1
|
Le Saux O, Ardin M, Berthet J, Barrin S, Bourhis M, Cinier J, Lounici Y, Treilleux I, Just PA, Bataillon G, Savoye AM, Mouret-Reynier MA, Coquan E, Derbel O, Jeay L, Bouizaguen S, Labidi-Galy I, Tabone-Eglinger S, Ferrari A, Thomas E, Ménétrier-Caux C, Tartour E, Galy-Fauroux I, Stern MH, Terme M, Caux C, Dubois B, Ray-Coquard I. Immunomic longitudinal profiling of the NeoPembrOv trial identifies drivers of immunoresistance in high-grade ovarian carcinoma. Nat Commun 2024; 15:5932. [PMID: 39013886 PMCID: PMC11252308 DOI: 10.1038/s41467-024-47000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/18/2024] [Indexed: 07/18/2024] Open
Abstract
PD-1/PD-L1 blockade has so far shown limited survival benefit for high-grade ovarian carcinomas. By using paired samples from the NeoPembrOv randomized phase II trial (NCT03275506), for which primary outcomes are published, and by combining RNA-seq and multiplexed immunofluorescence staining, we explore the impact of NeoAdjuvant ChemoTherapy (NACT) ± Pembrolizumab (P) on the tumor environment, and identify parameters that correlated with response to immunotherapy as a pre-planned exploratory analysis. Indeed, i) combination therapy results in a significant increase in intraepithelial CD8+PD-1+ T cells, ii) combining endothelial and monocyte gene signatures with the CD8B/FOXP3 expression ratio is predictive of response to NACT + P with an area under the curve of 0.93 (95% CI 0.85-1.00) and iii) high CD8B/FOXP3 and high CD8B/ENTPD1 ratios are significantly associated with positive response to NACT + P, while KDR and VEGFR2 expression are associated with resistance. These results indicate that targeting regulatory T cells and endothelial cells, especially VEGFR2+ endothelial cells, could overcome immune resistance of ovarian cancers.
Collapse
Affiliation(s)
- Olivia Le Saux
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | - Maude Ardin
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | - Justine Berthet
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Sarah Barrin
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Morgane Bourhis
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Justine Cinier
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | - Yasmine Lounici
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | | | | | - Guillaume Bataillon
- Department of Anatomopathology, University hospital of Toulouse, Toulouse, France
| | - Aude-Marie Savoye
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Institut Jean Godinot, Reims, France
| | - Marie-Ange Mouret-Reynier
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Elodie Coquan
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | - Olfa Derbel
- Department of Medical Oncology, Hôpital Privé Jean Mermoz, Lyon, France
| | - Louis Jeay
- Keen Eye Technologies-Paris, France, now Tribun Health, Paris, France
| | | | - Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux universitaires de Genève, Faculty of Medecine, Center of Translational Research in Onco-Hematology, Swiss Cancer Center Leman, Geneva, Switzerland
| | | | - Anthony Ferrari
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, F-69373, Lyon, France
| | - Emilie Thomas
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, F-69373, Lyon, France
| | - Christine Ménétrier-Caux
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Eric Tartour
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.) Team, Institut Curie, PSL Research University, 75005, Paris, France
| | - Magali Terme
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Christophe Caux
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Bertrand Dubois
- "Cancer Immune Surveillance and Therapeutic Targeting" Laboratory, Cancer Research Center of Lyon, INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France.
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France.
- Lyon Immunotherapy for Cancer Laboratory (LICL), Cancer Research Center of Lyon, Centre Léon Bérard, 69008, Lyon, France.
| | - Isabelle Ray-Coquard
- Lyon University, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France.
- National Investigators Group for Ovarian and Breast Cancer Studies, Paris, France.
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France.
| |
Collapse
|
2
|
Esgalhado AJ, Reste-Ferreira D, Weinhold S, Uhrberg M, Cardoso EM, Arosa FA. In vitro IL-15-activated human naïve CD8+ T cells down-modulate the CD8β chain and become CD8αα T cells. Front Immunol 2024; 15:1252439. [PMID: 38903513 PMCID: PMC11188365 DOI: 10.3389/fimmu.2024.1252439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Antigen-driven human effector-memory CD8+ T cells expressing low levels of the CD8β chain have been previously described. However, little is known on a possible antigen-independent trigger. We have examined the impact that IL-15 has on the expression of CD8β on purified human naïve CD8+ T cells after CFSE labeling and culture with IL-15. As expected, IL-15 induced naïve CD8+ T cells to proliferate and differentiate. Remarkably, the process was associated with a cell-cycle dependent down-modulation of CD8β from the cell surface, leading to the generation of CD8αβlow and CD8αβ- (i.e., CD8αα) T cells. In contrast, expression of the CD8α chain remained steady or even increased. Neither IL-2 nor IL-7 reproduced the effect of IL-15. Determination of mRNA levels for CD8α and CD8β isoforms by qPCR revealed that IL-15 promoted a significant decrease in mRNA levels of the CD8β M-4 isoform, while levels of the M-1/M-2 isoforms and of CD8α increased. Noteworthy, CD8+ T cell blasts obtained after culture of CD8+ T cells with IL-15 showed a cell-cycle dependent increase in the level of the tyrosine kinase Lck, when compared to CD8+ T cells at day 0. This study has shown for the first time that IL-15 generates CD8αα+αβlow and CD8αα+αβ- T cells containing high levels of Lck, suggesting that they may be endowed with unique functional features.
Collapse
Affiliation(s)
- André J. Esgalhado
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elsa M. Cardoso
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
- School of Health Sciences, Polytechnic of Guarda (ESS-IPG), Guarda, Portugal
| | - Fernando A. Arosa
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior (FCS-UBI), Covilhã, Portugal
| |
Collapse
|
3
|
Thakral D, Coman MM, Bandyopadhyay A, Martin S, Riley JL, Kavathas PB. The human CD8β M-4 isoform dominant in effector memory T cells has distinct cytoplasmic motifs that confer unique properties. PLoS One 2013; 8:e59374. [PMID: 23533620 PMCID: PMC3606432 DOI: 10.1371/journal.pone.0059374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/14/2013] [Indexed: 11/23/2022] Open
Abstract
The CD8 co-receptor influences T cell recognition and responses in both anti-tumor and anti-viral immunity. During evolution in the ancestor of humans and chimpanzees, the CD8B gene acquired two additional exons. As a result, in humans, there are four CD8β splice variants (M1 to M4) that differ in their cytoplasmic tails. The M-1 isoform which is the equivalent of murine CD8β, is predominantly expressed in naïve T cells, whereas, the M-4 isoform is predominantly expressed in effector memory T cells. The characteristics of the M-4 isoform conferred by its unique 36 amino acid cytoplasmic tail are not known. In this study, we identified a dihydrophobic leucine-based receptor internalization motif in the cytoplasmic tail of M-4 that regulated its cell surface expression and downregulation after activation. Further the M-4 cytoplasmic tail was able to associate with ubiquitinated targets in 293T cells and mutations in the amino acids NPW, a potential EH domain binding site, either enhanced or inhibited the interaction. In addition, the M-4 tail was itself mono-ubiquitinated on a lysine residue in both 293T cells and a human T cell line. When peripheral blood human T cells expressed CD8αβ M-4, the frequency of MIP-1β secreting cells responding to antigen presenting cells was two-fold higher as compared to CD8αβ M-1 expressing T cells. Thus, the cytoplasmic tail of the CD8β M-4 isoform has unique characteristics, which likely contributed to its selective expression and function in human effector memory T cells.
Collapse
Affiliation(s)
- Deepshi Thakral
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria M. Coman
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arunima Bandyopadhyay
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sunil Martin
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James L. Riley
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Paula B. Kavathas
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
4
|
Maisey K, Toro-Ascuy D, Montero R, Reyes-López FE, Imarai M. Identification of CD3ε, CD4, CD8β splice variants of Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2011; 31:815-822. [PMID: 21821134 DOI: 10.1016/j.fsi.2011.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/12/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
In vertebrates, CD3 complex and CD4 and CD8 co-receptors are essential for signal transduction during T cell activation. In the present study, we report the mRNA spliced variants of the Atlantic salmon CD3ε, CD4 and CD8β and the effect of pathogen encounter on the expression of these variants. CD3ε is alternatively spliced in thymus, head kidney, spleen and gills to give rise to the complete mRNA sequence and to an alternative product that lacks the transmembrane exon. CD4 is also alternatively spliced in the thymus, head kidney, spleen and gills to form two variants, although the alternative product is barely detectable. The alternative product lacks the exon 1B encoding the D1 domain, which is essential for binding to MHC class II proteins. Two amplicons were also found for the CD8β gene; sequencing analysis revealed that the main PCR product corresponds to the previously reported CD8β sequence, whereas the variant sequence encodes a potential protein that lacks the Ig-like domain. The expression of CD3, CD4, CD8β genes also analyzed in head kidney of LPS-treated and IPNV infected salmon and different patterns of expression were observed. The presence and balance of the different variants of T cell co-receptors could be related to the ability of fish to induce a particular type of immune response, as well as, the ability of the pathogen to modify the fish immune response.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile
| | | | | | | | | |
Collapse
|
5
|
Maisey K, Imarai M. Diversity of teleost leukocyte molecules: role of alternative splicing. FISH & SHELLFISH IMMUNOLOGY 2011; 31:663-672. [PMID: 20723604 DOI: 10.1016/j.fsi.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Alternative splicing is an important mechanism of gene expression control that also produces a large proteome from a limited number of genes. In the immune system of mammals, numerous relevant genes have been found to undergo alternative splicing that contributes to the complexity of immune response. An increasing number of reports have recently indicated that alternative splicing also occurs in other vertebrates, such as fish. In this review we summarize the general features of such molecular events in cytokines and leukocyte co-receptors and their contribution to diversity and regulation of fish leukocytes.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile.
| | | |
Collapse
|
6
|
Xu SW, Wu JY, Hu KS, Ping HL, Duan ZG, Zhang HF. Molecular cloning and expression of orange-spotted grouper (Epinephelus coioides) CD8α and CD8β genes. FISH & SHELLFISH IMMUNOLOGY 2011; 30:600-608. [PMID: 21193050 DOI: 10.1016/j.fsi.2010.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/24/2010] [Accepted: 12/12/2010] [Indexed: 05/30/2023]
Abstract
T-cell surface glycoprotein CD8 consists of two distinguished chains, termed α and β chains, and functions as a co-receptor for the T-cell receptor by binding to MHC class I proteins. In this study we report the cloning and identification of both CD8α and CD8β genes from orange-spotted grouper (Epinephelus coioides). The predicted grouper CD8α and CD8β proteins were structurally similar to other fish especially to those of Pleuronectiformes. Real-time RT-PCR revealed that the CD8 mRNA was much higher in the thymus than in other immune organs, and the expression level were very low in stomach, liver, and brain. During embryonic development of the grouper, the highest CD8 transcripts were detected in the multi-cell stage, followed by muscle burl stage, which suggested that the multi-cell stage may be critical in CD8 transcript synthesis. Moreover, CD8 mRNA levels were examined in lymphocytes at different time treated with lipopolysaccharide (LPS), polyriboinosinic polyribocytidylic acid (PolyI:C), phytohemagglutinin (PHA), and concanavalin A (ConA). The result showed that the CD8 mRNA levels were significantly affected in time-dependent manner by PolyI:C, PHA, and ConA, but not by LPS.
Collapse
Affiliation(s)
- Sheng-wei Xu
- Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
7
|
The marsupial CD8 gene locus: molecular cloning and expression analysis of the alpha and beta sequences in the gray short-tailed opossum (Monodelphis domestica) and the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol 2008; 129:14-27. [PMID: 19135263 DOI: 10.1016/j.vetimm.2008.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022]
Abstract
In eutherian mammals, CD8 is a key receptor of cytotoxic T cells and plays a pivotal role in the recognition and elimination of infected host cells by cell-mediated cytotoxicity. Here, we report the molecular cloning and expression analysis of CD8alpha and CD8beta cDNAs in two marsupial species, the gray short-tailed opossum and the tammar wallaby. The opossum and tammar CD8 sequences share a high degree of amino acid identity of 63% (CD8alpha) and 57% (CD8beta) to each other as well as 36-45% (CD8alpha) and 38-41% (CD8beta) with their eutherian counterparts. In addition, many of the signature features of eutherian CD8alpha and CD8beta are preserved in both marsupials including the two invariant cysteines that form the intra-chain disulphide bond in the extracellular IgSfV domain and the two hinge region cysteines involved in dimerisation between the two subunits. The p56(lck) binding motif in the cytoplasmic tail of the CD8alpha subunit is also conserved. Interestingly, the opossum CD8alpha and the tammar CD8beta sequences have a truncated cytoplasmic tail. RT-PCR analysis of CD8alpha and CD8beta transcripts in the tissues of the adult opossum and tammar showed broad tissue expression with a high level of expression observed in the lymphoid tissues of both marsupials. Furthermore, RT-PCR analysis of CD8alpha and CD8beta transcripts in the immune tissues of tammar young over the first 120 days of pouch life revealed a pattern of expression analogous to the maturation of the lymphoid tissues. This is the first report confirming the presence of CD8 in the tissues of a marsupial and will provide the tools to further analyse T cell subsets in this unique group of mammals.
Collapse
|
8
|
Thakral D, Dobbins J, Devine L, Kavathas PB. Differential expression of the human CD8beta splice variants and regulation of the M-2 isoform by ubiquitination. THE JOURNAL OF IMMUNOLOGY 2008; 180:7431-42. [PMID: 18490743 DOI: 10.4049/jimmunol.180.11.7431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The CD8alphabeta heterodimer functions as a coreceptor with the TCR, influencing the outcome of CD8(+) T cell responses to pathogen-infected and tumor cells. In contrast to the murine CD8B gene, the human gene encodes alternatively spliced variants with different cytoplasmic tails (M-1, M-2, M-3, and M-4). At present, little is known about the expression patterns and functional significance of such variants. We used quantitative RT-PCR to demonstrate differential mRNA expression patterns of these splice variants in thymocytes and in resting, memory, and activated primary human CD8(+) T cells. In total CD8(+) T cells, mRNA levels of the M-1 variant were the most predominant and levels of M-3 were the least detected. The M-4 isoform was predominant in effector memory CD8(+) T cells. Upon stimulation of CD8(+) T cells, the M-2 variant mRNA levels were elevated 10-20-fold relative to resting cells in contrast to the other isoforms. Curiously, the M-2 isoform was not expressed on the cell surface in transfected cell lines. Using fluorescent chimeras of the extracellular domain of mouse CD8beta fused to the cytoplasmic tails of each isoform, the M-2 isoform was localized in a lysosomal compartment regulated by ubiquitination of a lysine residue (K215) in its cytoplasmic tail. In contrast, upon short-term stimulation, the M-2 protein localized to the cell surface with the TCR complex. The relatively recent evolution of CD8B gene splice variants in the chimpanzee/human lineage is most likely important for fine-tuning the CD8(+) T cell responses.
Collapse
Affiliation(s)
- Deepshi Thakral
- Department of Laboratory Medicine, Section of Immunobiology, Yale Cancer Center, Yale University School of Medicine, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
9
|
Forlenza M, de Carvalho Dias JDA, Veselý T, Pokorová D, Savelkoul HFJ, Wiegertjes GF. Transcription of signal-3 cytokines, IL-12 and IFN alpha beta, coincides with the timing of CD8 alpha beta up-regulation during viral infection of common carp (Cyprinus carpio L). Mol Immunol 2007; 45:1531-47. [PMID: 18022233 DOI: 10.1016/j.molimm.2007.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/05/2007] [Accepted: 10/06/2007] [Indexed: 12/21/2022]
Abstract
Mammalian naïve CD8+ T cells are activated by antigen (signal 1) and CD28 costimulation (signal 2) to undergo several rounds of cell division, but programming for survival, effector function and memory requires a third signal that can be provided by IL-12 and/or type I interferons. Functional studies indicate that the route of antigen presentation and costimulation are conserved from fish to mammals. However, the potential of IL-12 and IFN alpha beta to act as signal-3 cytokines in infections inducing a CTL response has not been examined in fish. We report the cloning of CD8 alpha and CD8 beta homologues, each present in duplicate copies and of two TCR-C alpha isoforms in European common carp. The identification of (cytotoxic) T cell marker sequences and the availability of sequences coding for the signal-3 cytokines in the same fish species, allowed us to investigate by RT-qPCR their kinetics of gene expression during viral and parasitic infection. Our results show that transcription of signal-3 cytokines occurred concomitantly with CD8 alpha beta up-regulation exclusively at 4 days post-primary viral infection. No regulation of IL-12 and IFN alpha beta was observed after parasitic infection. Our data provide evidences for an evolutionary conservation of function for IL-12 and IFN alpha beta to act as third signal during CTL activation. In addition, we suggest that a CD8 alpha 2/beta1 and a p35p40b association could be the preferred combinations for the formation of a functional CD8 co-receptor and an IL-12p70 heterodimer during viral infection. The relevance of our findings to future vaccination strategies in fish is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation
- CD28 Antigens/immunology
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- CD8-Positive T-Lymphocytes/immunology
- Carps/immunology
- Carps/parasitology
- Carps/virology
- Cloning, Molecular
- Evolution, Molecular
- Gene Dosage
- Interferon-alpha/genetics
- Interferon-alpha/immunology
- Interferon-beta/genetics
- Interferon-beta/immunology
- Interleukin-12/genetics
- Interleukin-12/immunology
- Molecular Sequence Data
- Protozoan Infections, Animal/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Rhabdoviridae Infections/immunology
- Rhabdoviridae Infections/veterinary
- Signal Transduction
- Transcription, Genetic
- Trypanosoma
- Up-Regulation
- Vesiculovirus
Collapse
Affiliation(s)
- Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Moore LJ, Somamoto T, Lie KK, Dijkstra JM, Hordvik I. Characterisation of salmon and trout CD8alpha and CD8beta. Mol Immunol 2005; 42:1225-34. [PMID: 15829311 DOI: 10.1016/j.molimm.2004.11.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Indexed: 02/07/2023]
Abstract
The genes and corresponding cDNAs of both alpha and beta chains of the Atlantic salmon (Salmo salar) CD8 molecule have been sequenced and characterized. In addition, the cDNAs for alpha and beta chains of brown trout (Salmo trutta) and for the beta chain in rainbow trout (Oncorhynchus mykiss) have been sequenced. The cDNAs code for signal sequences which are preceded by short 5' UTRs. These are followed by typical immunoglobulin superfamily variable sequences all of which contain two conserved cysteines for the intra-chain disulphide bond. The hinge regions display conserved cysteines for dimerisation and several O-glycosylation motifs for each predicted protein. The domain sharing the highest sequence identity with mammals is the single pass transmembrane domain for all sequences. In salmon, each domain is predominantly coded for by a single exon except the cytoplasmic/3' UTR domains, which are coded for by 3 and 2 exons for the alpha and beta genes, respectively. In the alpha gene, the second cytoplasmic exon may be spliced out to form an alternative shorter transcript which if expressed would exhibit a truncated cytoplasmic tail. A splice variant found for the salmon beta gene introduces a stop codon after only 40 amino acids. Overall amino acid identities between salmonid sequences were higher than 90%, whereas they shared only 15-20% identity with species such as, chicken and human. Analysis of the expression patterns of the two salmon genes using quantitative RT-PCR shows a very high expression in the thymus. This is mirrored by the expression of the TCRalpha gene, which is known to be co-expressed with CD8 on mammalian T cells. This is the first report of a sequence for CD8beta in a teleost and together with the CD8alpha sequence, it encodes the ortholog of the CD8 co-receptor molecule on mammalian T cells.
Collapse
Affiliation(s)
- L J Moore
- Department of Biology, University of Bergen, Thormølhensgate 55, 5008 Bergen, Norway.
| | | | | | | | | |
Collapse
|
11
|
Straube F, Herrmann T. Differential modulation of CD8beta by rat gammadelta and alphabeta T cells after activation. Immunology 2001; 104:252-8. [PMID: 11722639 PMCID: PMC1783306 DOI: 10.1046/j.1365-2567.2001.01315.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2001] [Revised: 08/13/2001] [Accepted: 08/13/2001] [Indexed: 01/07/2023] Open
Abstract
Major histocompatibility complex (MHC) class I-restricted alphabeta T cells express the CD8alphabeta heterodimer, which acts as a MHC class I-specific co-receptor. Rats are so far the only species with frequent expression of the CD8alphabeta by MHC-unrestricted gammadelta T cells. This study compares CD8alphabeta expression by splenic rat alphabeta and gammadelta T cells and reveals a lineage-specific difference in the control of CD8beta expression. After activation in vitro, many gammadelta T cells, but not alphabeta T cells, persistently down-modulate the expression of CD8beta, but not CD8alpha, at the RNA level. Down-regulation occurred after stimulation with T-cell receptor (TCR)-specific monoclonal antibody (mAb) and interleukin-2 (IL-2) or CD28-mediated costimulation, and after activation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. Functional differences between modulating and non-modulating cells were not found with respect to interferon-gamma (IFN-gamma) production and cytolytic activity. The modulation could be indicative for a fundamental difference between alphabeta and gammadelta T cells and also limits the use of CD8beta as a stable marker of gammadelta T-cell subsets. Possibly, CD8beta modulation provides a mechanism to escape over-stimulation by (auto-)antigens by increasing the threshold of TCR-mediated activation in gammadelta T cells.
Collapse
Affiliation(s)
- F Straube
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
12
|
Hibbard MK, Strehl S, Lalande M. Replication timing of CD4 and CD8 in single-positive peripheral blood lymphocytes. Cell Immunol 1999; 198:61-8. [PMID: 10612652 DOI: 10.1006/cimm.1999.1582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulatory events leading to the mutually exclusive expression of CD4 and CD8 on peripheral lymphocytes are not fully understood. In particular, the association between DNA replication timing and transcriptional activity of these genes has not been previously investigated. Here, the replication kinetics of the CD4 and CD8 loci in mature single-positive T-cell populations have been examined using a novel approach to the separation of CD4(+) or CD8(+) lymphocytes into discrete cell cycle fractions and a competitive PCR replication timing assay. While the timing of replication of each of these loci is independent of their expression in mature CD4 or CD8 single positive T-cells, the replication of CD8, but not of CD4, shifts to a later time in S phase in transcriptionally silent HS68 fibroblast cells. These findings suggest that changes in DNA replication timing are associated with the developmentally regulated but not with the tissue-specific expression of CD4 and CD8.
Collapse
Affiliation(s)
- M K Hibbard
- Genetics Division, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
13
|
Dissen E, Fossum S. Chromosomal localization of the genes encoding rat CD4, CD8alpha, and CD8beta. Immunogenetics 1996; 44:312-4. [PMID: 8753864 DOI: 10.1007/bf02602563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E Dissen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1105 Blindern, N-0317 Oslo, Norway
| | | |
Collapse
|
14
|
Zhang XL, Heng HH, Yang Y, Tsui LC, Parnes JR, Chamberlain JW. Chromosomal mapping of the second human CD8B gene locus. Immunogenetics 1996; 43:220-6. [PMID: 8575821 DOI: 10.1007/bf00587303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- X L Zhang
- Research Institute, The Hospital For Sick Children, and Department of Immunology, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
15
|
Outram SV, Owen MJ. The helix-loop-helix containing transcription factor USF activates the promoter of the CD2 gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47226-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 1993; 361:541-3. [PMID: 8094231 DOI: 10.1038/361541a0] [Citation(s) in RCA: 508] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Signalling for the B-cell immunoglobulin isotype switch requires T-cell-derived cytokines and T-B cell interaction, which operates primarily through the CD40 molecule on B cells with its ligand (CD40L) on activated T cells (reviewed in ref. 1). The CD40L is a type II membrane protein with homology to tumour necrosis factor-alpha and -beta, and has important functions in B-cell activation and differentiation. Human CD40L maps on Xq26.3-27.1 (ref. 3), the region where a primary immunodeficiency characterized by an immunoglobulin isotype switch defect (the hyper-IgM immunodeficiency syndrome, HIGM1) has been localized. The hypothesis that HIGM1 involves an abnormality of the CD40L has been tested. We report here the lack of CD40L expression in four unrelated male children with the hyper-IgM syndrome. CD40L transcripts in these patients showed either deletions or point mutations clustered within a limited region of the CD40L extracellular domain. These genetic alterations with abnormal CD40L expression provide a molecular basis for immunoglobulin isotype switch defects observed in this immunodeficiency.
Collapse
Affiliation(s)
- J P DiSanto
- INSERM U 132, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | |
Collapse
|