1
|
Jin Y, Yuan H, Mehta I, Ezenwa O, Morel PA. Alternatively Spliced Variants of Murine CD247 Influence T Cell Development and Activation, Revealing the Importance of the CD3ζ C-Terminal Region. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:541-550. [PMID: 38117282 PMCID: PMC10872740 DOI: 10.4049/jimmunol.2300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
CD247, also known as CD3ζ, is a crucial signaling molecule that transduces signals delivered by TCR through its three ITAMs. CD3ζ is required for successful thymocyte development. Three additional alternatively spliced variants of murine CD247 have been described, that is, CD3ι, CD3θ, and CD3η, that differ from CD3ζ in the C terminus such that the third ITAM is lost. Previous studies demonstrated defects in T cell development in mice expressing CD3η, but the TCR signaling pathways affected by CD3η and the impacts of the CD3ι and CD3θ on T cell development were not explored. In this study, we used a retrovirus-mediated gene transfer technique to express these three isoforms individually and examined the roles of them on T cell development and activation. Rag1-/- mice reconstituted with CD3θ-expressing bone marrow failed to develop mature T cells. CD3ι-expressing T cells exhibited similar development and activation as cells expressing CD3ζ. In contrast, thymic development was severely impaired in CD3η-reconstituted mice. Single-positive but not double-positive CD3η-expressing thymocytes had reduced TCR expression, and CD5 expression was decreased at the double-positive stage, suggesting a defect in positive selection. Peripheral CD3η-expressing T cells had expanded CD44hi populations and upregulation of exhaustion markers seen by flow cytometry and RNA sequencing analysis. Analysis of early signaling events demonstrated significantly reduced activation of both the PLCγ1 and Akt/mTOR signaling pathways. There was also a reduction in the frequency of activation of CD3η-expressing T cells. These studies reveal the importance of the CD3ζ C-terminal region in T cell development and activation.
Collapse
Affiliation(s)
- Ye Jin
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Huijuan Yuan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ogechukwu Ezenwa
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Penelope A Morel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
2
|
Baeuerle PA, Ding J, Patel E, Thorausch N, Horton H, Gierut J, Scarfo I, Choudhary R, Kiner O, Krishnamurthy J, Le B, Morath A, Baldeviano GC, Quinn J, Tavares P, Wei Q, Weiler S, Maus MV, Getts D, Schamel WW, Hofmeister R. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat Commun 2019; 10:2087. [PMID: 31064990 PMCID: PMC6504948 DOI: 10.1038/s41467-019-10097-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
T cells expressing CD19-targeting chimeric antigen receptors (CARs) reveal high efficacy in the treatment of B cell malignancies. Here, we report that T cell receptor fusion constructs (TRuCs) comprising an antibody-based binding domain fused to T cell receptor (TCR) subunits can effectively reprogram an intact TCR complex to recognize tumor surface antigens. Unlike CARs, TRuCs become a functional component of the TCR complex. TRuC-T cells kill tumor cells as potently as second-generation CAR-T cells, but at significant lower cytokine release and despite the absence of an extra co-stimulatory domain. TRuC-T cells demonstrate potent anti-tumor activity in both liquid and solid tumor xenograft models. In several models, TRuC-T cells are more efficacious than respective CAR-T cells. TRuC-T cells are shown to engage the signaling capacity of the entire TCR complex in an HLA-independent manner.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Mice
- Mice, Inbred NOD
- Neoplasms/immunology
- Neoplasms/therapy
- Primary Cell Culture
- Protein Domains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Artificial/genetics
- Receptors, Artificial/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- T-Lymphocytes/immunology
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | - Jian Ding
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Ekta Patel
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Niko Thorausch
- Department of Immunology, Faculty of Biology, BIOSS Center for Biological Signalling Studies, CIBSS-Centre for Integrative Biological Signalling Studies and Centre for Chronic Immunodeficiency CCI, University of Freiburg, Schänzlestraβe 18, Freiburg, 79104, Germany
| | - Holly Horton
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Jessica Gierut
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Irene Scarfo
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Bldg. 149 13th Street, Charlestown, MA, USA
| | - Rashmi Choudhary
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Olga Kiner
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | | | - Bonnie Le
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Anna Morath
- Department of Immunology, Faculty of Biology, BIOSS Center for Biological Signalling Studies, CIBSS-Centre for Integrative Biological Signalling Studies and Centre for Chronic Immunodeficiency CCI, University of Freiburg, Schänzlestraβe 18, Freiburg, 79104, Germany
| | | | - Justin Quinn
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Patrick Tavares
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Qi Wei
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Solly Weiler
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Bldg. 149 13th Street, Charlestown, MA, USA
| | - Daniel Getts
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, BIOSS Center for Biological Signalling Studies, CIBSS-Centre for Integrative Biological Signalling Studies and Centre for Chronic Immunodeficiency CCI, University of Freiburg, Schänzlestraβe 18, Freiburg, 79104, Germany
| | - Robert Hofmeister
- TCR² Therapeutics, Inc., 100 Binney Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Bernal M, García-Alcalde F, Concha A, Cano C, Blanco A, Garrido F, Ruiz-Cabello F. Genome-wide differential genetic profiling characterizes colorectal cancers with genetic instability and specific routes to HLA class I loss and immune escape. Cancer Immunol Immunother 2012; 61:803-16. [PMID: 22072317 PMCID: PMC11029079 DOI: 10.1007/s00262-011-1147-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/26/2011] [Indexed: 12/31/2022]
Abstract
AIM We compared the expression of genes related to inflammatory and cytotoxic functions between MSI and MSS (HLA-class I-negative and HLA-class I-positive) colorectal cancers (CRCs), seeking evidence of differences in inflammatory mediators and cytotoxic T-cell responses. Twenty-two CRCs were divided into three study groups as a function of HLA class I expression and MSI phenotype: 8 MSI tumours, 6 MSS/HLA- tumours and 6 MSS/HLA+ tumours (controls). FINDINGS A first comparison between eight MSI and six MSS/HLA-positive (control) cancers, based on microarray analysis on an Affymetrix(®) HG-U133-Plus-PM plate, identified 1974 differentially expressed genes (P < 0.05). We grouped genes in Gene Ontology functional categories: apoptotic programme (72 genes, P = 5.5·10(-3)), leucocyte activation (43 genes, P = 1.8·10(-5)), T-cell activation (24 genes, P = 6.3·10(-4)), inflammatory response (40 genes, 2.3·10(-2)) and cytokine production (10 genes, P = 1.9·10(-2)). Real-time PCR and immunohistochemical evaluation were used to validate the data, finding that increased mRNA levels of pro-inflammatory cytokines and cytotoxic mediators were associated with greater infiltration by CD8+T lymphocytes in the MSI group (P < 0.001). Finally, HLA-class I-negative tumours were not grouped together but rather in accordance with features of the gene expression profile of MSI or MSS tumours. As expected, genes associated with antigen processing machinery and MHC class I molecules (TAP2, B2m) were downregulated in MSS/HLA-class I-negative CRCs (n = 6) in comparison to controls. CONCLUSIONS In conclusion, microarray and immunohistochemical data may be useful to comprehensively assess tumour-host interactions and differentiate MSI from MSS cancers. The two types of tumour, MSI/HLA-class I-negative and MSS/HLA-class I-negative, showed marked differences in the composition and intensity of infiltrating leucocytes, suggesting that their immune escape strategies involve distinct pathways.
Collapse
Affiliation(s)
- Mónica Bernal
- Department of Clinical Analysis and Immunology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Fernando García-Alcalde
- Department of Bioinformatics and Genomics, Príncipe Felipe Research Centre, Valencia, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Angel Concha
- Department of Anatomical Pathology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Armando Blanco
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Federico Garrido
- Department of Clinical Analysis and Immunology, Virgen de las Nieves University Hospital, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Department of Clinical Analysis and Immunology, Virgen de las Nieves University Hospital, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, Granada, Spain
- Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| |
Collapse
|
4
|
Muñoz P, Navarro MDC, Pavón EJ, Salmerón J, Malavasi F, Sancho J, Zubiaur M. CD38 Signaling in T Cells Is Initiated within a Subset of Membrane Rafts Containing Lck and the CD3-ζ Subunit of the T Cell Antigen Receptor. J Biol Chem 2003; 278:50791-802. [PMID: 14523017 DOI: 10.1074/jbc.m308034200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we present data supporting that most CD38 is pre-assembled in a subset of Brij 98-resistant raft vesicles, which were stable at 37 degrees C, and have relatively high levels of Lck and the CD3-zeta subunit of T cell antigen receptor-CD3 complex in contrast with a Brij 98-soluble pool, where CD38 is associated with CD3-zeta, and Lck is not detected. Our data further indicate that following CD38 engagement, LAT and Lck are tyrosine phosphorylated exclusively in Brij 98-resistant rafts, and some key signaling components translocate into rafts (i.e. Sos and p85-phosphatidylinositol 3-kinase). Moreover, N-Ras results activated within rafts immediately upon CD38 ligation, whereas activated Erk was mainly found in soluble fractions with delayed kinetics respective to Ras activation. Furthermore, full phosphorylation of CD3-zeta and CD3-epsilon only occurs in rafts, whereas partial CD3-zeta tyrosine phosphorylation occurs exclusively in the soluble pool, which correlated with increased levels of c-Cbl tyrosine phosphorylation in the non-raft fractions. Taken together, these results suggest that, unlike the non-raft pool, CD38 in rafts is able to initiate and propagate several activating signaling pathways, possibly by facilitating critical associations within other raft subsets, for example, LAT rafts via its capacity to interact with Lck and CD3-zeta. Overall, these findings provide the first evidence that CD38 operates in two functionally distinct microdomains of the plasma membrane.
Collapse
Affiliation(s)
- Pilar Muñoz
- Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Científicas, 18001 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Mallone R, Funaro A, Zubiaur M, Baj G, Ausiello CM, Tacchetti C, Sancho J, Grossi C, Malavasi F. Signaling through CD38 induces NK cell activation. Int Immunol 2001; 13:397-409. [PMID: 11282979 DOI: 10.1093/intimm/13.4.397] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human CD38 is a signal transduction molecule, and, concurrently, an ectoenzyme catalyzing the synthesis and degradation of cyclic ADP-ribose (cADPR), a potent Ca2+ mobilizer. One facet of CD38 that has not yet been addressed is its role in NK cells. To this end, the events triggered by CD38 ligation with agonistic mAb were analyzed on freshly purified human NK cells. Ligation was followed by (i) a significant rise in the intracellular level of Ca2+, (ii) increased expression of HLA class II and CD25, and (iii) tyrosine phosphorylation of discrete cytoplasmic substrates. The phosphorylation cascade involved CD3-zeta and FcepsilonRIgamma chains, zeta-associated protein (ZAP)-70 and the proto-oncogene product c-Cbl. NK effector functions were then analyzed: CD38 signaling was able (iv) to induce release of IFN-gamma and, more prominently, of granulocyte macrophage colony stimulating factor, as assessed by measuring both mRNA and protein products; and, lastly, (v) to induce cytolytic effector functions on target cells after IL-2 activation, as shown both by cytotoxicity assays and ultrastructural changes. The tyrosine-phosphorylated substrates and all the effects mediated by CD38 were similar to those observed following triggering via CD16 (FcgammaRIIIA); moreover, Ca2+ mobilization via CD38 no longer operated in NK-derived cell lines lacking CD16. These results suggest that the activation signals transduced by CD38 in NK cells elicit relevant cellular events. The effects are similar to those elicited via CD16 and possibly rely on common signaling pathways.
Collapse
Affiliation(s)
- R Mallone
- Laboratory of Immunogenetics, Department of Genetics, Biology and Biochemistry, University of Torino, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Carmo AM, Castro MAA, Arosa FA. CD2 and CD3 Associate Independently with CD5 and Differentially Regulate Signaling Through CD5 in Jurkat T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In T lymphocytes, the CD2 and CD5 glycoproteins are believed to be involved in the regulation of signals elicited by the TCR/CD3 complex. Here we show that CD2 and CD3 independently associate with CD5 in human PBMC and Jurkat cells. CD5 coprecipitates with CD2 in CD3-deficient cells and, conversely, coprecipitates with CD3 in cells devoid of CD2. In unstimulated CD2+ CD3+ Jurkat cells, CD5 associates equivalently with CD2 and CD3 and is as efficiently phosphorylated in CD2 as in CD3 immune complexes. However, upon activation the involvement of CD5 is the opposite in the CD2 and CD3 pathways. CD5 becomes rapidly tyrosine phosphorylated after CD3 stimulation, but is dephosphorylated upon CD2 cross-linking. These opposing effects correlate with the decrease in the activity of the SH2 domain-containing protein phosphatase 1 (SHP-1) following CD3 activation vs an enhanced activity of the phosphatase after CD2 triggering. The failure of CD5 to become phosphorylated on tyrosine residues in the CD2 pathway has no parallel with the lack of use of ζ-chains in CD2 signaling; contrasting with comparable levels of association of CD2 or CD3 with CD5, ζ associates with CD2 only residually and is nevertheless slightly phosphorylated after CD2 stimulation. The modulation of CD5 phosphorylation may thus represent a level of regulation controlled by CD2 in signal transduction mechanisms in human T lymphocytes.
Collapse
Affiliation(s)
- Alexandre M. Carmo
- *Laboratório de Imunologia Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; and
- †Medical Research Council Cellular Immunology Unit, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Mónica A. A. Castro
- *Laboratório de Imunologia Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; and
| | - Fernando A. Arosa
- *Laboratório de Imunologia Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; and
| |
Collapse
|
7
|
Zubiaur M, Guirado M, Terhorst C, Malavasi F, Sancho J. The CD3-gamma delta epsilon transducing module mediates CD38-induced protein-tyrosine kinase and mitogen-activated protein kinase activation in Jurkat T cells. J Biol Chem 1999; 274:20633-42. [PMID: 10400695 DOI: 10.1074/jbc.274.29.20633] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the ability of the CD3-gamma delta epsilon and CD3-zeta signaling modules of the T cell receptor (TCR) to couple CD38 to intracellular signaling pathways. The results demonstrated that in TCR+ T cells that express the whole set of CD3 subunits CD38 ligation led to complete tyrosine phosphorylation of both CD3-zeta and CD3-epsilon polypeptide chains. In contrast, in TCR+ cells with a defective CD3-zeta association CD38 engagement caused tyrosine phosphorylation of CD3-epsilon but not of CD3-zeta. Despite these differences, in both cell types CD38 ligation resulted in protein-tyrosine kinase and mitogen-activated protein kinase activation. However, in cells expressing chimerical CD25-zeta or CD25-epsilon receptors or in a TCR-beta- Jurkat T cell line, CD38 ligation did not result in tyrosine phosphorylation of the chimeric receptors, or CD3 subunits, or protein-tyrosine kinase or mitogen-activated protein kinase activation. In summary, these results support a model in which CD38 transduces activating signals inside the cell by means of CD3-epsilon and CD3-zeta tyrosine phosphorylation. Moreover, these data identify the CD3-gamma delta epsilon signaling module as a necessary and sufficient component of the TCR/CD3 complex involved in T cell activation through CD38.
Collapse
Affiliation(s)
- M Zubiaur
- Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Científicas, 18001 Granada, Spain
| | | | | | | | | |
Collapse
|
8
|
Blasini AM, Alonzo E, Chacón R, Riera R, Stekman IL, Rodriguez MA. Abnormal pattern of tyrosine phosphorylation in unstimulated peripheral blood T lymphocytes from patients with systemic lupus erythematosus. Lupus 1998; 7:515-23. [PMID: 9863892 DOI: 10.1191/096120398678920604] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous reports have shown abnormal responses mediated via the TCR/CD3 pathway in T lymphocytes from systemic lupus erythematosus (SLE) patients. Recently, we and others have reported augmented TCR/CD3-mediated responses in lupus T cells. It is possible that the pattern of downstream biochemical signals triggered by TCR/CD3 ligation may be altered in T lymphocytes from patients with SLE, thus leading to abnormal distal cell responses. In this paper we have examined the phosphorylation of proteins on tyrosine residues in peripheral blood T lymphocytes from a group of SLE patients and controls. We found a lower frequency of constitutively tyrosine-phosphorylated 119- and 113-kDa substrates and an enhanced frequency of tyrosine-phosphorylated 66- and 25-kDa proteins in unstimulated cultures of SLE T lymphocytes, suggesting an altered pattern of tyrosine phosphorylation in T cells from patients in vivo. Additionally, the protein tyrosine phosphatase (PTP) activity of CD45 immunoprecipitates was lower in unstimulated lupus T cells and was enhanced after stimulation via the CD3 pathway in lupus but not control T lymphocytes. The present results seem to suggest abnormal regulation of in-vivo tyrosine phosphorylation in T cells from patients with SLE.
Collapse
Affiliation(s)
- A M Blasini
- Centro Nacional de Enfermedades Reumáticas, Hospital Universitario de Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
9
|
Nishimura Y, Miyazawa T, Ikeda Y, Izumiya Y, Nakamura K, Cai JS, Sato E, Kohmoto M, Mikami T. Molecular cloning and expression of feline CD3epsilon. Vet Immunol Immunopathol 1998; 65:43-50. [PMID: 9802575 DOI: 10.1016/s0165-2427(98)00145-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cDNA of feline CD3epsilon, one of the T-cell receptor components, was cloned from a feline T-lymphoblastoid cell line (MYA-1 cells) and peripheral blood mononuclear cells and thymocytes of cats by polymerase chain reaction. Sequencing analysis revealed that the open reading frame of feline CD3epsilon consists of 606 base pairs encoding a predicted molecular mass of 25 kDa transmembrane protein which lacks N-glycosylation site. Comparison of the predicted amino acid sequence of feline CD3epsilon with those of other mammalians' homologues revealed that a relatively low homology was present in the extracellular domain. However, the cytoplasmic domain contained several characteristic motifs highly conserved across the species. These motifs were known to be important for signal transduction upon T-cell activation or endoplasmic reticulum retention. In addition, the feline CD3epsilon protein was expressed in an insect cell line (Sf9) by a baculovirus expression system. The expression was confirmed by indirect immunofluorescence assay and immunoblotting analysis using an anti-human CD3epsilon polyclonal antibody. These results will provide additional information for understanding the feline immune system.
Collapse
Affiliation(s)
- Y Nishimura
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Huby RD, Weiss A, Ley SC. Nocodazole inhibits signal transduction by the T cell antigen receptor. J Biol Chem 1998; 273:12024-31. [PMID: 9575143 DOI: 10.1074/jbc.273.20.12024] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potential role of the cytoskeleton in signaling via the T cell antigen receptor (TCR) was investigated using pharmacological agents. In Jurkat T cells, disruption of the actin-based cytoskeleton with cytochalasin D or disruption of the microtubules with colchicine did not affect TCR induction of proximal signaling events triggered by CD3 mAb. Polymerized actin and tubulin, therefore, were not required for TCR-mediated signal transduction. Nocodazole, however, was found to inhibit dramatically TCR signaling, independently of its ability to depolymerize microtubules. This effect was TCR-specific, because signaling via the human muscarinic acetylcholine receptor 1 in the same cells was unaffected. A mechanism for the inhibition of TCR signaling by nocodazole was suggested by in vitro assays, which revealed that the drug inhibited the kinase activity of LCK and, to a lesser extent, FYN. The kinase activity of ZAP-70 in vitro, however, was unaffected. These results, therefore, suggested that nocodazole prevented initial phosphorylation of the TCR by LCK after stimulation, and as a result, it blocked activation of downstream signaling pathways. Immunofluorescence analyses also revealed that nocodazole and the specific SRC-family kinase inhibitor PP1 delocalized ZAP-70 from its constitutive site at the cell cortex. These effects did not require the SH2 domains of ZAP-70. The localization of ZAP-70 to the cell cortex is, therefore, regulated by the activity of SRC-family kinases, independently of their ability to phosphorylate immunoreceptor tyrosine-based activation motifs of the TCR.
Collapse
Affiliation(s)
- R D Huby
- Division of Cellular Immunology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
11
|
de Aós I, Metzger MH, Exley M, Dahl CE, Misra S, Zheng D, Varticovski L, Terhorst C, Sancho J. Tyrosine phosphorylation of the CD3-epsilon subunit of the T cell antigen receptor mediates enhanced association with phosphatidylinositol 3-kinase in Jurkat T cells. J Biol Chem 1997; 272:25310-8. [PMID: 9312149 DOI: 10.1074/jbc.272.40.25310] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
T cell receptor signaling results both in T cell proliferation and apoptosis. A key enzyme at the intersection of these downstream pathways is phosphatidylinositol 3'-kinase (PI 3-kinase). In a previous report, we showed that the p85alpha subunit of the PI 3-kinase preferentially associated with the CD3-zeta membrane-proximal immunoreceptor tyrosine-based activation motif of the zeta chain (zetaA-ITAM) (Exley, M., Varticovski, L., Peter, M., Sancho, J., and Terhorst, C. (1994) J. Biol. Chem. 269, 15140-15146). Here, we demonstrate that tyrosine phosphorylation of CD3-epsilon can recruit the PI 3-kinase enzyme in a T cell activation-dependent manner. In vivo studies with Jurkat cells stably transfected with a CD8-CD3-epsilon chimera (termed CD8-epsilon) shows that ligation of endogenous CD3-epsilon or CD8-epsilon by specific antibodies induces tyrosine phosphorylation of CD3-epsilon or CD8-epsilon, respectively. Increased tyrosine phosphorylation correlates with increased binding of p85alpha PI 3-kinase and recruitment of PI 3-kinase enzymatic activity to CD3-epsilon or CD8-epsilon proteins. Mutagenesis studies in COS-7 cells, transiently transfected with CD8-epsilon, p85alpha, and Fyn cDNAs in various combinations, show that both Tyr170 and Tyr181 within the CD3-epsilon-ITAM are required for efficient binding of p85alpha PI 3-kinase. Thus, replacement of Tyr170 by Phe (Y170F), or Tyr181 by Phe (Y181F) significantly reduces binding of p85alpha PI 3-kinase, whereas it does not affect binding of Fyn. Further in vitro experiments suggest that a direct binding of the tandem SH2 domains of p85alpha PI 3-kinase to the two phosphorylated tyrosines in a single CD3-epsilon-ITAM may occur. The data also support a model in which a single CD3 subunit can recruit distinct effector molecules by means of TCR-mediated differential ITAM phosphorylation.
Collapse
Affiliation(s)
- I de Aós
- Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Científicas, Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huby RD, Iwashima M, Weiss A, Ley SC. ZAP-70 protein tyrosine kinase is constitutively targeted to the T cell cortex independently of its SH2 domains. J Cell Biol 1997; 137:1639-49. [PMID: 9199177 PMCID: PMC2137816 DOI: 10.1083/jcb.137.7.1639] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ZAP-70 is a nonreceptor protein tyrosine kinase that is essential for signaling via the T cell antigen receptor (TCR). ZAP-70 becomes phosphorylated and activated by LCK protein tyrosine kinase after interaction of its two NH2-terminal SH2 domains with tyrosine-phosphorylated subunits of the activated TCR. In this study, the localization of ZAP-70 was investigated by immunofluorescence and confocal microscopy. ZAP-70 was found to be localized to the cell cortex in a diffuse band under the plasma membrane in unstimulated T cells, and this localization was not detectably altered by TCR stimulation. Analysis of mutants indicated that ZAP-70 targeting was independent of its SH2 domains but required its active kinase domain. The specific compartmentalization of ZAP-70 suggests that it may interact with an anchoring protein in the cell cortex via its hinge or kinase domains. It is likely that the maintenance of high concentrations of ZAP-70 at the cell cortex, that only has to move a short distance to interact with phophorylated TCR subunits, facilitates rapid initiation of signaling by the TCR. In addition, as the major increase in tyrosine phosphorylation induced by the TCR also occurs at the cell cortex (Ley, S.C., M. Marsh, C.R. Bebbington, K. Proudfoot, and P. Jordan. 1994. J. Cell. Biol. 125:639-649), ZAP-70 may be localized close to its downstream targets.
Collapse
Affiliation(s)
- R D Huby
- Division of Cellular Immunology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
13
|
Pani G, Fischer KD, Mlinaric-Rascan I, Siminovitch KA. Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J Exp Med 1996; 184:839-52. [PMID: 9064344 PMCID: PMC2192780 DOI: 10.1084/jem.184.3.839] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The association of PTP1C deficiency with the multiplicity of lymphoid cell abnormalities manifested by motheaten (me) and viable motheaten (me(v)) mice suggests a pivotal role for this tyrosine phosphatase in the regulation of lymphocyte differentiation and function. To delineate the relevance of PTP1C to T cell physiology, we have examined me and me(v) T cells with regards to their capacity to transduce activating signals through the T cell antigen receptor (TCR). Although thymocyte maturation appeared normal in the mutant mice, both thymocytes and peripheral T cells from these animals exhibited proliferative response to TCR stimulation that were markedly increased relative to those elicited in normal cells. Compared to normal thymocytes, PTP1C-deficient thymocytes also showed increased constitutive tyrosine phosphorylation of the TCR complex and enhanced and prolonged TCR-induced tyrosine phosphorylation of the TCR-zeta and CD3-epsilon, as well as a number of cytosolic proteins, most notably a 38-kD phosphoprotein found to associate with the Grb2 adaptor SH2 domain in activated thymocytes. These latter phosphoproteins also associated with the Vav guanine nucleotide exchange factor upon TCR ligation, and were dephosphorylated by recombinant PTP1C in vitro. In conjunction with the finding of PTP1C-TCR association in unstimulated normal thymocytes, these results reveal the capacity of PTP1C to interact with and likely dephosphorylate resting and activated TCR complex components, as well as more distal signaling effectors that are normally recruited to the Vav and Grb2 SH2 domains after TCR stimulation. These data therefore strongly implicate PTP1C in the downregulation of TCR signaling capacity and, taken together with the aberrant prolongation of TCR-induced, mitogen-associated kinase (MAPK) activation observed in PTP1C-deficient thymocytes, these findings suggest that the inhibitory influence of PTP1C on TCR signal relay is realized through its effects on both the TCR complex and downstream signaling elements that couple the activated antigen receptor to the Ras/MAPK response pathway.
Collapse
Affiliation(s)
- G Pani
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Frearson JA, Yi T, Alexander DR. A tyrosine-phosphorylated 110-120-kDa protein associates with the C-terminal SH2 domain of phosphotyrosine phosphatase-1D in T cell receptor-stimulated T cells. Eur J Immunol 1996; 26:1539-43. [PMID: 8766558 DOI: 10.1002/eji.1830260720] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of cytosolic phosphotyrosine phosphatases (PTPase) in T cell receptor (TCR)-mediated signaling was investigated. PTPase activity was detected in a purified immunocomplex comprising aggregated TCR from the cell surface of Jurkat T cells. Since TCR aggregation results in phosphorylation of critical immunoreceptor tyrosine-based activation motifs (ITAM) in the TCR zeta chain, a doubly tyrosine-phosphorylated synthetic peptide containing the membrane-proximal zeta chain ITAM (zeta p ITAM) was used to characterize TCR zeta-associated PTPases. PTPase activity was detected in stable association with zeta p ITAM and the SH2 domain-containing PTPase PTP-1D (Syp, SH-PTP2) was identified in this complex. TCR stimulation resulted in increased total PTPase activity and PTP-1D protein in zeta p ITAM precipitates. TCR stimulation did not result in the tyrosine phosphorylation of PTP-1D but caused the rapid and transient tyrosine phosphorylation of a 110-120-kDa protein which associated selectively with the C-terminal SH2 domain of PTP-1D. This currently unidentified phosphotyrosine protein may be involved in localizing PTP-1D to the TCR following receptor stimulation.
Collapse
Affiliation(s)
- J A Frearson
- Department of Immunology, The Babraham Institute, Cambridge, GB
| | | | | |
Collapse
|
15
|
Criado G, Feito MJ, Rojo JM. CD4-dependent and -independent association of protein tyrosine kinases to the T cell receptor/CD3 complex of CD4+ mouse T lymphocytes. Eur J Immunol 1996; 26:1228-34. [PMID: 8647197 DOI: 10.1002/eji.1830260607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tyrosine phosphorylation of different substrates is the earliest intracellular signal detected after T cell receptor (TcR) ligation. Several tyrosine kinases have been detected associated to the CD3-TcR complex in stimulated or unstimulated cells, including p56lck, p59fyn and ZAP-70. We have observed, in one mouse T helper CD4 T cell line, that most TcR- or CD3-associated tyrosine kinase activity comes from CD4:p56lck (Diez-Orejas, R., Ballester, S., Feito, M. J., Ronda, M., Ojeda, G., Criado, G., Portolés, P. and Rojo, J. M., EMBO J. 1994. 13: 90). To analyze whether this is a major way of tyrosine kinase association to the TcR in normal CD4+ T cells, we examined the nature and mode of association of tyrosine kinases to the TcR complex in normal spleen CD4+ T lymphocytes. Our results show that, in normal CD4+ T lymphocytes, as in CD4+ T cell lines, there is a stable and readily detectable association between CD4:p56lck and the TcR/CD3 complex, as determined by in vitro kinase activity in immunoprecipitates from cell lysates. However, TcR/CD3 complexes from nature CD4+ lymphocytes have detectable amounts of p56lck associated in a CD4-independent manner, as shown by immunodepletion of the lysates with anti-CD4 antibodies. In addition, TcR/CD3 also bind p59fyn regardless of the presence of CD4. Conversely, we have observed that CD4 co-precipitates small quantities of p56fyn in a TcR/CD3-independent manner. Overall, our data suggest the existence of different possible molecular complexes between TcR/CD3, CD4 and their attending kinases, as well as some quantitative and qualitative differences between CD4+ T cells and CD4+ T cell lines in kinase association to the TcR/CD3 complex.
Collapse
Affiliation(s)
- G Criado
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | | | | |
Collapse
|
16
|
Kirkham PA, Takamatsu H, Yang H, Parkhouse RM. Porcine CD3 epsilon: its characterization, expression and involvement in activation of porcine T lymphocytes. Immunology 1996; 87:616-23. [PMID: 8675218 PMCID: PMC1384142 DOI: 10.1046/j.1365-2567.1996.498566.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cloning, characterization and expression of porcine CD3 epsilon and establishment of its role in T-cell activation using an anti-porcine CD3 epsilon monoclonal antibody, as described here, provides a first step towards a greater understanding of the porcine immune response. Porcine CD3 epsilon was cloned from a porcine T-cell cDNA library by polymerase chain reaction and found to have up to 72% identity with other CD3 epsilon chains, retaining all the necessary primary structural motifs for correct functioning of porcine CD3 epsilon. When expressed in COS7 cells porcine CD3 epsilon was an intracellularly localized, monomeric 23,000 MW protein exhibiting no evidence of N-glycosylation. A monoclonal antibody, PPT3, recognized expressed porcine CD3 epsilon and activated porcine T cells as demonstrated by stimulation of calcium mobilization, an increase in protein tyrosine phosphorylation and proliferation. These results further reaffirm and identify CD3 epsilon as an important cell surface protein involved in signal transduction of activation signals in porcine T cells.
Collapse
Affiliation(s)
- P A Kirkham
- Department of Immunology, Institute for Animal Health, Pirbright, Surrey, UK
| | | | | | | |
Collapse
|
17
|
Malissen B, Ku G, Hermans M, Vivier E, Malissen M. Genetic dissection of the transducing subunits of the T-cell antigen receptor. Ann N Y Acad Sci 1995; 766:173-81. [PMID: 7486653 DOI: 10.1111/j.1749-6632.1995.tb26660.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, T-Lymphocyte/physiology
- Humans
- Macromolecular Substances
- Models, Structural
- Molecular Sequence Data
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Signal Transduction
Collapse
Affiliation(s)
- B Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
18
|
Thome M, Duplay P, Guttinger M, Acuto O. Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell receptor/CD3/zeta complex. J Exp Med 1995; 181:1997-2006. [PMID: 7539035 PMCID: PMC2192070 DOI: 10.1084/jem.181.6.1997] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During antigen recognition by T cells, CD4 and the T-cell receptor (TCR)/CD3/zeta complex are thought to interact with the same major histocompatibility complex II molecule in a stable ternary complex. Evidence has suggested that the association of CD4 with TCR/CD3/zeta requires the interaction of the protein tyrosine kinase p56lck with CD4. We have taken a biochemical approach to understand the mechanism by which p56lck and, in particular, its src homology (SH) 2 domain contributes to the association of CD4 with TCR/CD3/zeta during activation. We have previously shown that the p56lck SH2 domain binds directly to tyrosine-phosphorylated ZAP-70. Here we formally demonstrate the in vivo association of p56lck with the homologous protein tyrosine kinases Syk and ZAP-70 after CD3 stimulation of Jurkat cells. A tyrosine-phosphorylated peptide containing the sequence predicted to be optimal for binding to the SH2 domain of src family kinases specifically competes for this association, indicating that tyrosine-phosphorylated ZAP-70 and Syk bind to p56lck by an SH2-mediated interaction. We also show that the same peptide is able to compete for the activation-dependent TCR/CD4 association in Jurkat cells. Moreover, ZAP-70 and CD4 cocap only after CD3 stimulation in human T lymphoblasts. We propose that the interaction of the p56lck SH2 domain with zeta-associated tyrosine-phosphorylated ZAP-70 and/or Syk enables CD4 to associate with antigen-stimulated TCR/CD3/zeta complexes.
Collapse
Affiliation(s)
- M Thome
- Department of Immunology, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
19
|
Thome M, Acuto O. Molecular mechanism of T-cell activation: role of protein tyrosine kinases in antigen receptor-mediated signal transduction. RESEARCH IN IMMUNOLOGY 1995; 146:291-307. [PMID: 8577990 DOI: 10.1016/0923-2494(96)80263-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Thome
- Département d'Immunologie, Institut Pasteur, Paris
| | | |
Collapse
|
20
|
Rivera VM, Brugge JS. Clustering of Syk is sufficient to induce tyrosine phosphorylation and release of allergic mediators from rat basophilic leukemia cells. Mol Cell Biol 1995; 15:1582-90. [PMID: 7532280 PMCID: PMC230382 DOI: 10.1128/mcb.15.3.1582] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In mast cells, antigen-mediated aggregation of the high-affinity receptor for immunoglobulin E, Fc epsilon RI, stimulates tyrosine phosphorylation and activation of multiple signaling pathways leading to the release of several classes of mediators of the allergic response. Early events induced upon cross-linking of Fc epsilon RI include tyrosine phosphorylation of Fc epsilon RI subunits and activation of the tyrosine kinase p72syk (Syk), which binds to tyrosine-phosphorylated Fc epsilon RI. Clustering of Syk, as a result of its interaction with aggregated Fc epsilon RI, may play a role in activating one or more of the signaling pathways leading to mediator release. To test this possibility, Syk was introduced into a model mast cell line (rat basophilic leukemia cells) as part of a chimeric transmembrane protein containing the extracellular and transmembrane domains of CD16 and CD7, respectively. Clustering of the Syk chimera, using antibodies against CD16, was found to be sufficient to stimulate early and late events normally induced by clustering of Fc epsilon RI. Specifically, aggregation of Syk induced degranulation, leukotriene synthesis, and expression of cytokine genes. Induction of mediator release was dependent on the kinase activity of Syk. Consistent with this finding, clustering of Syk also induced the tyrosine phosphorylation of a profile of proteins, including phospholipase C-gamma 1 and mitogen-activated protein kinase, similar to that induced upon clustering of Fc epsilon RI. These results strongly suggest that Syk is an early and critical mediator of multiple signaling pathways that emanate from the Fc epsilon RI receptor and give rise to the allergic response.
Collapse
Affiliation(s)
- V M Rivera
- ARIAD Pharmaceuticals, Cambridge, Massachusetts 02139
| | | |
Collapse
|
21
|
Wange RL, Isakov N, Burke TR, Otaka A, Roller PP, Watts JD, Aebersold R, Samelson LE. F2(Pmp)2-TAM zeta 3, a novel competitive inhibitor of the binding of ZAP-70 to the T cell antigen receptor, blocks early T cell signaling. J Biol Chem 1995; 270:944-8. [PMID: 7822334 DOI: 10.1074/jbc.270.2.944] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Signaling by the T cell antigen receptor (TCR) is mediated by 17-residue tyrosine-based activation motifs (TAM) present in the cytoplasmic tails of the TCR zeta and CD3 chains. TAMs become tyrosine-phosphorylated upon TCR stimulation, creating a high affinity binding site for the tandem SH2 domains of ZAP-70. In permeabilized T cells, the association of TCR and ZAP-70 was inhibited by a protein tyrosine phosphatase (PTPase)-resistant TAM peptide analog, in which difluorophosphonomethyl phenylalanyl (F2Pmp) residues replaced phosphotyrosine. Inhibition of this association prevented TCR-stimulated tyrosine phosphorylation of ZAP-70 and reduced ZAP-70 kinase activity to basal levels. The reduction in ZAP-70 activity coincided with reduced tyrosine phosphorylation of a number of substrates. Such PTPase-resistant peptides, capable of disrupting SH2 domain-mediated protein-protein interactions, should prove useful in further dissection of multiple signaling pathways and may serve as models for rationally designed chemotherapeutic agents for the treatment of autoimmune and neoplastic disorders.
Collapse
Affiliation(s)
- R L Wange
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Franco R, Peter ME, Choi MS, Malissen B, Sancho J, Terhorst C. Characterization of the GTP/GDP binding site in the murine CD3-zeta polypeptide chain. Immunol Lett 1994; 43:167-75. [PMID: 7721329 DOI: 10.1016/0165-2478(94)90218-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a newly developed in situ affinity-labeling method of nucleotide-binding proteins (NTPoxi technique) we discovered that the human T-cell receptor-associated CD3-zeta protein might bind GTP/GDP. To further characterize GTP/GDP binding to CD3-zeta, murine T-cell lines expressing zeta zeta homodimers or CD3-zeta/Fc epsilon R1 gamma heterodimers were used. Specific GTPoxi labeling of CD3-zeta was found in all murine T cells in which a complete CD3-zeta polypeptide chain was expressed, including cells in which CD3-zeta was disulfide bridged to the Fc epsilon R1 gamma chain. In murine T cells the kinetics of labeling of CD3-zeta was similar to that of small G-proteins. Upon activation of murine T cells a slight but significant increase in GTPoxi labeling of CD3-zeta was detected. Whether all 3 so-called 'Reth motifs' (zeta A, zeta B and/or zeta C) were necessary for the binding of GTP/GDP was addressed by using cells expressing truncated CD3-zeta molecules. Whereas truncated CD3-zeta, in which zeta A and part of zeta B were deleted, was still able to bind GTP, upon deletion of all 3 Reth motifs cross-linking by the GTPoxi method became impossible. Regardless of whether this implies a direct or indirect binding of GTP/GDP to CD3-zeta, these nucleotides and their hydrolysis must play an important role in T-cell activation through the TCR/CD3 complex.
Collapse
Affiliation(s)
- R Franco
- Division of Immunology, Beth Israel Hospital, Harvard Medical School, Boston, MA 02215
| | | | | | | | | | | |
Collapse
|
23
|
Wang B, Biron C, She J, Higgins K, Sunshine MJ, Lacy E, Lonberg N, Terhorst C. A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci U S A 1994; 91:9402-6. [PMID: 7937778 PMCID: PMC44820 DOI: 10.1073/pnas.91.20.9402] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A severe immunodeficiency involving a complete loss of T lymphocytes and natural killer cells was observed in independent lines of transgenic mice containing > 30 copies of the human CD3E gene (pL12). T-cell- natural killer (NK)- mice could also be generated by using a gene fragment pL12 delta 1 (without exons 4A and 5) coding for the CD3-epsilon transmembrane region and its 55-amino acid nonenzymatic cytoplasmic tail. The abnormally small thymus gland in the homozygous transgenic animals, which was approximately 1% the size of a wild-type thymus, contained only a few (2-4%) prethymocytes with a Thy-1+Pgp-1+IL-2R alpha- CD3-4-8- phenotype. In mice with lower copy numbers of the transgene thymocyte development was blocked at the Thy-1+Pgp-1-IL-2R alpha+CD3-4-8- stage, and normal NK activity was detected. Mice generated with high-copy numbers of a transgene pL12 delta 2 (pL12 delta 1 minus exons 6), coding for a truncated protein from which the CD3-epsilon extracellular domain, its transmembrane region, and most of its cytoplasmic region were absent, contained normal numbers of T lymphocytes and NK cells. These transgene effects suggested that recruitment of signal-transduction molecules by the cytoplasmic tail of this protein played an important role in the abrogation of both lineages. Taken together these observations support the notion that T lymphocytes and NK cells stemmed from a common precursor.
Collapse
Affiliation(s)
- B Wang
- Division of Immunology, Beth Israel Hospital, Harvard Medical School, Boston, MA 02215
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Antigen and cytokine receptors induce rapid tyrosine phosphorylation of receptor subunits, other membrane proteins, and signaling components. Each receptor induces phosphorylation of a number of proteins. Although there is often overlap between targets of different receptors, any given receptor only induces phosphorylation of a subset of possible targets. How this choice of targets is achieved for these receptors is not yet understood. The cellular events downstream of some signaling components are beginning to come into view. Recent progress in these areas is discussed.
Collapse
Affiliation(s)
- A L DeFranco
- GW Hooper Foundation, University of California, San Francisco 94143-0552
| |
Collapse
|
25
|
Abstract
Interaction of T- and B-cell antigen receptors with cytoplasmic non-receptor tyrosine protein kinases is critical to the activation of lymphocytes by antigen. Both the src-family tyrosine protein kinases Lck, Fyn, Lyn and Blk and the syk-family tyrosine protein kinases Syk and ZAP-70 play a role in lymphocyte activation. The antigen receptors are coupled to this cluster of kinases by the cytoplasmic tails of the gamma, delta, epsilon, zeta, and eta subunits of the T-cell receptor, and the Ig-alpha and Ig-beta subunits of the B-cell receptor. Each of these proteins contains one or more 'tyrosine based activation motifs', with the amino acid sequence D/EX7D/EXXYXXL/IX7YXXL/I. This motif appears to allow binding of one or more src-like kinases, via their unique amino termini, before the onset of lymphocyte activation. Invariant tyrosines in the motif become phosphorylated following the triggering of lymphocyte activation, and this modification induces the binding of the src- and syk-family tyrosine protein kinases, and potentially other signalling molecules, through SH2 domains to the antigen receptors.
Collapse
Affiliation(s)
- B M Sefton
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186
| | | |
Collapse
|
26
|
Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor zeta chain is dependent on T cell activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36584-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Duplay P, Thome M, Hervé F, Acuto O. p56lck interacts via its src homology 2 domain with the ZAP-70 kinase. J Exp Med 1994; 179:1163-72. [PMID: 8145035 PMCID: PMC2191435 DOI: 10.1084/jem.179.4.1163] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
p56lck, a member of the src family of protein tyrosine kinases, is an essential component in T cell receptor (TCR) signal transduction. p56lck contains a src homology 2 (SH2) domain found in a number of proteins involved in intracellular signaling. SH2 domains have been implicated in protein-protein interactions by binding to sequences in target proteins containing phosphorylated tyrosine. Using an in vitro assay, we have studied specific binding of tyrosine-phosphorylated proteins to a recombinant p56lck SH2 domain. In nonactivated Jurkat cells, two tyrosine-phosphorylated proteins were detected. Stimulation with anti-CD3 monoclonal antibodies induced the binding of seven additional tyrosine-phosphorylated proteins to the SH2 domain of p56lck. We have identified the zeta-associated tyrosine kinase, ZAP-70, as one of these proteins. Evidence suggests that binding of ZAP-70 to p56lck SH2 is direct and not mediated by zeta. The significance of this interaction was further investigated in vivo. p56lck could be coprecipitated with the zeta/ZAP-70 complex and conversely, ZAP-70 was detected in p56lck immunoprecipitates of activated Jurkat cells. The physical association of p56lck and ZAP-70 during activation supports the recently proposed functional cooperation of these two tyrosine kinases in TCR signaling.
Collapse
Affiliation(s)
- P Duplay
- Department of Immunology, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
28
|
Cambier JC, Jensen WA. The hetero-oligomeric antigen receptor complex and its coupling to cytoplasmic effectors. Curr Opin Genet Dev 1994; 4:55-63. [PMID: 8193541 DOI: 10.1016/0959-437x(94)90091-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
T-cell and B-cell antigen receptors are representative of a family of multisubunit receptors that utilize Src-family kinases as proximal cytoplasmic effectors in signal transduction. Recent studies have shown that distinct receptor subunits mediate ligand and effector interactions and demonstrate that physical interaction with effectors, and their activation, is a function of a 26 amino acid motif found in multiple receptor subunits. Further, receptor ligation induces tyrosine phosphorylation of this motif, and this initiates SH2-mediated association and activation of Src-family kinases and, apparently, ZAP70 kinases. Finally, this association triggers SH3-mediated binding of Lyn and Fyn to PI3-K, resulting in PI3-K activation. An integrated model of signal transduction is presented.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Humans
- Models, Biological
- Molecular Sequence Data
- Receptors, Antigen/genetics
- Receptors, Antigen/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- J C Cambier
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | |
Collapse
|
29
|
Hall CG, Sancho J, Terhorst C. Reconstitution of T cell receptor zeta-mediated calcium mobilization in nonlymphoid cells. Science 1993; 261:915-8. [PMID: 8346442 DOI: 10.1126/science.8346442] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
T cell antigen receptor (TCR) activation involves interactions between receptor subunits and nonreceptor protein tyrosine kinases (PTKs). Early steps in signaling through the zeta chain of the TCR were examined in transfected COS-1 cells. Coexpression of the PTK p59fynT, but not p56lck, with zeta or with a homodimeric TCR beta-zeta fusion protein produced tyrosine phosphorylation of both zeta and phospholipase C (PLC)-gamma 1, as well as calcium ion mobilization in response to receptor cross-linking. CD45 coexpression enhanced these effects. No requirement for the PTKZAP-70 was observed. Thus, p59fynT may link zeta directly to the PLC-gamma 1 activation pathway.
Collapse
Affiliation(s)
- C G Hall
- Division of Immunology, Beth Israel Hospital, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|