation was immunogenic by the subcutaneous, oral and intranasal routes, with very low doses of DT inducing systemic humoral immune responses, as well as cell mediated immunity including both gammaIFN and IL5 production. Intranasal immunisation with DT in ISCOMS also stimulated significant local antibody production in tracheal washes, as well as cellular immunity in draining lymphoid tissues and serum neutralising antibodies. Finally, subcutaneous immunisation of guinea pigs with DT in ISCOMS primed protective immunity against challenge with diphtheria holotoxin more efficiently than the equivalent doses of DT in the conventional alum vaccine. ISCOMS based vaccines may provide a novel strategy for mucosal and systemic immunisation against diphtheria.
Collapse
Affiliation(s)
- Antonio Aguila
- Division of Immunology, Infection and Inflammation, University of Glasgow, Biomedical Research Centre, 120 University Place, Glasgow, Scotland G12 8TA, United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The immunostimulating complex or 'iscom' was first described 20 years ago as an antigen delivery system with powerful immunostimulating activity. Iscoms are cage-like structures, typically 40 nm in diameter, that are comprised of antigen, cholesterol, phospholipid and saponin. ISCOM-based vaccines have been shown to promote both antibody and cellular immune responses in a variety of experimental animal models. This review focuses on the evaluation of ISCOM-based vaccines in animals over the past 10 years, as well as examining the progress that has been achieved in the development of human vaccines based on ISCOM adjuvant technology.
Collapse
Affiliation(s)
- Megan T Sanders
- Department of Microbiology and Immunology, The University of Melbourne, Australia
| | | | | | | |
Collapse
|
17
|
Rimmelzwaan GF, Boon ACM, Geelhoed-Mieras MM, Voeten JTM, Fouchier RAM, Osterhaus ADME. Human airway epithelial cells present antigen to influenza virus-specific CD8+ CTL inefficiently after incubation with viral protein together with ISCOMATRIX. Vaccine 2004; 22:2769-75. [PMID: 15246610 DOI: 10.1016/j.vaccine.2004.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 01/08/2004] [Indexed: 11/24/2022]
Abstract
In the present paper, an in vitro model was established in which the interaction between influenza virus-specific CD8+ T cells and human airway epithelial cells can be studied. To this end, the human lung epithelial cell line A549 was transduced with the HLA-A*0201 gene. This MHC class I allele is involved in the presentation of the immunodominant M158-66 cytotoxic T lymphocyte (CTL) epitope of the influenza A virus matrix protein. The A549-HLA-A2 cells and a CD8+ T cell clone specific for the M158-66 epitope were used to evaluate ISCOMATRIX (IMX), which is considered a potential mucosal adjuvant for influenza vaccines, for its capacity to activate virus-specific CTL after incubation with epithelial cells. It was found that virus infected epithelial cells activated virus-specific CTL efficiently. However, incubation of epithelial cells with ISCOMATRIX and recombinant M1 protein activated CD8+ T cells inefficiently, unlike the incubation of C1R cells expressing a HLA-A2 trans gene or HLA-A2+ B-lymphoblastoid cells with these reagents. It was concluded that this lack of antigen presentation by epithelial cells indicate that these cells are not subject to killing by virus-specific CTL upon instillation with ISCOMATRIX-based vaccines, which may be a favorable property of mucosal vaccines.
Collapse
Affiliation(s)
- G F Rimmelzwaan
- Institute of Virology, National Influenza Center, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Robson NC, Beacock-Sharp H, Donachie AM, Mowat AM. The role of antigen-presenting cells and interleukin-12 in the priming of antigen-specific CD4+ T cells by immune stimulating complexes. Immunology 2003; 110:95-104. [PMID: 12941146 PMCID: PMC1783021 DOI: 10.1046/j.1365-2567.2003.01705.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune stimulating complexes (ISCOMs) containing the saponin adjuvant Quil A are vaccine adjuvants that promote a wide range of immune responses in vivo, including delayed-type hypersensitivity (DTH) and the secretion of both T helper 1 (Th1) and Th2 cytokines. However, the antigen-presenting cell (APC) responsible for the induction of these responses has not been characterized. Here we have investigated the role of dendritic cells (DC), macrophages (Mphi) and B cells in the priming of antigen-specific CD4+ T cells in vitro by ISCOMs containing ovalbumin (OVA). OVA ISCOMs pulsed bone marrow (BM)-derived DC but not BM Mphi, nor naïve B cells prime resting antigen-specific CD4+ T cells, and this response is greatly enhanced if DC are activated with lipopolysaccharide (LPS). Of the APC found in the spleen, only DC had the capacity to prime resting antigen specific CD4+ T cells following exposure to OVA ISCOMs in vitro, while Mphi and B cells were ineffective. DC, but not B cells purified from the draining lymph nodes of mice immunized with OVA ISCOMs also primed resting antigen-specific CD4+ T cells in vitro, suggesting that DC are also critical in vivo. Using DC and T cells from interleukin (IL)-12 p40-/- mice, we also identified a crucial role for IL-12 in the priming of optimal CD4+ T cell responses by OVA ISCOMs. We suggest that DC are the principal APC responsible for the priming of CD4+ T cells by ISCOMs in vivo and that directed targeting of these vectors to DC may enhance their efficancy as vaccine adjuvants.
Collapse
Affiliation(s)
- Neil C Robson
- Department of Immunology and Bacteriology, University of Glasgow, Western Infirmary, Glasgow, UK.
| | | | | | | |
Collapse
|
19
|
Robson NC, Beacock-Sharp H, Donachie AM, Mowat AM. Dendritic cell maturation enhances CD8+ T-cell responses to exogenous antigen via a proteasome-independent mechanism of major histocompatibility complex class I loading. Immunology 2003; 109:374-83. [PMID: 12807483 PMCID: PMC1782973 DOI: 10.1046/j.1365-2567.2003.01664.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A are vaccine adjuvants that induce a wide range of immune responses in vivo, including strong class I major histocompatibility complex (MHC)-restricted cytotoxic T-lymphocyte activity. However, the antigen-presenting cell responsible for the induction of these responses has not been characterized. Here we have investigated the role of dendritic cells (DC) in the priming of antigen-specific CD8+ T cells in vitro by ISCOMS containing ovalbumin. Resting bone marrow DC pulsed with ovalbumin ISCOMS efficiently prime resting CD8+ T cells through a mechanism that is transporter associated with antigen processing (TAP) dependent, but independent of CD40 ligation and CD4+ T-cell help. Lipopolysaccharide-induced maturation of DC markedly enhances their ability to prime CD8+ T cells through a mechanism which is also independent of CD4+ T-cell help, but is dependent on CD40 ligation. Furthermore, DC maturation revealed a TAP-independent mechanism of CD8+ T-cell priming. Our results also show that class I MHC-restricted presentation of ovalbumin in ISCOMS by DC is sensitive to chloroquine and brefeldin A but insensitive to lactacystin. We suggest that DC may be the principal antigen-presenting cells responsible for the priming of CD8+ T cells by ISCOMS in vivo and that targeting these vectors to activated DC may enhance their presentation via a novel pathway of class I antigen processing.
Collapse
Affiliation(s)
- Neil C Robson
- Department of Immunology and Bacteriology, University of Glasgow, Western Infirmary, Glasgow, UK
| | | | | | | |
Collapse
|
20
|
Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J Pept Sci 2003; 9:255-81. [PMID: 12803494 DOI: 10.1002/psc.456] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Analytical biochemistry and synthetic peptide based chemistry have helped to reveal the pivotal role that peptides play in determining the specificity, magnitude and quality of both humoral (antibody) and cellular (cytotoxic and helper T cell) immune responses. In addition, peptide based technologies are now at the forefront of vaccine design and medical diagnostics. The chemical technologies used to assemble peptides into immunogenic structures have made great strides over the past decade and assembly of highly pure peptides which can be incorporated into high molecular weight species, multimeric and even branched structures together with non-peptidic material is now routine. These structures have a wide range of applications in designer vaccines and diagnostic reagents. Thus the tools of the peptide chemist are exquisitely placed to answer questions about immune recognition and along the way to provide us with new and improved vaccines and diagnostics.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Hypertonic loading of proteins into cells has been used to introduce soluble proteins into the major histocompatibility complex class I pathway of antigen presentation followed by cytotoxic T-lymphocyte (CTL) induction. The precise mechanism for this pathway is not completely understood. The antigen is either processed and presented by/on the same cell or by professional antigen-presenting cells (APC) after taking up the antigen from damaged or apoptotic cells. After loading labelled ovalbumin (OVA), it could be co-precipitated with the proteasome complex, supporting the role of this pathway for antigen processing. The processing speed however, appeared to be slow since intact OVA could be detected inside the cells even after 18 hr. This corresponded well with the processing of OVA by isolated proteasomes. On the other hand, enough peptides for recognition of target cells by CTLs were generated in this reaction. One reason for the low level of processing might be that hypertonic loading may damage the cells and inhibit direct processing. In fact, at least 50% of the cells became positive for Annexin V binding after hypertonic loading which indicates severe membrane alterations usually associated with the progress of apoptosis. Annexin V binds to phosphatidylserine residues which also serve as ligand for CD36 expressed on monocytes and some immature dendritic cells. This may direct the phagocytic pathway to hypertonically loaded cells and thus enable professional APCs to present OVA-peptides. Therefore, in addition to the direct processing of OVA, CTLs can be primed by professional APC after uptake of apoptotic, OVA-loaded cells.
Collapse
Affiliation(s)
- Georg A Enders
- Institute for Surgical Research, LM-University, Munich, Germany.
| |
Collapse
|
22
|
Bungener L, Serre K, Bijl L, Leserman L, Wilschut J, Daemen T, Machy P. Virosome-mediated delivery of protein antigens to dendritic cells. Vaccine 2002; 20:2287-95. [PMID: 12009284 DOI: 10.1016/s0264-410x(02)00103-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Virosomes are reconstituted viral membranes in which protein can be encapsulated. Fusion-active virosomes, fusion-inactive virosomes and liposomes were used to study the conditions needed for delivery of encapsulated protein antigen ovalbumin (OVA) to dendritic cells (DCs) for MHC class I and II presentation. Fusion-active virosomes, but not fusion-inactive virosomes, were able to deliver OVA to DCs for MHC class I presentation at picomolar OVA concentrations. Fusion activity of virosomes was not required for MHC class II presentation of antigen. Therefore, virosomes are an efficient system for delivery of protein antigens for stimulation of both helper and CTL responses.
Collapse
Affiliation(s)
- Laura Bungener
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Deliyannis G, Jackson DC, Ede NJ, Zeng W, Hourdakis I, Sakabetis E, Brown LE. Induction of long-term memory CD8(+) T cells for recall of viral clearing responses against influenza virus. J Virol 2002; 76:4212-21. [PMID: 11932386 PMCID: PMC155065 DOI: 10.1128/jvi.76.9.4212-4221.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of cytotoxic T-cell-mediated virus-clearing responses by influenza virus T cell determinant-containing peptide immunogens was examined. The most potent synthetic immunogens for eliciting pulmonary viral-clearing responses contained peptides representing determinants for CD4 and CD8 T cells (TH and CTL peptides, respectively) together with two or four palmitic acid (Pal) groups. Inoculated in adjuvant, these Pal2- or Pal4-CTL-TH lipopeptides and the nonlipidated CTL peptide induced equivalent levels of cytolytic activity in the primary effector phase of the response. The ability to recall lytic responses, however, diminished much more rapidly in CTL peptide-primed than in lipopeptide-primed mice. By 15 months postpriming, the recalled lytic activity in lipopeptide-inoculated mice remained potent, but the response induced by the CTL peptide was weak. Enumeration of specific gamma interferon-secreting CD8 T cells revealed that a greater number of these T cells had entered or remained in the memory pool in lipopeptide-primed mice, arguing for a quantitative rather than qualitative enhancement of the response on recall. Addition of either the lipid or the TH peptide to the CTL peptide was not sufficient to provide these long-lived antiviral responses, but inclusion of both components augmented the response. CD4 T cells elicited by the lipopeptides did not influence the rate of viral clearance upon challenge and most likely had a role in induction or maintenance of the memory response. It therefore appears that the lipopeptide immunogens, although not significantly superior at inducing primary effector CD8 T cells, elicit a much more effective memory population, the recall of which may account for their superiority in inducing pulmonary protection after viral challenge.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Cooperative Research Center for Vaccine Technology, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Kende M, Yan C, Hewetson J, Frick MA, Rill WL, Tammariello R. Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres against aerosol challenge. Vaccine 2002; 20:1681-91. [PMID: 11858879 DOI: 10.1016/s0264-410x(01)00484-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucosal (oral) immunization of mice with carrier-delivered ricin toxoid (RT) vaccine was accomplished by one long (7 weeks) or two short (4 weeks) immunization schedules. For the long and short immunization schedule two lots of vaccine were administered prepared with the same procedure but at different occasions. The long schedule consisted of a total of seven doses of 50 microg of vaccine in microencapsulated (lot #108) or aqueous form administered on days 1, 2, 3, 28, 29, 30 and 49. With the short schedule a total of seven or six doses of 25 microg (lot #111) were administered on days 1, 2, 3, 14, 15, 16 and 30, or on 1, 2, 14, 15, 30, 31 and 32, respectively. Mice immunized orally with the long schedule, 50 microg of RT vaccine incorporated into poly-DL-lactide-co-glycolyde (DL-PLG) microspheres (MS) produced serum IgG, IgG2a and IgA ELISA antibodies. All mice immunized with RT in DL-PLG MS (RT-MS) were protected against a lethal ricin aerosol challenge. In contrast, with the same schedule and with the same dose, the aqueous vaccine (RT) failed to stimulate IgG, IgG2a and IgA antibodies, and these mice were not protected against an aerosol ricin toxin challenge. With the shorter immunization scheme, seven doses of 25 microg RT-MS stimulated a significant, though reduced, protection with the microencapsulated, but not with the aqueous vaccine. When the first and second 3-day cycles of the short immunization schedule was reduced to two doses, and the 3-day cycle was administered at the end of the schedule, neither RT-MS nor RT stimulated protection against the challenge. These results indicated that successful oral immunization with RT-MS depended on both the dose and the schedule, consisting of three consecutive days of administration in two cycles, 4 weeks apart. Altering this schedule and the dose, resulted in a reduced protection or no protection at all. Furthermore, under the conditions of this study, the advantage of the microencapsulated RT vaccine over the aqueous vaccine for effective oral immunization was well demonstrated.
Collapse
Affiliation(s)
- Meir Kende
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Dijkstra JM, Fischer U, Sawamoto Y, Ototake M, Nakanishi T. Exogenous antigens and the stimulation of MHC class I restricted cell-mediated cytotoxicity: possible strategies for fish vaccines. FISH & SHELLFISH IMMUNOLOGY 2001; 11:437-458. [PMID: 11556476 DOI: 10.1006/fsim.2001.0351] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An MHC class I restricted cytotoxic T lymphocyte (CTL) activity assay has recently been established for rainbow trout. MHC class I restricted cytotoxicity probably plays a critical role in immunity to most viral diseases in mammals and may play a similar role in fish. Therefore, it is very important to investigate what types of vaccines can stimulate this immune response. Although logical candidates for vaccine components that can stimulate an MHC class I restricted response are live attenuated viruses and DNA vaccines, these materials are generally not allowed in fish for commercial vaccine use due to potential safety issues. In mammals, however, a number of interesting vaccination strategies based on exogenous antigens that stimulate MHC class I restricted cytotoxicity have been described. Several of these strategies are discussed in this review in the context of fish vaccination.
Collapse
Affiliation(s)
- J M Dijkstra
- Immunology Section, National Research Institute of Aquaculture, Tamaki, Mie, Japan
| | | | | | | | | |
Collapse
|
26
|
Mowat AM, Reid G. Preparation of immune stimulating complexes (ISCOMs) as adjuvants. CURRENT PROTOCOLS IN IMMUNOLOGY 2001; Chapter 2:Unit 2.11. [PMID: 18432764 DOI: 10.1002/0471142735.im0211s16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purified proteins are often poorly immunogenic and in such cases the induction of primary immune responses requires use of an adjuvant. The immune stimulating complex (ISCOM) has a unique ability to provoke a full range of immune response to protein antigens, after both parenteral and oral immunization. This unit describes techniques for incorporating proteins into the ISCOM structure, a process that requires the presence of exposed hydrophobic regions on the protein. The basic protocol outlines a method for preparation of ISCOMs containing inherently nonhydrophobic proteins, to which palmitic acid has been attached covalently. Two alternate protocols are given that do not require covalent modification of the protein. In the first, hydrophobic groups are revealed by acid treatment of the protein. The second describes preparation of ISCOMs containing integral membrane proteins that therefore possess a hydrophobic transmembrane domain.
Collapse
Affiliation(s)
- A M Mowat
- University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|
27
|
Miconnet I, Coste I, Beermann F, Haeuw JF, Cerottini JC, Bonnefoy JY, Romero P, Renno T. Cancer vaccine design: a novel bacterial adjuvant for peptide-specific CTL induction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4612-9. [PMID: 11254719 DOI: 10.4049/jimmunol.166.7.4612] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent identification of tumor Ags as potential vaccines has prompted the search for efficient adjuvants and delivery systems, especially in the case of peptide-based vaccination protocols. Here, we investigated the adjuvant potential of the recombinant 40-kDa outer membrane protein of Klebsiella pneumoniae (P40) for specific CTL induction. We studied the CTL response induced in HLA-A*0201/K(b) transgenic mice immunized with peptides derived from two melanoma-associated differentiation Ags, the HLA-A*0201-restricted decapeptide Melan-A(26--35) substituted at position 2 and the K(b)-restricted tyrosinase-related protein 2(181--188) T cell epitope. We found that both peptides are able to generate a specific CTL response when mixed with the protein in the absence of conventional adjuvant. This CTL response is a function of the amount of P40 used for immunization. Moreover, the CTL response generated against the tyrosinase-related protein 2(181-188) peptide in presence of P40 is associated with tumor protection in two different experimental models and is independent of the presence of CD4(+) T lymphocytes. Thus, the recombinant bacterial protein P40 functions as a potent immunological adjuvant for specific CTL induction.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemical synthesis
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- Bacterial Outer Membrane Proteins/administration & dosage
- Bacterial Outer Membrane Proteins/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cytotoxicity, Immunologic/immunology
- Drug Combinations
- Epitopes, T-Lymphocyte/immunology
- Immunotherapy, Active/methods
- Injections, Subcutaneous
- Intramolecular Oxidoreductases/administration & dosage
- Intramolecular Oxidoreductases/immunology
- Klebsiella pneumoniae/immunology
- Lymphocyte Depletion
- MART-1 Antigen
- Macromolecular Substances
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Proteins/administration & dosage
- Neoplasm Proteins/immunology
- Neoplasm Transplantation
- Peptide Fragments/administration & dosage
- Peptide Fragments/chemical synthesis
- Peptide Fragments/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Titrimetry
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- I Miconnet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mohamedi SA, Brewer JM, Alexander J, Heath AW, Jennings R. Antibody responses, cytokine levels and protection of mice immunised with HSV-2 antigens formulated into NISV or ISCOM delivery systems. Vaccine 2000; 18:2083-94. [PMID: 10715522 DOI: 10.1016/s0264-410x(99)00567-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The immunogenicity of a type 2 herpes simplex virus (HSV-2) antigen preparation following its formulation into immunostimulating complexes (ISCOMs) or non-ionic surfactant vesicles (NISV) was investigated in a murine model. The immune responses induced by each formulation were characterised by antigen specific total and subclass serum responses, and by lymphocyte proliferation and cytokine (interleukin-2 (IL-2), interleukin-4 (IL-4) and interferon-gamma (IFN-gamma)) production by in vitro restimulated spleen cells. The degree of protection afforded to mice by these various HSV-2 vaccine preparations against homologous (HSV-2) and heterologous (HSV-1) challenge infection was also determined. The findings suggest that formulation of the HSV-2 glycoprotein antigens with ISCOM or NISV delivery vehicles, and the methods used to prepare these formulations, influenced the immunogenicity of the final preparation. Higher IgG2a and neutralising antibody levels, IL-2 and IFN-gamma levels and lymphoproliferative responses were noted in mice immunised with the HSV-2 ISCOM formulated vaccine preparation. Furthermore, although HSV-2 antigens formulated in dehydration-rehydration NISV, or entrapped in NISV by freeze-thawing at 30 degrees C (HSV-2 NISV 30), also elicited relatively high antibody, IL-2 and IFN-gamma levels and relatively high lymphoproliferative responses, formulation of HSV-2 antigens by freeze-thawing with NISV at 60 degrees C (HSV-2 NISV 60) did not. There were no differences between any of the HSV-2 vaccine formulations in terms of IL-4 induction in in vitro stimulated spleen cell cultures. Almost complete protection against HSV-2 challenge was afforded by the HSV-2 ISCOM preparation, while partial protection against challenge infection was afforded by the HSV-2 NISV 30 vaccine formulation. The findings are discussed in relation to the nature of the immune mechanisms, particularly Th1- or Th2-like responses, that may be elicited by HSV-2 antigen preparations formulated into various delivery systems and the relevance of these immune responses to protection against HSV infection in the murine model.
Collapse
Affiliation(s)
- S A Mohamedi
- Sheffield Institute for Vaccine Studies, Division of Molecular and Genetic Medicine, Floor 'F', University of Sheffield Medical School, Beech Hill Road, Sheffield, UK
| | | | | | | | | |
Collapse
|
29
|
Structure/Function Relationships of Immunostimulating Saponins. BIOACTIVE NATURAL PRODUCTS (PART E) 2000. [DOI: 10.1016/s1572-5995(00)80045-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Smith RE, Donachie AM, Grdic D, Lycke N, Mowat AM. Immune-Stimulating Complexes Induce an IL-12-Dependent Cascade of Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The development of subunit vaccines requires the use of adjuvants that act by stimulating components of the innate immune response. Immune-stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A are potential vaccine vectors that induce a wide range of Ag-specific responses in vivo encompassing both humoral and CD4 and CD8 cell-mediated immune responses. ISCOMS are active by both parenteral and mucosal routes, but the basis for their adjuvant properties is unknown. Here we have investigated the ability of ISCOMS to recruit and activate innate immune responses as measured in peritoneal exudate cells. The i.p. injection of ISCOMS induced intense local inflammation, with early recruitment of neutrophils and mast cells followed by macrophages, dendritic cells, and lymphocytes. Many of the recruited cells had phenotypic evidence of activation and secreted a number of inflammatory mediators, including nitric oxide, reactive oxygen intermediates, IL-1, IL-6, IL-12, and IFN-γ. Of the factors that we investigated further only IL-12 appeared to be essential for the immunogenicity of ISCOMS, as IL-6- and inducible nitric oxide synthase knockout (KO) mice developed normal immune responses to OVA in ISCOMS, whereas these responses were markedly reduced in IL-12KO mice. The recruitment of peritoneal exudate cells following an injection of ISCOMS was impaired in IL-12KO mice, indicating a role for IL-12 in establishing the proinflammatory cascade. Thus, ISCOMS prime Ag-specific immune responses at least in part by activating IL-12-dependent aspects of the innate immune system.
Collapse
Affiliation(s)
- Rosemary E. Smith
- *Department of Immunology, University of Glasgow, Western Infirmary, Glasgow, United Kingdom; and
| | - Anne M. Donachie
- *Department of Immunology, University of Glasgow, Western Infirmary, Glasgow, United Kingdom; and
| | - Dubravka Grdic
- †Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Nils Lycke
- †Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Allan McI. Mowat
- *Department of Immunology, University of Glasgow, Western Infirmary, Glasgow, United Kingdom; and
| |
Collapse
|
31
|
Chang JS, Choi MJ, Kim TY, Woo GJ, Chung SI, Cheong HS. Effect of dehydration and rehydration of the pH-sensitive liposomes containing chimeric gag-V3 virus like particle on their long-term stability. BIOTECHNOL BIOPROC E 1999. [DOI: 10.1007/bf02931918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Men Y, Audran R, Thomasin C, Eberl G, Demotz S, Merkle HP, Gander B, Corradin G. MHC class I- and class II-restricted processing and presentation of microencapsulated antigens. Vaccine 1999; 17:1047-56. [PMID: 10195614 DOI: 10.1016/s0264-410x(98)00321-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Macrophages were found of having a strong capacity of phagocytosing small size microcapsules (MS) and presenting microencapsulated antigens to either CD4+ and CD8- T cells. The class I-restricted presentation of microencapsulated tetanus toxoid by macrophages requires an intracellular processing which might follow the phagosome-to-cytosol route to enter the classical MHC class I presentation pathway. In contrast, presentation of microencapsulated cytotoxic peptide PbCS252-260 to specific CD8+ T cells has been observed with different APC and is not blocked by cytochalasin D, suggesting that peptide released from MS may directly bind to MHC class I molecules on the cell surface. In the case of MHC class II-restricted T cells, prefixation or treatment of macrophages with chloroquine, brefeldin A and cycloheximide inhibits the presentation of microencapsulated and soluble tetanus toxoid. These findings illustrate the capacity of microencapsulated antigens to enter different presentation pathways and should facilitate the development of subunit vaccines.
Collapse
Affiliation(s)
- Y Men
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Schaible UE, Collins HL, Kaufmann SH. Confrontation between intracellular bacteria and the immune system. Adv Immunol 1999; 71:267-377. [PMID: 9917916 DOI: 10.1016/s0065-2776(08)60405-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- U E Schaible
- Max-Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|
34
|
Mowat AM, Smith RE, Donachie AM, Furrie E, Grdic D, Lycke N. Oral vaccination with immune stimulating complexes. Immunol Lett 1999; 65:133-40. [PMID: 10065639 DOI: 10.1016/s0165-2478(98)00136-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a need for non-living adjuvant vectors which will induce a full range of local and systemic immune responses to orally administered purified antigens. Here we describe our experience with lipophilic immune stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A. When given orally, ISCOMS containing the model protein antigen ovalbumin (OVA) induce a wide range of systemic immune responses, including Th1 and Th2 CD4 dependent activity, class I MHC restricted cytotoxic T-cell responses and local production of secretory IgA antibodies. More recent results indicate that ISCOMS may act partly by enhancing the uptake of protein from the gut. In addition, intraperitoneal injection of ISCOMS recruits and activates many components of the innate immune system. including neutrophils, macrophages, and dendritic cells. In parallel, there is increased production of nitric oxide (NO), reactive oxygen intermediates (ROI), interleukins (IL) 1, 6, 12, and gamma interferon (gammaIFN). Of these factors, only IL12 is essential for the immunogenicity of ISCOMS in vivo, as mucosal and systemic responses to ISCOMS are reduced in IL12KO mice, but not in IL4KO, IL6KO, inducible NO synthase (iNOS) KO, or gammaIFN receptor KO mice. We propose that ISCOMS act by targetting antigen and adjuvant to macrophages and/or dendritic cells. This pathway may be amenable to exploitation for vaccine development, especially if combined with another vector with a different mucosal adjuvant profile, such as cholera toxin.
Collapse
Affiliation(s)
- A M Mowat
- Department of Immunology, University of Glasgow, Western Infirmary, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Villacres MC, Behboudi S, Nikkila T, Lovgren-Bengtsson K, Morein B. Internalization of iscom-borne antigens and presentation under MHC class I or class II restriction. Cell Immunol 1998; 185:30-8. [PMID: 9636680 DOI: 10.1006/cimm.1998.1278] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exogenous nonreplicating antigens (Ag) incorporated into immunostimulating complexes (iscoms) induce CTL responses under MHC class I restriction. A requirement for inducing CTL responses is that the Ag is delivered to the cytosol of antigen-presenting cells (APC), a route restricted to endogenously produced Ag. To investigate the mechanisms by which iscoms elicit MHC class I-restricted responses, the intracellular distribution of influenza virus envelope proteins incorporated in iscoms (flu-iscoms) or in micelles (flumicelles) was studied in vitro using murine peritoneal cells (PEC). Ultrathin sections of cells pulsed with biotinylated flu-iscoms or flu-micelles were analyzed by electron microscopy after detection of the biotin label by reaction with streptavidin-gold. PEC pulsed with flu-iscoms showed a pattern of scattered gold particles distributed in clear and dense vesicles as well as in the intracellular space but not associated with organelles. In cells pulsed with flu-micelles, Ag was also detected in most cellular compartments but at a considerably lower concentration. The intracellular distribution of particulate Ag in iscom or micelle form was confirmed by lysis and differential centrifugation of Ag-pulsed APC. Furthermore, P815 cells pulsed with flu-iscoms were lysed by specific immune effectors showing that the iscom-Ag was processed and presented by class I-expressing APC. Flu-iscoms were internalized about 50-fold more efficiently than ovalbumin iscoms (ovaiscoms) suggesting that the nature of the protein and/or the presence of cellular receptors are important factors influencing the capacity of APC to take up iscom-borne proteins. PEC accounted for the most active internalization of iscom-borne Ag, although splenic dendritic cells and B cells also took up fluiscoms with remarkable efficiency.
Collapse
Affiliation(s)
- M C Villacres
- Department of Veterinary Microbiology, Swedish University of Agricultural Sciences, Uppsala.
| | | | | | | | | |
Collapse
|
36
|
Smith RE, Donachie AM, McLaren FH, Mowat AM. Preservation of mucosal and systemic adjuvant properties of ISCOMS in the absence of functional interleukin-4 or interferon-gamma. Immunology 1998; 93:556-62. [PMID: 9659229 PMCID: PMC1364135 DOI: 10.1046/j.1365-2567.1998.00469.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adjuvants are a critical component of non-viable vaccine vectors, particularly for those to be used via mucosal routes. Although most adjuvants act by inducing local inflammatory responses, the molecular basis of many of these effects is unclear. Here we have investigated whether interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) are required for the induction of local and systemic immune responses by oral and parenteral administration of ovalbumin (OVA) in immune stimulating complexes (ISCOMS), a potent mucosal adjuvant vector. Our results show that after oral or systemic immunization with OVA ISCOMS, IL-4 knockout (IL4KO) and IFN-gamma receptor knockout (IFN-gamma RKO) mice develop an entirely normal range of immune responses including delayed-type hypersensitivity (DTH), serum immunoglobulin G (IgG) antibodies, T-cell proliferation and cytokine production, class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) activity and intestinal IgA antibodies. These responses were of a similar magnitude to those found in the wild-type mice, indicating that the immunogenicity of ISCOMS is not influenced by the presence of IL-4 or IFN-gamma and emphasizing the potential of ISCOMS as widely applicable mucosal adjuvants.
Collapse
Affiliation(s)
- R E Smith
- Department of Immunology, University of Glasgow, Western Infirmary, UK
| | | | | | | |
Collapse
|
37
|
San Gil F, Turner B, Mullbacher A, Walker MJ, Djordjevic SP, Eamens GJ, Chin JC. Flow cytometric analysis of cellular changes in mice after intradermal inoculation with a liposome-iscom adjuvanted vaccine. Scand J Immunol 1998; 47:243-53. [PMID: 9519863 DOI: 10.1046/j.1365-3083.1998.00304.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As it is not known what changes to leucocyte homeostasis are mandatory for effective adjuvant action, the biological relevance of systemic changes elicited by different vaccine formulations can only be interpreted in the context of the immunological outcomes. We used flow cytometry to quantify the changes in leucocyte subsets induced in mice intradermally immunized with SAMA4 (adjuvant group), outer membrane proteins (OMP) purified from Actinobacillus pleuropneumoniae (OMP antigen group), SAMA4 adjuvanted OMP (OMP vaccine group), or phosphate-buffered saline (PBS: control group). This approach allowed direct comparisons to be made between the effects of antigen, adjuvant or antigen-adjuvant complexes on immune effector cell populations. Antigens complexed with the liposome-iscom hybrid adjuvant, SAMA4, generated strong antibody responses and cytotoxic T-cell activity in animals immunized intradermally, reflecting remobilization and recruitment of specific cell populations. Splenomegaly, due to granulocytosis, monocytosis and megakaryocytosis, was most prominent in the OMP vaccine group. Histological examination of spleen sections confirmed that these changes were due primarily to splenic haematopoiesis. Circulating numbers of granulocytes and monocytes increased significantly (P < 0.05) in the blood of the OMP vaccine group, as did granulocyte numbers in the lungs (P < 0.05). No changes in T- and B-cell numbers were detected by flow cytometry in the spleens, lungs or blood over the 28-day period in any treatment group. Thymocyte numbers (predominantly CD4+CD8+ cells) in the OMP vaccine group fell by 95% within 3 days of immunization. Identical cellular responses were obtained when an innocuous antigen, ovalbumin, was complexed with SAMA4 instead of OMP, thus demonstrating that the adjuvant effects of SAMA4 were due to synergistic interaction between antigen and adjuvant and not due to the presence of toxic components. The association of strong adaptive immune responses with such complex changes in leucocyte homeostasis induced by complexing adjuvant and antigen suggested that the changes were important for effective vaccination and were not purely circumstantial.
Collapse
Affiliation(s)
- F San Gil
- NSW Agriculture, Elizabeth Macarthur Agricultural Institute, Camden, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Speidel K, Osen W, Faath S, Hilgert I, Obst R, Braspenning J, Momburg F, Hämmerling GJ, Rammensee HG. Priming of cytotoxic T lymphocytes by five heat-aggregated antigens in vivo: conditions, efficiency, and relation to antibody responses. Eur J Immunol 1997; 27:2391-9. [PMID: 9341785 DOI: 10.1002/eji.1830270938] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mice were immunized i.p. with soluble or heat-denatured protein antigens [ovalbumin, beta-galactosidase, or recombinant E7 protein of human papilloma virus type 16 (HBV)]. Heat-denatured (100 degrees C) preparations of these proteins were able to induce cytotoxic T lymphocytes (CTL) that recognize cells expressing the respective genes, whereas native protein was either inefficient or required up to 30-fold higher doses. If the heat-treated proteins were separated into aggregated and soluble fractions by ultracentrifugation, only the aggregated fractions were able to induce specific CTL; this is probably because of the easier access to one of the major histocompatibility complex class I loading pathways for exogenous antigen. Addition of the adjuvant aluminium hydroxide (alum) to aggregated proteins abolished their ability to induce CTL; thus, a condition leading to a strong antibody response appeared to inhibit CTL induction. Interestingly, immunization with heat-denatured ovalbumin plus alum increased the IgM/IgG1 ratio compared to immunization with native ovalbumin and alum. Immunization of B6 mice transgenic for an HLA-A2/H-2K(b) hybrid gene with heat-denatured, recombinant HPV 16-E7 protein induced D(b)-restricted CTL specific for the peptide 49-57 of E7, indicating that this epitope is immunodominant over any A2-restricted E7 epitope in these mice. A whole influenza virus preparation heated to 100 degrees C or even autoclaved was still able to induce virus-specific CTL and BALB/c spleen cells heated to 100 degrees C could still cross-prime minor H-specific CTL in B6 mice, although with lower efficiency than fresh spleen cells. Thus, aggregated proteins can be considered as components for future vaccines.
Collapse
Affiliation(s)
- K Speidel
- Department of Tumorvirus Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Deml L, Schirmbeck R, Reimann J, Wolf H, Wagner R. Recombinant human immunodeficiency Pr55gag virus-like particles presenting chimeric envelope glycoproteins induce cytotoxic T-cells and neutralizing antibodies. Virology 1997; 235:26-39. [PMID: 9300034 DOI: 10.1006/viro.1997.8668] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Very recently, we demonstrated that the replacement of the human immunodeficiency virus type-1 (HIV-1) gp41 transmembrane protein by an Epstein-Barr virus gp220/350-derived membrane anchor resulted in the incorporation of chimeric envelope (Env) oligomers into Pr55gag virus-like particles (VLPs), exceeding that of wild-type gp160 by a factor of 10. In this study, we examined the immunostimulatory properties of Pr55gag VLPs to both (i) chimeric HIV-1 gp120 external envelope proteins and (ii) full-length gp160 presented on the outer surface of the particles. Immunization studies carried out with VLPs presenting different derivatives of the chimeric and wild-type Env proteins elicited a consistent anti-Pr55gag as well as anti-Env antibody response in complete absence of additional adjuvants. In both cases, the immune sera exhibited an in vitro neutralizing activity against homologous HIV-1 infection in MT4 cells. Noteworthy, these VLPs were also capable of inducing a strong CD8+ cytotoxic T-cell (CTL) response in immunized BALB/c mice that was directed toward a known CTL epitope in the third variable domain V3 of the gp120 external glycoprotein. However, the induction of V3-loop-specific CTLs critically depended on the amounts of Env proteins that were presented by the Pr55gag VLPs. Moreover, the CD8+ CTL response was not significantly altered by adsorbing the VLPs to alum or by repeated booster immunizations. These results illustrate that Pr55gag VLPs provide a safe and effective means of enhancing neutralizing humoral responses to particle-entrapped gp120 proteins and are also capable of delivering these proteins to the MHC class I antigen processing and presentation pathway. Therefore, antigenically expanded Pr55gag VLPs represent an attractive approach in the design of vaccines for which specific stimulation of neutralizing antibodies and cytotoxic effector functions to complex glycoproteins is desired.
Collapse
Affiliation(s)
- L Deml
- Institute of Medical Microbiology, University of Regensburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Men Y, Tamber H, Audran R, Gander B, Corradin G. Induction of a cytotoxic T lymphocyte response by immunization with a malaria specific CTL peptide entrapped in biodegradable polymer microspheres. Vaccine 1997; 15:1405-12. [PMID: 9302752 DOI: 10.1016/s0264-410x(97)00047-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported that biodegradable polymer microspheres (MS) are capable of eliciting strong and long-lasting antibody and T cell proliferative responses for either natural protein antigens or synthetic peptides. In this study, we investigated the possibility of inducing antigen-specific cytotoxic T lymphocyte (CTL) responses in vivo with a short synthetic peptide from the circumsporozoite (CS) protein of Plasmodium berghei (Pb) 252-260 by using different MS formulations. We show that injection of mice with a short CTL epitope microencapsulated in MS or adsorbed on empty MS enhanced a specific CTL response comparable to that obtained with the incomplete Freund's adjuvant (IFA) formulation, indicating that MS are a potent antigen delivery system/immunostimulant for CTL response. These results might be of practical interest for MS preparation and development of subunit vaccines.
Collapse
Affiliation(s)
- Y Men
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- M Jondal
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
42
|
Noll A. Immunity against Yersinia enterocolitica by vaccination with Yersinia HSP60 immunostimulating complexes or Yersinia HSP60 plus interleukin-12. Infect Immun 1996; 64:2955-61. [PMID: 8757820 PMCID: PMC174174 DOI: 10.1128/iai.64.8.2955-2961.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Microbial heat shock proteins (HSP) are dominant antigens for the host immune response. Because of the high sequence homology between mammalian and microbial HSP, their value as component of a subunit vaccine has been the subject of controversy. Previous work from this laboratory, however, demonstrated for the first time that the adoptive transfer of HSP60-reactive CD4+ alphabeta T-cell clones confers protection against bacterial infection in mice but does not induce autoimmunity. In the present study, we have therefore evaluated the potential role of Yersinia HSP60 (Y-HSP60) as a vaccine in the Yersinia enterocolitica mouse infection model. For this purpose, immunostimulating complexes (ISCOM) which included Y-HSP60 were constructed. Parenteral administration of this vaccine induced high Y-HSP60-specific serum antibody responses as well as T-cell responses. This reaction was parallelled by immunity against a lethal challenge with Y. enterocolitica. In contrast, mucosal application of Y-HSP60-ISCOM failed to induce systemic Y-HSP60-specific T-cell responses and thus failed to induce immunity against yersiniae. Likewise, vaccination with purified recombinant Y-HSP60 induced antibody responses but only weak T-cell responses. Therefore, this vaccination protocol was not protective. However, when interleukin-12 was used as an adjuvant, purified Y-HSP60 induced significant Y-HSP60-specific T-cell responses and thus induced protection against subsequent challenge with yersiniae. These studies suggest that (i) microbial HSP might be promising candidates for the design of subunit vaccines and (ii) interleukin-12 is an efficient alternative adjuvant to ISCOM particles for induction of protective CD4 Th1-cell-dependent immune responses against bacterial pathogens.
Collapse
Affiliation(s)
- A Noll
- Institut für Hygiene und Mikrobiologie der Universität Würzburg, Germany
| |
Collapse
|
43
|
Abstract
A little over a decade ago, novel immunostimulating complexes (ISCOMs) were described. This review examines the position and progress that ISCOM technology has achieved in the fields of vaccine research and medicine over this period. Much of the work on ISCOMs has remained in the area of vaccine research where there is still an urgent need for improved adjuvants to help combat important diseases such as AIDS, malaria and influenza. Currently the only widely licensed adjuvants for human use are the aluminium salts, but with the trend towards highly purified subunit vaccines, which are inherently less immunogenic than some of the older vaccines, potent adjuvants capable of promoting specific immune responses are required. ISCOMs are one such technology that offers many of these requirements and as their use in vaccines enters its second decade clinical trials are commencing that will establish whether these submicron, non-living particles composed of saponin, cholesterol, phospholipid and in many cases protein, are useful components for a range of human vaccines.
Collapse
Affiliation(s)
- I G Barr
- CSL Limited, Parkville, Victoria, Australia
| | | |
Collapse
|
44
|
Tarpey I, Stacey SN, McIndoe A, Davies DH. Priming in vivo and quantification in vitro of class I MHC-restricted cytotoxic T cells to human papilloma virus type 11 early proteins (E6 and E7) using immunostimulating complexes (ISCOMs). Vaccine 1996; 14:230-6. [PMID: 8920705 DOI: 10.1016/0264-410x(95)00179-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunostimulating complexes (ISCOMs) efficiently deliver soluble antigen into both the cytosolic (endogenous) and endosomal (exogenous) pathways of antigen processing. Cytosolic delivery to antigen-presenting cells (APCs) may therefore be useful for the stimulation and assay of class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL) in vitro. In this study, mice were immunized with ISCOMs containing fusion proteins of the E6 or E7 early proteins of human papilloma virus type 11 (HPV 11) to elicit CTL. These CTL were then restimulated in vitro using APCs pulsed with the same ISCOMs, prior to cytotoxicity assay using syngeneic target cells infected with recombinant vaccinia viruses. In this way, antigen-specific, MHC-restricted lysis by CD8+ cells was detected. However, this was dependent on the use of low density splenocytes as APCs for restimulation in vitro. Limiting dilution analyses showed a direct correlation between the CTL responder frequency and the number of times the animals were immunized in vivo. We conclude that in lieu of infectious virus, the use of ISCOMs to mediate antigen delivery to APCs in vitro can be used to quantitate CTL activity. This may have applications in monitoring vaccine efficacy, particularly to viruses such as HPV, which cannot be presently obtained as infectious virus in sufficient quantity for CTL propagation and assay.
Collapse
Affiliation(s)
- I Tarpey
- Division of Life Sciences, King's College, London, UK
| | | | | | | |
Collapse
|
45
|
Alexander J, Jebbari H, Bluethmann H, Satoskar A, Roberts CW. Immunological control of Toxoplasma gondii and appropriate vaccine design. Curr Top Microbiol Immunol 1996; 219:183-95. [PMID: 8791700 DOI: 10.1007/978-3-642-51014-4_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Alexander
- Department of Immunology, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
46
|
Maloy KJ, Donachie AM, Mowat AM. Induction of Th1 and Th2 CD4+ T cell responses by oral or parenteral immunization with ISCOMS. Eur J Immunol 1995; 25:2835-41. [PMID: 7589080 DOI: 10.1002/eji.1830251019] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the ability of oral or parenteral immunization with immune stimulating complexes containing ovalbumin (ISCOMS-OVA) to prime T cell proliferative and cytokine responses. A single subcutaneous immunization with ISCOMS-OVA primed potent antigen-specific proliferative responses in the draining popliteal lymph node, which were entirely dependent on the presence of CD4+ T cells. CD8+ T cells did not proliferate in vitro even in the presence of the appropriate peptide epitope and exogenous interleukin (IL)-2. Primed popliteal lymph node cells produced IL-2, IL-5 and interferon (IFN)-gamma, but not IL-4 when restimulated with OVA in vitro. Serum antigen-specific IgG1 and IgG2a antibody responses were also primed by subcutaneous immunization with ISCOMS-OVA, confirming the stimulation of both Th1 and Th2 cells in vivo. Spleen cells from subcutaneously primed mice produced a similar pattern of cytokines, indicating that disseminated priming had occurred. Oral immunization with ISCOMS-OVA also primed local antigen-specific proliferative responses in the mesenteric lymph node and primed an identical pattern of systemic cytokine responses in the spleen. The ability of ISCOMS to prime both Th1 and Th2 CD4+ T cell responses may be central to their potent adjuvant activities and confirm the potential of ISCOMS as future oral vaccine vectors.
Collapse
Affiliation(s)
- K J Maloy
- Department of Immunology, University of Glasgow, Western Infirmary, Scotland
| | | | | |
Collapse
|
47
|
Villacres-Eriksson M. Antigen presentation by naive macrophages, dendritic cells and B cells to primed T lymphocytes and their cytokine production following exposure to immunostimulating complexes. Clin Exp Immunol 1995; 102:46-52. [PMID: 7554398 PMCID: PMC1553327 DOI: 10.1111/j.1365-2249.1995.tb06634.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza virus envelope proteins incorporated into immunostimulating complexes (iscoms) are taken up and processed by various kinds of antigen-presenting cells (APC), encompassing peritoneal cells (PEC), unfractionated splenocytes, splenic dendritic cells (DC) or B cells. The iscom-pulsed naive APC stimulated primed T cells to proliferate and produce cytokine in vitro. In contrast, only DC and B cells pulsed with the same antigen (Ag) in the micelle form functioned as accessory cells stimulating the primed T cells to proliferate and produce cytokine. In general, iscoms were better inducers of cell proliferation than micelles. Iscoms stimulated more secretion of IL-2 and interferon-gamma (IFN-gamma) than the micelles, but both antigenic forms stimulated secretion of IL-4. DC and B cells pulsed with iscoms stimulated most efficiently the secretion of IL-2 and IFN-gamma. DC were superior to the other APC in stimulating primed T cells to secrete IFN-gamma. On the other hand, micelles stimulated more efficiently than iscoms splenic T cells from micelle-primed as well as iscom-primed mice to secrete IL-10. These data indicate that influenza virus envelope proteins incorporated in iscoms stimulate a broad T cell response, possibly emphasizing a Th1 type of response. The same Ag in a micelle form induce a more prominent Th2 type of T cell response. The results indicate that the administration of an Ag in an adjuvant formulation can superimpose a different cytokine profile on the immune response than that induced by the protein Ag alone.
Collapse
Affiliation(s)
- M Villacres-Eriksson
- Swedish University of Agricultural Sciences, Department of Veterinary Microbiology, Uppsala
| |
Collapse
|
48
|
Bauer S, Heeg K, Wagner H, Lipford GB. Identification of H-2Kb binding and immunogenic peptides from human papilloma virus tumour antigens E6 and E7. Scand J Immunol 1995; 42:317-23. [PMID: 7660065 DOI: 10.1111/j.1365-3083.1995.tb03662.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peptides can be used to induce MHC class I restricted cytotoxic T cells (CTL) through in vivo immunization. This approach may enable the development of peptide vaccination schemes for immunization against viral infection in humans. Human papillomavirus (HPV) is one of a few viruses associated with human cancer and the development of an anti-cancer vaccine seems possible. As a model approach, we searched the E6 and E7 proteins of the human papillomavirus type 16 for possible murine MHC class I restricted peptide epitopes. We utilized the mouse H2-Kb peptide binding motif which consists of phenylalanine or tyrosine at position five and leucine at the carboxy-terminus with the modification that leucine could be replaced by other aliphatic but non-aromatic amino acids. Four peptide sequences from E6 and two from E7 were selected. These peptides were tested for their ability to bind and stabilize Kb and for their immunogenicity in vivo. It was shown that one peptide from E6, E6.1 (50-57), bound Kb, but was not able to prime mice in vivo. In contrast, the two selected E7 peptides E7.1 (21-28) and E7.2 (48-55) bound Kb and were immunogenic in vivo. The peptide induced CTL lysed syngeneic EL-4 cells transfected with the open reading frame of E7 but not vector only transfectants. This implies that both peptides were naturally processed and presented by Kb on the surface of target cells. MHC class I peptide binding motifs therefore appear to be an effective and useful tool to predict peptide epitopes of proteins associated with cancer.
Collapse
Affiliation(s)
- S Bauer
- Institute for Medical Microbiology, Technical University of Munich, Germany
| | | | | | | |
Collapse
|
49
|
|
50
|
Ghazi HO, Erturk M, Stannard LM, Faulkner M, Potter CW, Jennings R. Immunogenicity of influenza and HSV-1 mixed antigen ISCOMs in mice. Arch Virol 1995; 140:1015-31. [PMID: 7611875 DOI: 10.1007/bf01315412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immunostimulating complexes (ISCOMs) were prepared with mixtures of antigens from influenza A virus (A/PR/8/34 or A/Sichuan/2/87) and herpes simplex virus type 1 (HSV-1), and were characterised by enzyme linked immunosorbent assay (ELISA) and electron microscopy using double-labelling immunogold techniques employing monoclonal antibodies to influenza or HSV-1 glycoproteins. The immunogenicity of the mixed antigen ISCOMs was evaluated in mice, following administration by the subcutaneous route, by measuring the total and subclass IgG antibody responses. Protection of these animals against challenge with live influenza A/Sichuan virus or live HSV-1, was compared with that induced by immunization with aqueous mixed antigen preparations. It was found that relatively high humoral responses to both influenza and HSV antigens, and increased levels of protection to both influenza and HSV viruses were elicited in mice receiving the mixed antigen ISCOM preparation compared to those observed in animals receiving the mixed aqueous subunit preparation. The findings also indicate that antigens from more than one virus can be used in an ISCOM formulation to produce immunity and protection.
Collapse
Affiliation(s)
- H O Ghazi
- Department of Medical Microbiology, University of Sheffield Medical School, UK
| | | | | | | | | | | |
Collapse
|