1
|
Haile Y, Adegoke A, Laribi B, Lin J, Anderson CC. Anti-CD52 blocks EAE independent of PD-1 signals and promotes repopulation dominated by double-negative T cells and newly generated T and B cells. Eur J Immunol 2020; 50:1362-1373. [PMID: 32388861 DOI: 10.1002/eji.201948288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/02/2020] [Accepted: 05/06/2020] [Indexed: 01/23/2023]
Abstract
Lymphocyte depletion using anti-CD52 antibody effectively reduces relapses of multiple sclerosis (MS). To begin to understand what mechanisms might control this outcome, we examined the effect of a murine-CD52-specific mAb on the depletion and repopulation of immune cells in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We tested whether the tolerance-promoting receptor programmed cell death protein-1 (PD-1) is required for disease remission post anti-CD52, and found that PD-1-deficient mice with a more severe EAE were nevertheless effectively treated with anti-CD52. Anti-CD52 increased the proportions of newly generated T cells and double-negative (DN) T cells while reducing newly generated B cells; the latter effect being associated with a higher expression of CD52 by these cells. In the longer term, anti-CD52 caused substantial increases in the proportion of newly generated lymphocytes and DN T cells in mice with EAE. Thus, the rapid repopulation of lymphocytes from central lymphoid organs post anti-CD52 may limit further disease. Furthermore, these data identify DN T cells, a subset with immunoregulatory potential, as a significant hyperrepopulating subset following CD52-mediated depletion.
Collapse
Affiliation(s)
- Yohannes Haile
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Adeolu Adegoke
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Bahareh Laribi
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Jiaxin Lin
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Abstract
The signaling lipid sphingosine 1-phosphate (S1P) plays critical roles in an immune response. Drugs targeting S1P signaling have been remarkably successful in treatment of multiple sclerosis, and they have shown promise in clinical trials for colitis and psoriasis. One mechanism of these drugs is to block lymphocyte exit from lymph nodes, where lymphocytes are initially activated, into circulation, from which lymphocytes can reach sites of inflammation. Indeed, S1P can be considered a circulation marker, signaling to immune cells to help them find blood and lymphatic vessels, and to endothelial cells to stabilize the vasculature. That said, S1P plays pleiotropic roles in the immune response, and it will be important to build an integrated view of how S1P shapes inflammation. S1P can function so effectively because its distribution is exquisitely tightly controlled. Here we review how S1P gradients regulate immune cell exit from tissues, with particular attention to key outstanding questions in the field.
Collapse
Affiliation(s)
- Audrey A.L. Baeyens
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA;,
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA;,
| |
Collapse
|
3
|
Abstract
After undergoing positive and negative selection in the thymus, surviving mature T cells egress from the thymic parenchyma and enter the bloodstream to participate in adaptive immunity. Thymic egress requires signals mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that serves as the ligand for a family of G protein-coupled receptors (S1P1-5) expressed on many cell types, including T cells. In the final stage of their development, T cells upregulate S1P1 expression on the cell surface, which enables them to recognize and respond to a chemotactic S1P gradient that lures them into the bloodstream. The gradient is generated by an S1P source close to the site of egress combined with an S1P sink generated by the actions of S1P catabolic enzymes including S1P lyase (SPL), the only enzyme that irreversibly degrades S1P. The requisite contribution of SPL to thymic egress is demonstrated by the profound lymphopenia observed in SPL knockout (KO) mice and wild type mice treated with SPL inhibitors. SPL is robustly expressed in thymic epithelial cells (TECs), which make up the stromal reticular network of the thymus. However, TEC SPL was recently found to be dispensable for thymic egress. In contrast, deletion of SPL in dendritic cells (DCs) - which represent only a small percent of thymic stroma - disrupts the S1P gradient and blocks thymic egress. These recent observations identify DCs as homeostatic regulators of thymic export through the actions of SPL, thereby adding one more piece to the complex puzzle of how S1P signaling contributes to the regulation of T cell trafficking.
Collapse
Affiliation(s)
- Julie D Saba
- University of California San Francisco Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94611 USA
| |
Collapse
|
4
|
Loss of Gα i proteins impairs thymocyte development, disrupts T-cell trafficking, and leads to an expanded population of splenic CD4 +PD-1 +CXCR5 +/- T-cells. Sci Rep 2017. [PMID: 28646160 PMCID: PMC5482867 DOI: 10.1038/s41598-017-04537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thymocyte and T cell trafficking relies on signals initiated by G-protein coupled receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in thymocyte and T cell function, we developed several mouse models. Gαi2 deficiency in hematopoietic progenitors led to a small thymus, a double negative (DN)1/DN2 thymocyte transition block, and an accumulation of mature single positive (SP) thymocytes. Loss at the double positive (DP) stage of thymocyte development caused an increase in mature cells within the thymus. In both models an abnormal distribution of memory and naïve CD4 T cells occurred, and peripheral CD4 and CD8 T cells had reduced chemoattractant responses. The loss of Gαi3 had no discernable impact, however the lack of both G-proteins commencing at the DP stage caused a severe T cell phenotype. These mice lacked a thymic medullary region, exhibited thymocyte retention, had a peripheral T cell deficiency, and lacked T cell chemoattractant responses. Yet a noteworthy population of CD4+PD-1+CXCR5+/− cells resided in the spleen of these mice likely due to a loss of regulatory T cell function. Our results delineate a role for Gαi2 in early thymocyte development and for Gαi2/3 in multiple aspects of T cell biology.
Collapse
|
5
|
Lim VY, Zehentmeier S, Fistonich C, Pereira JP. A Chemoattractant-Guided Walk Through Lymphopoiesis: From Hematopoietic Stem Cells to Mature B Lymphocytes. Adv Immunol 2017; 134:47-88. [PMID: 28413023 DOI: 10.1016/bs.ai.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes develop from hematopoietic stem cells (HSCs) in specialized bone marrow niches composed of rare mesenchymal lineage stem/progenitor cells (MSPCs) and sinusoidal endothelial cells. These niches are defined by function and location: MSPCs are mostly perisinusoidal cells that together with a small subset of sinusoidal endothelial cells express stem cell factor, interleukin-7 (IL-7), IL-15, and the highest amounts of CXCL12 in bone marrow. Though rare, MSPCs are morphologically heterogeneous, highly reticular, and form a vast cellular network in the bone marrow parenchyma capable of interacting with large numbers of hematopoietic cells. HSCs, downstream multipotent progenitor cells, and common lymphoid progenitor cells utilize CXCR4 to fine-tune access to critical short-range growth factors provided by MSPCs for their long-term maintenance and/or multilineage differentiation. In later stages, developing B lymphocytes use CXCR4 to navigate the bone marrow parenchyma, and predominantly cannabinoid receptor-2 for positioning within bone marrow sinusoids, prior to being released into peripheral blood circulation. In the final stages of differentiation, transitional B cells migrate to the spleen where they preferentially undergo further rounds of differentiation until selection into the mature B cell pool occurs. This bottleneck purges up to 97% of all developing B cells in a peripheral selection process that is heavily controlled not only by the intensity of BCR signaling and access to BAFF but also by the proper functioning of the B cell motility machinery.
Collapse
Affiliation(s)
- Vivian Y Lim
- Yale University School of Medicine, New Haven, CT, United States
| | | | - Chris Fistonich
- Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
6
|
Druey KM. Emerging Roles of Regulators of G Protein Signaling (RGS) Proteins in the Immune System. Adv Immunol 2017; 136:315-351. [PMID: 28950950 DOI: 10.1016/bs.ai.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States.
| |
Collapse
|
7
|
Hunter MC, Teijeira A, Halin C. T Cell Trafficking through Lymphatic Vessels. Front Immunol 2016; 7:613. [PMID: 28066423 PMCID: PMC5174098 DOI: 10.3389/fimmu.2016.00613] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 01/06/2023] Open
Abstract
T cell migration within and between peripheral tissues and secondary lymphoid organs is essential for proper functioning of adaptive immunity. While active T cell migration within a tissue is fairly slow, blood vessels and lymphatic vessels (LVs) serve as speedy highways that enable T cells to travel rapidly over long distances. The molecular and cellular mechanisms of T cell migration out of blood vessels have been intensively studied over the past 30 years. By contrast, less is known about T cell trafficking through the lymphatic vasculature. This migratory process occurs in one manner within lymph nodes (LNs), where recirculating T cells continuously exit into efferent lymphatics to return to the blood circulation. In another manner, T cell trafficking through lymphatics also occurs in peripheral tissues, where T cells exit the tissue by means of afferent lymphatics, to migrate to draining LNs and back into blood. In this review, we highlight how the anatomy of the lymphatic vasculature supports T cell trafficking and review current knowledge regarding the molecular and cellular requirements of T cell migration through LVs. Finally, we summarize and discuss recent insights regarding the presumed relevance of T cell trafficking through afferent lymphatics.
Collapse
Affiliation(s)
- Morgan C. Hunter
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alvaro Teijeira
- Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
9
|
Nadrah K, Beck TC, Pereira JP. Immature B Cell Egress from Bone Marrow Is SOCS3 Independent. PLoS One 2015; 10:e0136061. [PMID: 26274929 PMCID: PMC4537204 DOI: 10.1371/journal.pone.0136061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS)-3 has been suggested to regulate CXCR4 signaling in a variety of human cell lines. In mice, conditional SOCS3 inactivation in hematopoietic cells including B-lineage lymphocytes has been reported to exacerbate CXCR4-signaling and focal adhesion kinase phosphorylation, which resulted in altered immature B cell distribution in bone marrow (BM) due to sustained α4β1 integrin-mediated adhesion to the extracellular matrix. However, a recent study examining conditional SOCS3 deletion specifically in B-lineage cells failed to detect significant roles in B-lineage cell retention in BM. In this study we carefully examined the role played by SOCS3 in CXCR4 signaling in developing B cell subsets. We show that in mice conditionally deficient in SOCS3 exclusively in B cells (Socs3fl/fl Mb1cre/+) there was no detectable difference in B cell development in BM and in periphery. We show that SOCS3 deficient and sufficient immature B cell subsets are similarly distributed between BM parenchyma and sinusoids, and are equally competent at exiting BM into peripheral blood. Furthermore, we found no significant differences in CXCR4 desensitization upon ligand exposure in developing B lymphocyte subsets. Consequently, SOCS3-deficient and sufficient B-lineage cell migration towards CXCL12 in vitro was undistinguishable, and B-lineage cell amoeboid motility within BM parenchyma was also unaffected by SOCS3-deficiency. Thus we conclude that SOCS3 has no detectable influence on biological processes known to be controlled by CXCR4 signaling.
Collapse
Affiliation(s)
- Kristina Nadrah
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States of America
| | - Thomas C. Beck
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States of America
| | - João P. Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States of America
- * E-mail:
| |
Collapse
|
10
|
Willinger T, Ferguson SM, Pereira JP, De Camilli P, Flavell RA. Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling. ACTA ACUST UNITED AC 2014; 211:685-700. [PMID: 24638168 PMCID: PMC3978280 DOI: 10.1084/jem.20131343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endocytosis regulator dynamin 2 is required for the regulation of S1PR1 internalization and continued S1PR1 signaling in low S1P environments. Sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) is critical for lymphocyte egress from lymphoid organs. Lymphocytes encounter low S1P concentrations near exit sites before transmigration, yet S1PR1 signaling is rapidly terminated after exposure to S1P. How lymphocytes maintain S1PR1 signaling in a low S1P environment near egress sites is unknown. Here we identify dynamin 2, an essential component of endocytosis, as a novel regulator of T cell egress. Mice with T cell–specific dynamin 2 deficiency had profound lymphopenia and impaired egress from lymphoid organs. Dynamin 2 deficiency caused impaired egress through regulation of S1PR1 signaling, and transgenic S1PR1 overexpression rescued egress in dynamin 2 knockout mice. In low S1P concentrations, dynamin 2 was essential for S1PR1 internalization, which enabled continuous S1PR1 signaling and promoted egress from both thymus and lymph nodes. In contrast, dynamin 2–deficient cells were only capable of a pulse of S1PR1 signaling, which was insufficient for egress. Our results suggest a possible mechanism by which T lymphocytes positioned at exit portals sense low S1P concentrations, promoting their egress into circulatory fluids.
Collapse
Affiliation(s)
- Tim Willinger
- Department of Immunobiology, 2 Department of Cell Biology, 3 Program in Cellular Neuroscience, Neurodegeneration, and Repair, and 4 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | | | | | | | | |
Collapse
|
11
|
Boularan C, Kehrl JH. Implications of non-canonical G-protein signaling for the immune system. Cell Signal 2014; 26:1269-82. [PMID: 24583286 DOI: 10.1016/j.cellsig.2014.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/13/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which consist of three subunits α, β, and γ, function as molecular switches to control downstream effector molecules activated by G protein-coupled receptors (GPCRs). The GTP/GDP binding status of Gα transmits information about the ligand binding state of the GPCR to intended signal transduction pathways. In immune cells heterotrimeric G proteins impact signal transduction pathways that directly, or indirectly, regulate cell migration, activation, survival, proliferation, and differentiation. The cells of the innate and adaptive immune system abundantly express chemoattractant receptors and lesser amounts of many other types of GPCRs. But heterotrimeric G-proteins not only function in classical GPCR signaling, but also in non-canonical signaling. In these pathways the guanine exchange factor (GEF) exerted by a GPCR in the canonical pathway is replaced or supplemented by another protein such as Ric-8A. In addition, other proteins such as AGS3-6 can compete with Gβγ for binding to GDP bound Gα. This competition can promote Gβγ signaling by freeing Gβγ from rapidly rebinding GDP bound Gα. The proteins that participate in these non-canonical signaling pathways will be briefly described and their role, or potential one, in cells of the immune system will be highlighted.
Collapse
Affiliation(s)
- Cédric Boularan
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
12
|
Wang Y, Li Y, Shi G. The regulating function of heterotrimeric G proteins in the immune system. Arch Immunol Ther Exp (Warsz) 2013; 61:309-19. [PMID: 23563866 DOI: 10.1007/s00005-013-0230-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/25/2013] [Indexed: 01/17/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which consist of an α-, a β- and a γ-subunit, have crucial roles as molecular switches in the regulation of the downstream effector molecules of multiple G protein-coupled receptor signalling pathways, such as phospholipase C and adenylyl cyclase. According to the structural and functional similarities of their α-subunits, G proteins can be divided into four subfamilies: Gαs, Gαi/o, Gαq/11 and Gα12/13. Most of the α- and the βγ-subunits are abundantly expressed on the surface of immune cells. Recent studies have demonstrated that G proteins are a group of important immunomodulatory factors that regulate the migration, activation, survival, proliferation, differentiation and cytokine secretion of immune cells. In this review, we summarise the recent findings on the functions of G proteins in immune regulation and autoimmunity.
Collapse
Affiliation(s)
- Yantang Wang
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | | | | |
Collapse
|
13
|
Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:91-102. [PMID: 22227346 DOI: 10.1016/j.dci.2011.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The thymus is a central hematopoietic organ which produces mature T lymphocytes with diverse antigen specificity. During development, the thymus primordium is derived from the third pharyngeal endodermal pouch, and then differentiates into cortical and medullary thymic epithelial cells (TECs). TECs represent the primary functional cell type that forms the unique thymic epithelial microenvironment which is essential for intrathymic T-cell development, including positive selection, negative selection and emigration out of the thymus. Our understanding of thymopoiesis has been greatly advanced by using several important animal models. This review will describe progress on the molecular mechanisms involved in thymus and T cell development with particular focus on the signaling and transcription factors involved in this process in mouse and zebrafish.
Collapse
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
14
|
Nadda N, Vaish V, Setia S, Sanyal SN. Angiostatic role of the selective cyclooxygenase-2 inhibitor etoricoxib (MK0663) in experimental lung cancer. Biomed Pharmacother 2012; 66:474-83. [PMID: 22681911 DOI: 10.1016/j.biopha.2012.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022] Open
Abstract
Lung cancer was induced in Sprague-Dawley rats by a single intra-tracheal instillation of 9,10-dimethybenz(a)anthracene (DMBA) and evaluated the anti-angiogenic action of etoricoxib, which is a selective cyclooxygenase-2 (COX-2) inhibitor. The animals were divided into four groups. Group 1 (Control) received 0.9% (w/v) normal saline intra-tracheal and 0.5% (w/v) carboxymethyl cellulose per oral daily as the vehicle of the drug, Group 2 received DMBA (20 mg/kg) intra-tracheal once, Group 3 received a daily oral dose of etoricoxib (0.6 mg/kg bw) in addition to the DMBA while Group 4 received etoricoxib alone. Morphological and histological analysis confirmed the presence of lung tumors 20 weeks after the administration of DMBA. Expressions of COX-2, MMP-2, MMP-9, MCP-1, MIP-1β and VEGF were studied by immunofluorescence, Western immunoblot and mRNA studies, which showed a higher expression of these proteins in the DMBA-treated animals but much lower in DMBA+etoricoxib. Gelatin zymography as applied for the detection of the extracellular protein degrading enzymes, matrix metalloproteinases showed more intense activity in DMBA-treated rats as compared to the other groups. Also, the isolated alveolar macrophages were stained with Merocyanine540 (MC540) to study the membrane fluidity and lipid packing effect. DMBA treatment resulted in a significant increase in the number of lung cells exhibiting a high intensity of MC540 staining, which was reduced by the co-administration of etoricoxib. Thus the effects of etoricoxib on the expression of the angiogenic proteins have been observed, which clearly shows an anti-angiogenic mechanism of action of etoricoxib in lung cancer chemoprevention.
Collapse
Affiliation(s)
- N Nadda
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
15
|
Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 2011; 30:69-94. [PMID: 22149932 DOI: 10.1146/annurev-immunol-020711-075011] [Citation(s) in RCA: 617] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much has been learned about how cells enter lymphoid tissues. But how do they leave? Sphingosine-1-phosphate (S1P) has emerged over the past decade as a central mediator of lymphocyte egress. In this review, we summarize the current understanding of how S1P promotes exit from the secondary lymphoid organs and thymus. We review what is known about additional requirements for emigration and summarize the mostly distinct requirements for exit from the bone marrow. Egress from lymphoid organs is limited during immune responses, and we examine how this regulation works. There is accumulating evidence for roles of S1P in directing immune cell behavior within lymphoid tissues. How such actions can fit together with the egress-promoting role of S1P is discussed. Finally, we examine current understanding of how FTY720, a drug that targets S1P receptors and is approved for the treatment of multiple sclerosis, causes immune suppression.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA.
| | | |
Collapse
|
16
|
Dzhagalov I, Phee H. How to find your way through the thymus: a practical guide for aspiring T cells. Cell Mol Life Sci 2011; 69:663-82. [PMID: 21842411 DOI: 10.1007/s00018-011-0791-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 01/16/2023]
Abstract
Thymocytes must complete an elaborate developmental program in the thymus to ultimately generate T cells that express functional but neither harmful nor useless TCRs. Each developmental step coincides with dynamic relocation of the thymocytes between anatomically discrete thymic microenvironments, suggesting that thymocytes' migration is tightly regulated by their developmental status. Chemokines produced by thymic stromal cells and chemokine receptors on the thymocytes play an indispensable role in guiding developing thymocytes into the different microenvironments. In addition to long-range migration, chemokines increase the thymocytes' motility, enhancing their interaction with stromal cells. During the past several years, much progress has been made to determine the various signals that guide thymocytes on their journey within the thymus. In this review, we summarize the progress in identifying chemokines and other chemoattractant signals that direct intrathymic migration. Furthermore, we discuss the recent advances of two-photon microscopy in determining dynamic motility and interaction behavior of thymocytes within distinct compartments to provide a better understanding of the relationship between thymocyte motility and development.
Collapse
Affiliation(s)
- Ivan Dzhagalov
- LSA, Room 479, Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
17
|
Bunting MD, Comerford I, McColl SR. Finding their niche: chemokines directing cell migration in the thymus. Immunol Cell Biol 2010; 89:185-96. [PMID: 21135866 DOI: 10.1038/icb.2010.142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T lymphocytes are generated throughout life, arising from bone marrow-derived progenitors that complete an essential developmental process in the thymus. Thymic T cell education leads to the generation of a self-restricted and largely self-tolerant peripheral T-cell pool and is facilitated by interactions with thymic stromal cells residing in distinct supportive niches. The signals governing thymocyte precursor migration into the thymus, directing thymocyte navigation through thymic microenvironments and mature T-cell egress into circulation were, until recently, largely unknown, but presumed to be mediated to a large extent by chemokine signalling. Recent studies have now uncovered various specific functions for members of the chemokine superfamily in the thymus. These studies have not only revealed distinct but also in some cases overlapping roles for several chemokine family members in various thymocyte migration events and have also shown that homing and positioning of other cells in the thymus, such as dendritic cells and natural killer T cells is also chemokine-dependent. Here, we discuss current understanding of the role of chemokines in the thymus and highlight key future avenues for investigation in this field.
Collapse
Affiliation(s)
- Mark D Bunting
- Chemokine Biology Laboratory, Discipline of Microbiology and Immunology, The School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
18
|
The absence of functional PI3Kγ prevents leukocyte recruitment and ameliorates DSS-induced colitis in mice. Immunol Lett 2010; 131:33-9. [DOI: 10.1016/j.imlet.2010.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/05/2010] [Accepted: 03/16/2010] [Indexed: 01/24/2023]
|
19
|
Toxins-useful biochemical tools for leukocyte research. Toxins (Basel) 2010; 2:428-52. [PMID: 22069594 PMCID: PMC3153219 DOI: 10.3390/toxins2040428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/24/2010] [Indexed: 12/28/2022] Open
Abstract
Leukocytes are a heterogeneous group of cells that display differences in anatomic localization, cell surface phenotype, and function. The different subtypes include e.g., granulocytes, monocytes, dendritic cells, T cells, B cells and NK cells. These different cell types represent the cellular component of innate and adaptive immunity. Using certain toxins such as pertussis toxin, cholera toxin or clostridium difficile toxin, the regulatory functions of Gαi, Gαs and small GTPases of the Rho family in leukocytes have been reported. A summary of these reports is discussed in this review.
Collapse
|
20
|
Abstract
Recent studies have begun to illuminate the mechanism of T-cell export from the thymus, with the identification of a required lysophospholipid receptor, two upstream transcription factors, and several downstream regulators of cytoskeleton dynamics. This work has generated immediate translational impact, aiding the design of immunosuppressant drugs and the identification of a novel form of human immunodeficiency.
Collapse
Affiliation(s)
- Marcus A Zachariah
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California at San Francisco 513 Parnassus Avenue, San Francisco, CA 94143 USA
| | | |
Collapse
|
21
|
Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol 2009; 5:428-34. [PMID: 19430484 DOI: 10.1038/nchembio.173] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 03/26/2009] [Indexed: 12/25/2022]
Abstract
Targeting sphingosine-1-phosphate receptors with the oral immunomodulator drug FTY720 (fingolimod) has demonstrated substantial efficacy in the treatment of multiple sclerosis. The drug is phosphorylated in vivo, and most of the clinical effects of FTY720-phosphate (FTY720P) are thought to be mediated via S1P1 receptors on lymphocytes and endothelial cells, leading to sequestration of lymphocytes in secondary lymphoid organs. FTY720P was described to act as a "functional antagonist" by promoting efficient internalization of S1P1 receptors. We demonstrate here that S1P1 receptors activated by FTY720P retain signaling activity for hours in spite of a quantitative internalization. Structural analogs of FTY720P with shorter alkyl side chains retained potency and efficacy in a functional assay but failed to promote long-lasting receptor internalization and signaling. We show that persistent signaling translates into an increased chemokinetic migration of primary human umbilical vein endothelial cells, which suggests persistent agonism as a crucial parameter in the mechanism of action of FTY720.
Collapse
|
22
|
Drennan MB, Elewaut D, Hogquist KA. Thymic emigration: sphingosine-1-phosphate receptor-1-dependent models and beyond. Eur J Immunol 2009; 39:925-30. [PMID: 19224640 DOI: 10.1002/eji.200838912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thymus is a primary lymphoid organ supporting the development of self-tolerant T cells. Key events in T-cell development in the thymus include lineage commitment, selection events, and thymic emigration. This review discusses the proposed role of sphingosine-1-phosphate and its receptors in the emigration of both conventional and unconventional T-cell subsets from the thymus, and the molecular machinery currently understood to regulate this process. Furthermore, we highlight a role for chemokines and actin-associated proteins in T-cell motility as recent data suggest that T-cell emigration is regulated by more than just a sphingosine-1-phosphate receptor-1-dependent chemotactic axis.
Collapse
Affiliation(s)
- Michael B Drennan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
23
|
Sinha RK, Park C, Hwang IY, Davis MD, Kehrl JH. B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 2009; 30:434-46. [PMID: 19230723 DOI: 10.1016/j.immuni.2008.12.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/26/2008] [Accepted: 12/19/2008] [Indexed: 11/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) helps mediate lymphocyte egress from lymph nodes, yet many mechanistic questions remain. Here, we show the presence of B lymphocyte egress sites located in the lymph node cortex close to lymph node follicles. B cells exited lymph nodes by squeezing through apparent portals in the lymphatic endothelium of these sinusoids. Treatment with the S1P receptor agonist FTY720 emptied the cortical sinusoids of lymphocytes, blocked lymphatic endothelial penetration, and displaced B lymphocytes into the T cell zone. S1pr3(-/-) B cells, which lack chemoattractant responses to S1P, transited lymph nodes normally, whereas Gnai2(-/-) B cells, which have impaired responses to chemokines and S1P, transited more rapidly than did wild-type cells. This study identifies a major site of B lymphocyte lymph node egress, shows that FTY720 treatment blocks passage through the cortical lymphatic endothelium, and argues against a functional role for S1P chemotaxis in B lymphocyte egress.
Collapse
Affiliation(s)
- Rajesh K Sinha
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, Bethesda, MD 20892-1876, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Weinreich MA, Hogquist KA. Thymic emigration: when and how T cells leave home. THE JOURNAL OF IMMUNOLOGY 2008; 181:2265-70. [PMID: 18684914 DOI: 10.4049/jimmunol.181.4.2265] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The thymus supports the differentiation of multiple distinct T cell subsets that play unique roles in the immune system. CD4 and CD8 alpha/beta T cells, gamma/delta T cells, NKT cells, regulatory T cells, and intraepithelial lymphocytes all develop in the thymus and must leave it to provide their functions elsewhere in the body. This article will review recent research indicating differences in the time and migration patterns of T cell subsets found in the thymus. Additionally, we review current understanding of the molecules involved in thymocyte emigration, including the sphingolipid receptor S1P(1) and its regulation by the Krüppel-like transcription factor KLF2.
Collapse
Affiliation(s)
- Michael A Weinreich
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
26
|
Huttenlocher A, Poznansky MC. Reverse leukocyte migration can be attractive or repulsive. Trends Cell Biol 2008; 18:298-306. [PMID: 18468440 PMCID: PMC2435406 DOI: 10.1016/j.tcb.2008.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/06/2008] [Accepted: 04/07/2008] [Indexed: 01/08/2023]
Abstract
The directional migration of cells within multicellular organisms is governed by gradients of both chemical attractants and repellents in diverse processes, including leukocyte trafficking and neuronal pathfinding in vivo. These complex extracellular environments direct the orchestrated bidirectional trafficking of leukocytes between the vasculature and tissues. Substantial progress has been made in dissecting the molecular mechanisms involved in orchestrating the directed movement of leukocytes into host tissues; however, less is known about the reverse migration of leukocytes from the tissues to the vasculature. In this article, we discuss the functional interplay between chemoattraction and chemorepulsion in the bidirectional movement of cells in complex in vivo environments, and we describe how these mechanisms influence both normal physiology and human disease.
Collapse
Affiliation(s)
- Anna Huttenlocher
- Dept. of Medical Microbiology and Immunology and Pediatrics University of Wisconsin-Madison, 4205 Microbial Science Building, 1550 Linden Drive Madison, WI 53706
| | - Mark C. Poznansky
- Dept. Infectious Diseases and DFCI/Harvard Cancer Center Massachusetts General Hospital Harvard Medical School 13 Street Boston , MA 02129
| |
Collapse
|
27
|
Requirement of Galphai in thymic homing and early T cell development. Mol Immunol 2008; 45:3401-10. [PMID: 18501427 DOI: 10.1016/j.molimm.2008.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 12/15/2022]
Abstract
Demonstration of thymic homing dependent on Galphai proteins is one of the keys to determine whether thymic entrance of blood-borne progenitors is a highly selective process. The present study provides compelling evidence of an indispensable role for Galphai proteins in this process. Absence of either Galphai2 or Galphai3 significantly abrogated thymic homing, with an effect of Galphai3 being greater than that of Galphai2. Pertussis toxin treatment that blocks both Galphai2 and Galphai3 almost completely blocked thymic seeding in the thymus. Null mutation of Galphai3 also hindered bone marrow cell development and thus reduced production of pre-thymic progenitors. In contrast, Galphai2 exhibited a more prominent role than Galphai3 in guidance of CD4-CD8--double negative (DN) 1 cell migration and early thymic differentiation. The Galphai-deficiency-induced defects might be compensated for in part via augmented function of thymic stromal cells so that a nearly normal output of mature T cells could be maintained in these Galphai-deficient mice. These studies underscore the importance of Galphai in regulating thymic homing and pre-thymic and early thymocyte differentiation.
Collapse
|
28
|
Abstract
The egress of lymphocytes from the thymus and secondary lymphoid organs into circulatory fluids is essential for normal immune function. The discovery that a small-molecule inhibitor of lymphocyte exit, FTY720, is a ligand for sphingosine 1-phosphate (S1P) receptors led to studies demonstrating that S1P receptor type 1 (S1P1) is needed in T cells and B cells for their egress from lymphoid organs. S1P exists in higher concentrations in blood and lymph than in lymphoid organs, and this differential is also required for lymphocyte exit. Transcriptional and post-translational mechanisms regulate S1P1 and thus the egress of lymphocytes. In this review we discuss the body of evidence supporting a model in which lymphocyte egress is promoted by encounter with S1P at exit sites. We relate this model to work examining the effects of S1P receptor agonists on endothelium.
Collapse
|
29
|
|
30
|
Kogan AN, von Andrian UH. Lymphocyte Trafficking. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
31
|
Seo M, Lee MJ, Heo JH, Lee YI, Kim Y, Kim SY, Lee ES, Juhnn YS. G Protein βγ Subunits Augment UVB-induced Apoptosis by Stimulating the Release of Soluble Heparin-binding Epidermal Growth Factor from Human Keratinocytes. J Biol Chem 2007; 282:24720-30. [PMID: 17548351 DOI: 10.1074/jbc.m702343200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV radiation induces various cellular responses by regulating the activity of many UV-responsive enzymes, including MAPKs. The betagamma subunit of the heterotrimeric GTP-binding protein (Gbetagamma) was found to mediate UV-induced p38 activation via epidermal growth factor receptor (EGFR). However, it is not known how Gbetagamma mediates the UVB-induced activation of EGFR, and thus we undertook this study to elucidate the mechanism. Treatment of HaCaT-immortalized human keratinocytes with conditioned medium obtained from UVB-irradiated cells induced the phosphorylations of EGFR, p38, and ERK but not that of JNK. Blockade of heparin-binding EGF-like growth factor (HB-EGF) by neutralizing antibody or CRM197 toxin inhibited the UVB-induced activations of EGFR, p38, and ERK in normal human epidermal keratinocytes and in HaCaT cells. Treatment with HB-EGF also activated EGFR, p38, and ERK. UVB radiation stimulated the processing of pro-HB-EGF and increased the secretion of soluble HB-EGF in medium, which was quantified by immunoblotting and protein staining. In addition, treatment with CRM179 toxin blocked UV-induced apoptosis, but HB-EGF augmented this apoptosis. Moreover, UVB-induced apoptosis was reduced by inhibiting EGFR or p38. The overexpression of Gbeta(1)gamma(2) increased EGFR-activating activity and soluble HB-EGF content in conditioned medium, but the sequestration of Gbetagamma by the carboxyl terminus of G protein-coupled receptor kinase 2 (GRK2ct) produced the opposite effect. The activation of Src increased UVB-induced, Gbetagamma-mediated HB-EGF secretion, but the inhibition of Src blocked that. Overexpression of Gbetagamma increased UVB-induced apoptosis, and the overexpression of GRK2ct decreased this apoptosis. We conclude that Gbetagamma mediates UVB-induced human keratinocyte apoptosis by augmenting the ectodomain shedding of HB-EGF, which sequentially activates EGFR and p38.
Collapse
Affiliation(s)
- Miran Seo
- Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-779
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Petrie HT, Zúñiga-Pflücker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 2007; 25:649-79. [PMID: 17291187 DOI: 10.1146/annurev.immunol.23.021704.115715] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All hematopoietic cells, including T lymphocytes, originate from stem cells that reside in the bone marrow. Most hematopoietic lineages also mature in the bone marrow, but in this respect, T lymphocytes differ. Under normal circumstances, most T lymphocytes are produced in the thymus from marrow-derived progenitors that circulate in the blood. Cells that home to the thymus from the marrow possess the potential to generate multiple T and non-T lineages. However, there is little evidence to suggest that, once inside the thymus, they give rise to anything other than T cells. Thus, signals unique to the thymic microenvironment compel multipotent progenitors to commit to the T lineage, at the expense of other potential lineages. Summarizing what is known about the signals the thymus delivers to uncommitted progenitors, or to immature T-committed progenitors, to produce functional T cells is the focus of this review.
Collapse
Affiliation(s)
- Howard T Petrie
- Scripps Florida Research Institute, Jupiter, Florida 33458, USA.
| | | |
Collapse
|
33
|
Elgbratt K, Bjursten M, Willén R, Bland PW, Hörnquist EH. Aberrant T-cell ontogeny and defective thymocyte and colonic T-cell chemotactic migration in colitis-prone Galphai2-deficient mice. Immunology 2007; 122:199-209. [PMID: 17490434 PMCID: PMC2265997 DOI: 10.1111/j.1365-2567.2007.02629.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Galphai2-deficient mice, which spontaneously develop colitis, have previously been reported to have an increased frequency of mature, single positive thymocytes compared to wild-type mice. In this study we further characterized the intrathymic changes in these mice before and during overt colitis. Even before the onset of colitis, Galphai2(-/-) thymi weighed less and contained fewer thymocytes, and this was exacerbated with colitis development. Whereas precolitic Galphai2(-/-) mice had unchanged thymocyte density compared to Galphai2(+/-) mice of the same age, this was significantly decreased in mice with colitis. Thymic atrophy in Galphai2(-/-) mice involved mainly the cortex. Using a five-stage phenotypic characterization of thymocyte maturation based on expression of CD4, CD8, TCRalphabeta, CD69 and CD62L, we found that both precolitic and colitic Galphai2(-/-) mice had significantly increased frequencies of mature single-positive CD4(+) and CD8(+) medullary thymocytes, and significantly reduced frequencies and total numbers of immature CD4(+) CD8(+) double-positive thymocytes compared to Galphai2(+/-) mice. Furthermore, cortical and transitional precolitic Galphai2(-/-) thymocytes showed significantly reduced chemotactic migration towards CXCL12, and a trend towards reduced migration to CCL25, compared to wild-type thymocytes, a feature even more pronounced in colitic mice. This impaired chemotactic migration of Galphai2(-/-) thymocytes could not be reversed by increased chemokine concentrations. Galphai2(-/-) thymocytes also showed reduced expression of the CCL25 receptor CCR9, but not CXCR4, the receptor, for CXCL12. Finally, wild-type colonic lamina propria lymphocytes migrated in response to CXCL12, but not CCL25 and, as with thymocytes, the chemokine responsiveness was significantly reduced in Galphai2(-/-) mucosal lymphocytes.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12
- Chemokines/immunology
- Chemokines, CXC/immunology
- Chemotaxis, Leukocyte/immunology
- Colitis/immunology
- Colitis/pathology
- Colon/immunology
- Disease Models, Animal
- Disease Progression
- Female
- GTP-Binding Protein alpha Subunit, Gi2/deficiency
- GTP-Binding Protein alpha Subunit, Gi2/genetics
- Intestinal Mucosa/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Size
- Receptors, CCR
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/metabolism
- T-Lymphocyte Subsets/immunology
- Thymus Gland/immunology
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Kristina Elgbratt
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
34
|
Thompson BD, Jin Y, Wu KH, Colvin RA, Luster AD, Birnbaumer L, Wu MX. Inhibition of G alpha i2 activation by G alpha i3 in CXCR3-mediated signaling. J Biol Chem 2007; 282:9547-9555. [PMID: 17289675 PMCID: PMC2366813 DOI: 10.1074/jbc.m610931200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) convey extracellular stimulation into dynamic intracellular action, leading to the regulation of cell migration and differentiation. T lymphocytes express G alpha(i2) and G alpha(i3), two members of the G alpha(i/o) protein family, but whether these two G alpha(i) proteins have distinguishable roles guiding T cell migration remains largely unknown because of a lack of member-specific inhibitors. This study details distinct G alpha(i2) and G alpha(i3) effects on chemokine receptor CXCR3-mediated signaling. Our data showed that G alpha(i2) was indispensable for T cell responses to three CXCR3 ligands, CXCL9, CXCL10, and CXCL11, as the lack of G alpha(i2) abolished CXCR3-stimulated migration and guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) incorporation. In sharp contrast, T cells isolated from G alpha(i3) knock-out mice displayed a significant increase in both GTPgammaS incorporation and migration as compared with wild type T cells when stimulated with CXCR3 agonists. The increased GTPgammaS incorporation was blocked by G alpha(i3) protein in a dose-dependent manner. G alpha(i3)-mediated blockade of G alpha(i2) activation did not result from G alpha(i3) activation, but instead resulted from competition or steric hindrance of G alpha(i2) interaction with the CXCR3 receptor via the N terminus of the second intracellular loop. A mutation in this domain abrogated not only G alpha(i2) activation induced by a CXCR3 agonist but also the interaction of G alpha(i3) to the CXCR3 receptor. These findings reveal for the first time an interplay of G alpha(i) proteins in transmitting G protein-coupled receptor signals. This interplay has heretofore been masked by the use of pertussis toxin, a broad inhibitor of the G alpha(i/o) protein family.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chemokine CXCL10
- Chemokine CXCL11
- Chemokine CXCL9
- Chemokines, CXC/metabolism
- Female
- GTP-Binding Protein alpha Subunit, Gi2/antagonists & inhibitors
- GTP-Binding Protein alpha Subunit, Gi2/deficiency
- GTP-Binding Protein alpha Subunit, Gi2/metabolism
- GTP-Binding Protein alpha Subunit, Gi2/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/deficiency
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, CXCR3
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Brian D Thompson
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Yongzhu Jin
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kevin H Wu
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Richard A Colvin
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Lutz Birnbaumer
- NIEHS, Transmembrane Signaling Group, Laboratory of Signal Transduction, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Mei X Wu
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114.
| |
Collapse
|
35
|
Ishizaki H, Togawa A, Tanaka-Okamoto M, Hori K, Nishimura M, Hamaguchi A, Imai T, Takai Y, Miyoshi J. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. THE JOURNAL OF IMMUNOLOGY 2007; 177:8512-21. [PMID: 17142749 DOI: 10.4049/jimmunol.177.12.8512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rho family small GTP-binding proteins, including Rho, Rac, and Cdc42, are key determinants of cell movement and actin-dependent cytoskeletal morphogenesis. Rho GDP-dissociation inhibitor (GDI) alpha and Rho GDIbeta (or D4/Ly-GDI), closely related regulators for Rho proteins, are both expressed in hemopoietic cell lineages. Nevertheless, the functional contributions of Rho GDIs remain poorly understood in vivo. In this study, we report that combined disruption of both the Rho GDIalpha and Rho GDIbeta genes in mice resulted in reduction of marginal zone B cells in the spleen, retention of mature T cells in the thymic medulla, and a marked increase in eosinophil numbers. Furthermore, these mice showed lower CD3 expression and impaired CD3-mediated proliferation of T cells. While B cells showed slightly enhanced chemotactic migration in response to CXCL12, peripheral T cells showed markedly reduced chemotactic migration in response to CCL21 and CCL19 associated with decreased receptor levels of CCR7. Overall, Rho protein levels were reduced in the bone marrow, spleen, and thymus but sustained activation of the residual part of RhoA, Rac1, and Cdc42 was detected mainly in the bone marrow and spleen. Rho GDIalpha and Rho GDIbeta thus play synergistic roles in lymphocyte migration and development by modulating activation cycle of the Rho proteins in a lymphoid organ-specific manner.
Collapse
Affiliation(s)
- Hiroyoshi Ishizaki
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Nakamichi 1-3-2, Higashinari-ku, Osaka 537-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Misslitz A, Bernhardt G, Förster R. Trafficking on serpentines: molecular insight on how maturating T cells find their winding paths in the thymus. Immunol Rev 2006; 209:115-28. [PMID: 16448538 DOI: 10.1111/j.0105-2896.2006.00351.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Maintenance of the peripheral T-cell pool throughout the life requires uninterrupted generation of T cells. The majority of peripheral T cells are generated in the thymus. However, the thymus does not contain hematopoietic progenitors with unlimited self-renewing potential, and continuous production of T cells requires importation of such progenitors from the bone marrow into the thymus. Thymus-homing progenitors enter the thymus and subsequently migrate throughout distinct intrathymic microenvironments while differentiating into mature T cells. At each step of this scheduled journey, developing thymocytes interact intimately with the local stroma, which allow them to proceed to the next stage of their differentiation and maturation program. Undoubtedly, thymocyte/stroma interactions are instrumental for both thymocytes and stroma, because only their ongoing interplay generates and maintains a fully operational thymus, able to guarantee unimpaired T-cell supply. Therefore, proper T-cell generation intrinsically involves polarized cell migration during both adult life and embryogenesis when the thymus primordium develops into a functional thymus. The molecular mechanisms controlling cell migration during thymus development and postnatal T-cell differentiation are beginning to be defined. This review focuses on recent data regarding the role of cell migration in both colonization of the fetal thymus and T-cell development during postnatal life in mice.
Collapse
Affiliation(s)
- Ana Misslitz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
37
|
Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006; 6:127-35. [PMID: 16491137 DOI: 10.1038/nri1781] [Citation(s) in RCA: 482] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lympho-stromal interactions in multiple microenvironments within the thymus have a crucial role in the regulation of T-cell development and selection. Recent studies have implicated that chemokines that are produced by thymic stromal cells have a pivotal role in positioning developing T cells within the thymus. In this Review, I discuss the importance of stroma-derived chemokines in guiding the traffic of developing thymocytes, with an emphasis on the processes of cortex-to-medulla migration and T-cell-repertoire selection, including central tolerance.
Collapse
Affiliation(s)
- Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
38
|
Uehara S, Hayes SM, Li L, El-Khoury D, Canelles M, Fowlkes BJ, Love PE. Premature Expression of Chemokine Receptor CCR9 Impairs T Cell Development. THE JOURNAL OF IMMUNOLOGY 2005; 176:75-84. [PMID: 16365398 DOI: 10.4049/jimmunol.176.1.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymocyte development, CCR9 is expressed on late CD4-CD8- (double-negative (DN)) and CD4+CD8+ (double-positive) cells, but is subsequently down-regulated as cells transition to the mature CD4+ or CD8+ (single-positive (SP)) stage. This pattern of expression has led to speculation that CCR9 may regulate thymocyte trafficking and/or export. In this study, we generated transgenic mice in which CCR9 surface expression was maintained throughout T cell development. Significantly, forced expression of CCR9 on mature SP thymocytes did not inhibit their export from the thymus, indicating that CCR9 down-regulation is not essential for thymocyte emigration. CCR9 was also expressed prematurely on immature DN thymocytes in CCR9 transgenic mice. Early expression of CCR9 resulted in a partial block of development at the DN stage and a marked reduction in the numbers of double-positive and SP thymocytes. Moreover, in CCR9-transgenic mice, CD25high DN cells were scattered throughout the cortex rather than confined to the subcapsular region of the thymus. Together, these results suggest that regulated expression of CCR9 is critical for normal development of immature thymocytes, but that down-regulation of CCR9 is not a prerequisite for thymocyte emigration.
Collapse
Affiliation(s)
- Shoji Uehara
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Vianello F, Kraft P, Mok YT, Hart WK, White N, Poznansky MC. A CXCR4-dependent chemorepellent signal contributes to the emigration of mature single-positive CD4 cells from the fetal thymus. THE JOURNAL OF IMMUNOLOGY 2005; 175:5115-25. [PMID: 16210615 DOI: 10.4049/jimmunol.175.8.5115] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing thymocytes undergo maturation while migrating through the thymus and ultimately emigrate from the organ to populate peripheral lymphoid tissues. The process of thymic emigration is controlled in part via receptor-ligand interactions between the chemokine stromal-derived factor (SDF)-1, and its cognate receptor CXCR4, and sphingosine 1-phosphate (S1P) and its receptor S1PR. The precise mechanism by which S1P/S1PR and CXCR4/SDF-1 contribute to thymic emigration remains unclear. We proposed that S1P-dependent and -independent mechanisms might coexist and involve both S1P-induced chemoattraction and SDF-1-mediated chemorepulsion or fugetaxis of mature thymocytes. We examined thymocyte emigration in thymi from CXCR4-deficient C57BL/6 embryos in a modified assay, which allows the collection of CD62L(high) and CD69(low) recent thymic emigrants. We demonstrated that single-positive (SP) CD4 thymocytes, with the characteristics of recent thymic emigrants, failed to move away from CXCR4-deficient fetal thymus in vitro. We found that the defect in SP CD4 cell emigration that occurred in the absence of CXCR4 signaling was only partially overcome by the addition of the extrathymic chemoattractant S1P and was not associated with abnormalities in thymocyte maturation and proliferative capacity or integrin expression. Blockade of the CXCR4 receptor in normal thymocytes by AMD3100 led to the retention of mature T cells in the thymus in vitro and in vivo. The addition of extrathymic SDF-1 inhibited emigration of wild-type SP cells out of the thymus by nullifying the chemokine gradient. SDF-1 was also shown to elicit a CXCR4-dependent chemorepellent response from fetal SP thymocytes. These novel findings support the thesis that the CXCR4-mediated chemorepellent activity of intrathymic SDF-1 contributes to SP thymocyte egress from the fetal thymus.
Collapse
Affiliation(s)
- Fabrizio Vianello
- Partners AIDS Research Center, Infectious Diseases Medicine, and Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
40
|
Prlic M, Gibbs J, Jameson SC. Characteristics of NK cell migration early after vaccinia infection. THE JOURNAL OF IMMUNOLOGY 2005; 175:2152-7. [PMID: 16081781 DOI: 10.4049/jimmunol.175.4.2152] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are critical components in innate immunity, yet little is known about their migration and proliferation during infection. In this report we study the early NK response toward vaccinia. We observed NK migration into the infected peritoneum as early as 6 h after vaccinia inoculation. Interestingly, although NK trafficking to the infected peritoneum depended on G alpha(i) protein-coupled receptors, trafficking to other tissues (including lung, liver, spleen, and bone marrow) did not. We found that despite a dramatic increase in NK numbers at the primary site of infection, their in situ proliferation was low compared with that at other tissue locations. These features are similar to those found for Ag-experienced T cells, suggesting similar patterns of trafficking and proliferation for these lymphocyte subsets.
Collapse
Affiliation(s)
- Martin Prlic
- Center for Immunology, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
41
|
Kinashi T, Katagiri K. Regulation of immune cell adhesion and migration by regulator of adhesion and cell polarization enriched in lymphoid tissues. Immunology 2005; 116:164-71. [PMID: 16162265 PMCID: PMC1817824 DOI: 10.1111/j.1365-2567.2005.02214.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Rap1 has emerged as an important regulator of adhesion in multicellular organisms. In the immune system, Rap1 functions as an inside-out signalling molecule for leucocyte integrins following stimulation with chemokines or antigens. Regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) is a novel Rap1 effector molecule that mediates Rap1 signalling to integrins. The Rap1-RAPL complex regulates the spatial distribution of the integrin lymphocyte function-associated antigen-1 as well as cell polarization. The linking of inside-out signalling with polarization synergistically promotes highly efficient lymphocyte trafficking. Targeted deletion of RAPL in mice has demonstrated multiple indispensable roles for this protein in lymphocyte and dendritic cell trafficking critical for immunosurveillance.
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Department of Molecular Genetics, Graduate School of Medicine, Institute of Live Research, Kansai Medical School, Osaka, Japan
| | | |
Collapse
|
42
|
Temchura VV, Frericks M, Nacken W, Esser C. Role of the aryl hydrocarbon receptor in thymocyte emigration in vivo. Eur J Immunol 2005; 35:2738-47. [PMID: 16114106 DOI: 10.1002/eji.200425641] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent member of the PAS-bHLH-family of nuclear receptors. Anthropogenic ligands include environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Over-activation of the AHR causes thymus atrophy and immunosuppression. Signaling via the AHR changes the thymocyte differentiation program at several checkpoints, in particular within the CD4-CD8- double-negative (DN) thymocyte subset. Here, we show that AHR over-activation led to the preferential emigration of DN thymocytes to the periphery and accumulation in the spleen. Some of these recent thymic emigrants (RTE) had a novel "activated immature" phenotype (CD3-TCRbeta-CD25+/intCD44-CD45RB+/intCD62L+CD69- cells). Gene expression profiling of DN RTE revealed 15 genes that were up-regulated more than threefold by TCDD, including the S100A9 gene. Exposure of S100A9 null mice to TCDD showed a role for this protein in AHR-mediated thymic egress.
Collapse
Affiliation(s)
- Vladimir V Temchura
- Institute for Environmental Medical Research (IUF), Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
Vianello F, Olszak IT, Poznansky MC. Fugetaxis: active movement of leukocytes away from a chemokinetic agent. J Mol Med (Berl) 2005; 83:752-63. [PMID: 16142473 DOI: 10.1007/s00109-005-0675-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 03/03/2005] [Indexed: 01/15/2023]
Abstract
Chemotaxis or active movement of leukocytes toward a stimulus has been shown to occur in response to chemokinetic agents including members of the recently identified superfamily of proteins called chemokines. Leukocyte chemotaxis is thought to play a central role in a wide range of physiological and pathological processes including the homing of immune cells to lymph nodes and the accumulation of these cells at sites of tissue injury and pathogen or antigen challenge. We have recently identified a novel biological mechanism, which we term fugetaxis (fugere, to flee from; taxis, movement) or chemorepulsion, which describes the active movement of leukocytes away from chemokinetic agents including the chemokine, stromal cell derived factor-1, and the HIV-1 envelope protein, gp120. In this article, we review the evidence that supports the observation that leukocyte fugetaxis occurs in vitro and in vivo and suggestions that this novel mechanism can be exploited to modulate the immune response. We propose that leukocyte fugetaxis plays a critical role in both physiological and pathological processes in which leukocytes are either excluded or actively repelled from specific sites in vivo including thymic emigration, the establishment of immune privileged sites and immune evasion by viruses and cancer. We believe that current data support the thesis that a greater understanding of leukocyte fugetaxis will lead to the development of novel therapeutic approaches for a wide range of human diseases.
Collapse
Affiliation(s)
- Fabrizio Vianello
- Partners AIDS Research Center, Massachusetts General Hospital (East), Charlestown Navy Yard, 02129, USA
| | | | | |
Collapse
|
45
|
Vielkind S, Gallagher-Gambarelli M, Gomez M, Hinton HJ, Cantrell DA. Integrin regulation by RhoA in thymocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:350-7. [PMID: 15972668 DOI: 10.4049/jimmunol.175.1.350] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The guanine nucleotide-binding protein Rho has essential functions in T cell development and is important for the survival and proliferation of T cell progenitors in the thymus. To explore the mechanisms used by RhoA to control thymocyte biology, the role of this GTPase in the regulation of integrin-mediated cell adhesion was examined. The data show that RhoA activation is sufficient to stimulate beta(1) and beta(2) integrin-mediated adhesion in murine thymocytes. RhoA is also needed for integrin activation in vivo as loss of Rho function impaired the ability of thymocytes to adhere to the extracellular matrix protein VCAM-1 and prevented integrin activation induced by the GTPases Rac-1 and Rap1A in vivo. The regulated activity of integrins is needed for cell motility and in the present study it was seen that RhoA activity is critical for integrin-mediated thymocyte migration to chemokines in vitro. Thus, RhoA has a critical role in regulating cell adhesion and migration during T cell development.
Collapse
Affiliation(s)
- Susina Vielkind
- Lymphocyte Activation Laboratory, Cancer Research U.K. London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Abstract
Secondary lymphoid organs serve as hubs for the adaptive immune system, bringing together antigen, antigen-presenting cells, and lymphocytes. Two families of G protein-coupled receptors play essential roles in lymphocyte migration through these organs: chemokine receptors and sphingosine-1-phosphate (S1P) receptors. Chemokines expressed by lymphoid stromal cells guide lymphocyte and dendritic cell movements during antigen surveillance and the initiation of adaptive immune responses. S1P receptor-1 is required for lymphocyte egress from thymus and secondary lymphoid organs and is downregulated by the immunosuppressive drug FTY720. Here, we review the steps associated with the initiation of adaptive immune responses in secondary lymphoid organs, highlighting the roles of chemokines and S1P.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA.
| |
Collapse
|
47
|
Lo CG, Xu Y, Proia RL, Cyster JG. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. ACTA ACUST UNITED AC 2005; 201:291-301. [PMID: 15657295 PMCID: PMC2212802 DOI: 10.1084/jem.20041509] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sphingosine-1-phosphate receptor 1 (S1P1) was recently shown to be required for lymphocyte egress from lymphoid organs. Here we have examined the relationship between S1P1 abundance on the cell and egress efficiency. Using an integrin neutralization approach to separate the processes of entry and exit, we show that pertussis toxin treatment reduces lymphocyte egress from lymph nodes. Retrovirally mediated S1P1 overexpression is sufficient to reduce B cell accumulation in the splenic white pulp and to promote egress of activated T cells from lymph nodes, whereas S1P1+/−cells have reduced lymph node exit efficiency. Furthermore, lymphocyte S1P1 is down-regulated in the blood, up-regulated in lymphoid organs, and down-regulated again in the lymph. We propose that cyclical ligand-induced modulation of S1P1 on circulating lymphocytes contributes to establishing their lymphoid organ transit time.
Collapse
Affiliation(s)
- Charles G Lo
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
48
|
Barbee SD, Alberola-Ila J. Phosphatidylinositol 3-Kinase Regulates Thymic Exit. THE JOURNAL OF IMMUNOLOGY 2005; 174:1230-8. [PMID: 15661877 DOI: 10.4049/jimmunol.174.3.1230] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To understand the role of PI3K during T cell development, we generated transgenic mice expressing the N terminus of the PI3K catalytic subunit (p110(ABD); ABD, adaptor binding domain) in thymocytes. Expression of p110(ABD) activates endogenous p110 and results in the accumulation of mature single-positive CD3(high)heat-stable Ag(low) thymocytes. This is mostly due to a defect in emigration of those cells, as shown by the delayed appearance of peripheral T cells in neonatal transgenic mice and by competitive adoptive transfer experiments. Although the mechanisms underlying these effects of PI3K are not yet clear, our results show an important role for PI3K activity in the regulation of mature thymocyte exit to the periphery.
Collapse
Affiliation(s)
- Susannah D Barbee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
49
|
Esser C, Temchura V, Majora M, Hundeiker C, Schwärzler C, Günthert U. Signaling via the AHR leads to enhanced usage of CD44v10 by murine fetal thymic emigrants: possible role for CD44 in emigration. Int Immunopharmacol 2004; 4:805-18. [PMID: 15135321 DOI: 10.1016/j.intimp.2004.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 02/24/2004] [Accepted: 03/15/2004] [Indexed: 01/04/2023]
Abstract
Signaling via the endogenous arylhydrocarbon receptor (AHR) affects proliferation, differentiation, function and gene expression of thymocytes. In the present study, we show that treatment of mouse fetal thymus lobes in organ culture (FTOC) with AHR ligands results in (a) a drastic decrease in the emigration of thymocytes in terms of numbers and types of cells, and (b) preferential emigration of CD4-CD8- (DN) cells expressing CD44v7- and CD44v10-containing isoforms on the cell surface. Moreover, a higher level of transcripts of various other CD44 variant isoforms (CD44v) could be detected by RT-PCR in emigrants from fetal thymi exposed to either AHR-agonist during culture. Expression of CD44v9-10-containing isoforms could be exclusively detected in DN thymic emigrants. Thus, signaling via AHR by ligands alters CD44v expression patterns in a thymocyte subpopulation. Furthermore, emigration could be decreased by the addition of anti-panCD44 antibodies to TCDD-treated FTOCs, suggesting a role for CD44 in emigration.
Collapse
Affiliation(s)
- Charlotte Esser
- Institute of Environmental Medical Research (IUF), University of Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Bonig H, Priestley GV, Nilsson LM, Jiang Y, Papayannopoulou T. PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood 2004; 104:2299-306. [PMID: 15217839 DOI: 10.1182/blood-2004-04-1605] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSeveral examples suggest a relationship between in vitro migratory capacity and bone marrow (BM) homing. Pertussis toxin (PTX) is a potent inhibitor of serpentine receptor–associated inhibitory trimeric guanidine nucleotide binding (Gi) protein signals. As such, it blocks hematopoietic progenitor cell migration in vitro, but contrary to expectation, no effects on BM homing were observed in previous studies. We therefore re-examined the effect of PTX on homing of murine BM and fetal liver (FL). We found that BM homing of PTX-incubated progenitor cells (colony-forming cells in culture [CFU-Cs]) from BM or FL in irradiated and nonirradiated recipients was reduced by more than 75%, with a concomitant increase in circulating CFU-Cs in peripheral blood. Additional studies confirmed the functional significance of this reduction in homing: PTX-treated cells did not provide radioprotection, and their short-term engraftment in BM and spleen was drastically reduced. Furthermore, several approaches show that cell-intrinsic rather than host-derived mechanisms are responsible for the PTX-induced homing defect. In summary, we show that Gi protein signals are required for BM homing and, as such, provide a new example of the association between BM homing and in vitro migration. Moreover, our data suggest that the behavior of hematopoietic progenitors in obeying Gi signaling does not diverge from that of mature leukocytes.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine, Division of Hematology, 1959 NE Pacific St, Box 357710, HSB-K257, Seattle, WA 98195-7710, USA
| | | | | | | | | |
Collapse
|