1
|
Du Y, Zhang H, Hu H. Ubiquitination of Immune System and Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:35-45. [PMID: 39546134 DOI: 10.1007/978-981-97-7288-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ubiquitination is a post-translational modification mechanism which regulates a variety of signaling pathways and crucial biological processes. It has long been known that ubiquitination regulates the fundamental cellular processes through the induction of proteasomal degradation of target proteins. Meanwhile, the nondegradative types of polyubiquitination modification have been appreciated as important regulatory machinery by modulating the activity or subcellular localization of key signaling proteins. The function of ubiquitination plays an important role in immune responses, which helps to maintain the stability of the internal environment and to control over protein stability and function and are thus critical for the regulation of both innate and adaptive immunity. Furthermore, ubiquitination also regulates both tumor-suppressing and tumor-promoting pathways in cancer. In this review, we will discuss recent progress regarding how ubiquitination regulates immune responses, focusing on Toll-like receptors signaling in innate immunity, T cell activation, TCR signaling, and tumor immunotherapy.
Collapse
Affiliation(s)
- Yizhou Du
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
2
|
Agosto LM, Mallory MJ, Ferretti MB, Blake D, Krick KS, Gazzara MR, Garcia BA, Lynch KW. Alternative splicing of HDAC7 regulates its interaction with 14-3-3 proteins to alter histone marks and target gene expression. Cell Rep 2023; 42:112273. [PMID: 36933216 PMCID: PMC10113009 DOI: 10.1016/j.celrep.2023.112273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Chromatin regulation and alternative splicing are both critical mechanisms guiding gene expression. Studies have demonstrated that histone modifications can influence alternative splicing decisions, but less is known about how alternative splicing may impact chromatin. Here, we demonstrate that several genes encoding histone-modifying enzymes are alternatively spliced downstream of T cell signaling pathways, including HDAC7, a gene previously implicated in controlling gene expression and differentiation in T cells. Using CRISPR-Cas9 gene editing and cDNA expression, we show that differential inclusion of HDAC7 exon 9 controls the interaction of HDAC7 with protein chaperones, resulting in changes to histone modifications and gene expression. Notably, the long isoform, which is induced by the RNA-binding protein CELF2, promotes expression of several critical T cell surface proteins including CD3, CD28, and CD69. Thus, we demonstrate that alternative splicing of HDAC7 has a global impact on histone modification and gene expression that contributes to T cell development.
Collapse
Affiliation(s)
- Laura M Agosto
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davia Blake
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keegan S Krick
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Genomic and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Henriques SN, Oliveira L, Santos RF, Carmo AM. CD6-mediated inhibition of T cell activation via modulation of Ras. Cell Commun Signal 2022; 20:184. [PMID: 36414966 PMCID: PMC9682754 DOI: 10.1186/s12964-022-00998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND CD6 is one of many cell surface receptors known to regulate signal transduction upon T cell activation. However, whether CD6 mediates costimulatory or inhibitory signals is controversial. When T cells engage with antigen presenting cells (APCs), CD6 interacts with its ligand CD166 at the cell-cell interface while the cytosolic tail assembles a complex signalosome composed of adaptors and effector enzymes, that may either trigger activating signaling cascades, or instead modulate the intensity of signaling. Except for a few cytosolic adaptors that connect different components of the CD6 signalosome, very little is known about the mechanistic effects of the cytosolic effectors that bind CD6. METHODS Jurkat model T cells were transfected to express wild-type (WT) CD6, or a cytoplasmic truncation, signaling-disabled mutant, CD6Δcyt. The two resulting cell lines were directly activated by superantigen (sAg)-loaded Raji cells, used as APCs, to assess the net signaling function of CD6. The Jurkat cell lines were further adapted to express a FRET-based unimolecular HRas biosensor that reported the activity of this crucial GTPase at the immunological synapse. RESULTS We show that deletion of the cytosolic tail of CD6 enhances T-cell responses, indicating that CD6 restrains T-cell activation. One component of the CD6-associated inhibitory apparatus was found to be the GTPase activating protein of Ras (RasGAP), that we show to associate with CD6 in a phosphorylation-dependent manner. The FRET HRas biosensor that we developed was demonstrated to be functional and reporting the activation of the T cell lines. This allowed to determine that the presence of the cytosolic tail of CD6 results in the down-regulation of HRas activity at the immunological synapse, implicating this fundamental GTPase as one of the targets inhibited by CD6. CONCLUSIONS This study provides the first description of a mechanistic sequence of events underlying the CD6-mediated inhibition of T-cell activation, involving the modulation of the MAPK pathway at several steps, starting with the coupling of RasGAP to the CD6 signalosome, the repression of the activity of Ras, and culminating in the reduction of ERK1/2 phosphorylation and of the expression of the T-cell activation markers CD69 and IL-2R α chain. Video abstract.
Collapse
Affiliation(s)
- Sónia N. Henriques
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal ,grid.5808.50000 0001 1503 7226Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F. Santos
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Alexandre M. Carmo
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
4
|
Pathak S, Gokhroo A, Kumar Dubey A, Majumdar S, Gupta S, Almeida A, Mahajan GB, Kate A, Mishra P, Sharma R, Kumar S, Vishwakarma R, Balakrishnan A, Atreya H, Nandi D. 7-Hydroxy Frullanolide, a sesquiterpene lactone, increases intracellular calcium amounts, lowers CD4 + T cell and macrophage responses, and ameliorates DSS-induced colitis. Int Immunopharmacol 2021; 97:107655. [PMID: 33901737 DOI: 10.1016/j.intimp.2021.107655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Sesquiterpene lactones are a class of anti-inflammatory molecules obtained from plants belonging to the Asteraceae family. In this study, the effects of 7-hydroxy frullanolide (7HF), a sesquiterpene lactone, in inhibiting CD4+ T cell and peritoneal macrophage responses were investigated. 7HF, in a dose dependent manner, lowers CD69 upregulation, IL2 production and CD4+ T cell cycling upon activation with the combination of anti-CD3 and anti-CD28. Further mechanistic studies demonstrated that 7HF, at early time points, increases intracellular Ca2+ amounts, over and above the levels induced upon activation. The functional relevance of 7HF-induced Ca2+ increase was confirmed using sub-optimal amounts of BAPTA, an intracellular Ca2+ chelator, which lowers lactate and rescues CD4+ T cell cycling. In addition, 7HF lowers T cell cycling with the combination of PMA and Ionomycin. However, 7HF increases CD4+ T cell cycling with sub-optimal activating signals: only PMA or anti-CD3. Furthermore, LPS-induced nitrite and IL6 production by peritoneal macrophages is inhibited by 7HF in a Ca2+-dependent manner. Studies with Ca2+ channel inhibitors, Ruthenium Red and 2-Aminoethoxydiphenyl borate, lowers the inhibitory effects of 7HF on CD4+ T cell and macrophage responses. In silico studies demonstrated that 7HF binds to Ca2+ channels, TRPV1, IP3R and SERCA, which is mechanistically important. Finally, intraperitoneal administration of 7HF lowers serum inflammatory cytokines, IFNγ and IL6, and reduces the effects of DSS-induced colitis with respect to colon length and colon damage. Overall, this study sheds mechanistic light on the anti-inflammatory potential of 7HF, a natural plant compound, in lowering immune responses.
Collapse
Affiliation(s)
- Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Abhijeet Gokhroo
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashim Kumar Dubey
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Souradeep Gupta
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Asha Almeida
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Girish B Mahajan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Abhijeet Kate
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Prabhu Mishra
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Rajiv Sharma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Sanjay Kumar
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Ram Vishwakarma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Arun Balakrishnan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Hanudatta Atreya
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Agrahari G, Sah SK, Bang CH, Kim YH, Kim TY. Superoxide Dismutase 3 Controls the Activation and Differentiation of CD4 +T Cells. Front Immunol 2021; 12:628117. [PMID: 33717151 PMCID: PMC7947887 DOI: 10.3389/fimmu.2021.628117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide dismutase 3 (SOD3), a well-known antioxidant has been shown to possess immunomodulatory properties through inhibition of T cell differentiation. However, the underlying inhibitory mechanism of SOD3 on T cell differentiation is not well understood. In this study, we investigated the effect of SOD3 on anti-CD3/CD28- or phorbol myristate acetate (PMA) and ionomycin (ION)-mediated activation of mouse naive CD4+ T cells. Our data showed that SOD3 suppressed the expression of activation-induced surface receptor proteins such as CD25, and CD69, and cytokines production. Similarly, SOD3 was found to reduce CD4+T cells proliferation and suppress the activation of downstream pathways such as ERK, p38, and NF-κB. Moreover, naïve CD4+T cells isolated from global SOD3 knock-out mice showed higher expression of CD25, CD69, and CD71, IL-2 production, proliferation, and downstream signals compared to wild-type CD4+T cells. Whereas, the use of DETCA, a known inhibitor of SOD3 activity, found to nullify the inhibitory effect of SOD3 on CD4+T cell activation of both SOD3 KO and wild-type mice. Furthermore, the expression of surface receptor proteins, IL-2 production, and downstream signals were also reduced in Th2 and Th17 differentiated cells upon SOD3 treatment. Overall, our data showed that SOD3 can attenuate CD4+T cell activation through modulation of the downstream signalings and restrict CD4+T cell differentiation. Therefore, SOD3 can be a promising therapeutic for T cell-mediated disorders.
Collapse
Affiliation(s)
- Gaurav Agrahari
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shyam Kishor Sah
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, United States
| | - Chul Hwan Bang
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeong Ho Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
6
|
Han P, Yosinski S, Kobos ZA, Chaudhury R, Lee JS, Fahmy TM, Reed MA. Continuous Label-Free Electronic Discrimination of T Cells by Activation State. ACS NANO 2020; 14:8646-8657. [PMID: 32530598 DOI: 10.1021/acsnano.0c03018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sensitivity and speed with which the immune system reacts to host disruption is unrivaled by any detection method for pathogenic biomarkers or infectious signatures. Engagement of cellular immunity in response to infections or cancer is contingent upon activation and subsequent cytotoxic activity by T cells. Thus, monitoring T cell activation can reliably serve as a metric for disease diagnosis as well as therapeutic prognosis. Rapid and direct quantification of T cell activation states, however, has been hindered by challenges associated with antigen target identification, labeling requirements, and assay duration. Here we present an electronic, label-free method for simultaneous separation and evaluation of T cell activation states. Our device utilizes a microfluidic design integrated with nanolayered electrode structures for dielectrophoresis (DEP)-driven discrimination of activated vs naïve T cells at single-cell resolution and demonstrates rapid (<2 min) separation of T cells at high single-pass efficiency as quantified by an on-chip Coulter counter module. Our device represents a microfluidic tool for electronic assessment of immune activation states and, hence, a portable diagnostic for quantitative evaluation of immunity and disease state. Further, its ability to achieve label-free enrichment of activated immune cells promises clinical utility in cell-based immunotherapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Shari Yosinski
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Zachary A Kobos
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Rabib Chaudhury
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Tarek M Fahmy
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Mark A Reed
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Sun YX, Li H, Feng Q, Li X, Yu YY, Zhou LW, Gao Y, Li GS, Ren J, Ma CH, Gao CJ, Peng J. Dysregulated miR34a/diacylglycerol kinase ζ interaction enhances T-cell activation in acquired aplastic anemia. Oncotarget 2018; 8:6142-6154. [PMID: 28008152 PMCID: PMC5351619 DOI: 10.18632/oncotarget.14046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023] Open
Abstract
Acquired aplastic anemia is an idiopathic paradigm of human bone marrow failure syndrome, which involves active destruction of hematopoietic stem cells and progenitors by cytotoxic T cells in the bone marrow. Aberrant expression of microRNAs in T cells has been shown to lead to development of certain autoimmune diseases. In the present study, we performed a microarray analysis of miRNA expression in bone marrow CD3+ T cells from patients with aplastic anemia and healthy controls. Overexpression of miR34a and underexpression of its target gene diacylglycerol kinase (DGK) ζ in bone marrow mononuclear cells were validated in 41 patients and associated with the severity of aplastic anemia. Further, the level of miR34a was higher in naïve T cells from patients than from controls. The role of miR34a and DGKζ in aplastic anemia was investigated in a murine model of immune-mediated bone marrow failure using miR34a−/− mice. After T-cell receptor stimulation in vitro, lymph node T cells from miR34a−/− mice demonstrated reduced activation and proliferation accompanied with a less profound down-regulation of DGKζ expression and decreased ERK phosphorylation compared to those from wild-type C57BL6 control mice. Infusion of 5 × 106 miR34a−/− lymph node T cells into sublethally irradiated CB6F1 recipients led to increased Lin-Sca1+CD117+ cells and less vigorous expansion of CD8+ T cells than injection of same number of wild-type lymph node cells. Our study demonstrates that the miR34a/DGKζ dysregulation enhances T-cell activation in aplastic anemia and targeting miR34a may represent a novel molecular therapeutic approach for patients with aplastic anemia.
Collapse
Affiliation(s)
- Yuan-Xin Sun
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Li
- Department of Rheumatology, People's Hospital of Bao'an, Shenzhen, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xin Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Ying-Yi Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Li-Wei Zhou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Sheng Li
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Juan Ren
- Department of Hematology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chun-Hong Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Cheng-Jiang Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, China
| |
Collapse
|
8
|
Arbulo-Echevarria MM, Narbona-Sánchez I, Fernandez-Ponce CM, Vico-Barranco I, Rueda-Ygueravide MD, Dustin ML, Miazek A, Duran-Ruiz MC, García-Cózar F, Aguado E. A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling. Front Immunol 2018; 9:115. [PMID: 29456532 PMCID: PMC5801411 DOI: 10.3389/fimmu.2018.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.
Collapse
Affiliation(s)
- Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Cecilia M Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | | | - Michael L Dustin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, The University of Oxford, Headington, United Kingdom
| | - Arkadiusz Miazek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mª Carmen Duran-Ruiz
- Department of Biomedicine, Biotechnology and Public Health (Biochemistry), University of Cádiz, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
9
|
Klemann C, Ammann S, Heizmann M, Fuchs S, Bode SF, Heeg M, Fuchs H, Lehmberg K, Zur Stadt U, Roll C, Vraetz T, Speckmann C, Lorenz MR, Schwarz K, Rohr J, Feske S, Ehl S. Hemophagocytic lymphohistiocytosis as presenting manifestation of profound combined immunodeficiency due to an ORAI1 mutation. J Allergy Clin Immunol 2017. [PMID: 28633876 DOI: 10.1016/j.jaci.2017.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Christian Klemann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Heizmann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian F Bode
- Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Fuchs
- Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Lehmberg
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Zur Stadt
- Center for Diagnostic, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Claudia Roll
- Vest Children's Hospital Datteln, University Witten-Herdecke, Datteln, Germany
| | - Thomas Vraetz
- Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Ulm, Germany
| | - Jan Rohr
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Bacchelli C, Moretti FA, Carmo M, Adams S, Stanescu HC, Pearce K, Madkaikar M, Gilmour KC, Nicholas AK, Woods CG, Kleta R, Beales PL, Qasim W, Gaspar HB. Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol 2016; 139:634-642.e5. [PMID: 27522155 DOI: 10.1016/j.jaci.2016.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.
Collapse
Affiliation(s)
- Chiara Bacchelli
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Federico A Moretti
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Marlene Carmo
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Bone Marrow Transplantation, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Horia C Stanescu
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Kerra Pearce
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Manisha Madkaikar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohematology, ICMR, Mumbai, India
| | - Kimberly C Gilmour
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adeline K Nicholas
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - C Geoffrey Woods
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert Kleta
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Phil L Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Waseem Qasim
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom.
| |
Collapse
|
11
|
Doucette CD, Rodgers G, Liwski RS, Hoskin DW. Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes. J Cell Biochem 2016; 116:2577-88. [PMID: 25900378 DOI: 10.1002/jcb.25202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/15/2015] [Indexed: 12/27/2022]
Abstract
Piperine is a major alkaloid component of black pepper (Piper nigrum Linn), which is a widely consumed spice. Here, we investigated the effect of piperine on mouse T lymphocyte activation. Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Carolyn D Doucette
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Gemma Rodgers
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Robert S Liwski
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - David W Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
12
|
Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, Sunderam U, Fu SM, Srinivasan R, Kuriyan J, Brenner SE, Weiss A, Puck JM. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med 2016; 213:155-65. [PMID: 26783323 PMCID: PMC4749924 DOI: 10.1084/jem.20150888] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Chan et al. describe a combination of alleles with hypomorphic and activating mutations in the T cell signaling molecule ZAP-70 in a patient with autoimmunity. A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients’ combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70–associated autoimmune disease.
Collapse
Affiliation(s)
- Alice Y Chan
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Divya Punwani
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Theresa A Kadlecek
- Department of Medicine, Rosalind Russell and Ephraim Engleman Rheumatology Research Center and Howard Hughes Medical Institute, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Morton J Cowan
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Jean L Olson
- Department of Pathology, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Erin F Mathes
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143 Department of Dermatology, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Uma Sunderam
- Innovation Labs, Tata Consulting Services, Hyderabad 50019, Telangana, India
| | - Shu Man Fu
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Rajgopal Srinivasan
- Innovation Labs, Tata Consulting Services, Hyderabad 50019, Telangana, India
| | - John Kuriyan
- Department of Molecular and Cell Biology and Department of Chemistry, California Institute of Quantitative Biosciences and Howard Hughes Medical Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Arthur Weiss
- Department of Medicine, Rosalind Russell and Ephraim Engleman Rheumatology Research Center and Howard Hughes Medical Institute, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| |
Collapse
|
13
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:448-458. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Frederike A Hartl
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - O Sascha Yousefi
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Esmeralda Beck-Garcia
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Boonruang Khamsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Susana Minguet
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Wolfgang W Schamel
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany;
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
14
|
Comparative effect of two pan-class I PI3K inhibitors used as anticancer drugs on human T cell function. Int Immunopharmacol 2015; 28:675-85. [DOI: 10.1016/j.intimp.2015.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023]
|
15
|
Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol 2014; 15:875-883. [PMID: 25108421 PMCID: PMC4148831 DOI: 10.1038/ni.2958] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
T cells must be tolerant of self antigens to avoid autoimmunity but responsive to foreign antigens to provide protection against infection. We found that in both naive T cells and effector T cells, the tyrosine phosphatase PTPN22 limited signaling via the T cell antigen receptor (TCR) by weak agonists and self antigens while not impeding responses to strong agonist antigens. T cells lacking PTPN22 showed enhanced formation of conjugates with antigen-presenting cells pulsed with weak peptides, which led to activation of the T cells and their production of inflammatory cytokines. This effect was exacerbated under conditions of lymphopenia, with the formation of potent memory T cells in the absence of PTPN22. Our data address how loss-of-function PTPN22 alleles can lead to the population expansion of effector and/or memory T cells and a predisposition to human autoimmunity.
Collapse
Affiliation(s)
- Robert J. Salmond
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Rebecca J. Brownlie
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Vicky L. Morrison
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| |
Collapse
|
16
|
Chou PC, Oh WJ, Wu CC, Moloughney J, Rüegg MA, Hall MN, Jacinto E, Werlen G. Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2014; 193:1162-70. [PMID: 24981454 DOI: 10.4049/jimmunol.1303162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An efficient immune response relies on the presence of T cells expressing a functional TCR. Whereas the mechanisms generating TCR diversity for antigenic recognition are well defined, what controls its surface expression is less known. In this study, we found that deletion of the mammalian target of rapamycin complex (mTORC) 2 component rictor at early stages of T cell development led to aberrant maturation and increased proteasomal degradation of nascent TCRs. Although CD127 expression became elevated, the levels of TCRs as well as CD4, CD8, CD69, Notch, and CD147 were significantly attenuated on the surface of rictor-deficient thymocytes. Diminished expression of these receptors led to suboptimal signaling, partial CD4(-)CD8(-) double-negative 4 (CD25(-)CD44(-)) proliferation, and CD4(+)CD8(+) double-positive activation as well as developmental blocks at the CD4(-)CD8(-) double-negative 3 (CD25(+)CD44(-)) and CD8-immature CD8(+) single-positive stages. Because CD147 glycosylation was also defective in SIN1-deficient fibroblasts, our findings suggest that mTORC2 is involved in the co/posttranslational processing of membrane receptors. Thus, mTORC2 impacts development via regulation of the quantity and quality of receptors important for cell differentiation.
Collapse
Affiliation(s)
- Po-Chien Chou
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Won Jun Oh
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Chang-Chih Wu
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Joseph Moloughney
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Markus A Rüegg
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland; and
| | - Michael N Hall
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland; and
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854;
| | - Guy Werlen
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
17
|
González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrián D, Morlino G, Blanco-Berrocal M, Osorio FG, Freije JMP, López-Otín C, Sánchez-Madrid F, Andrés V. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 2014; 7:ra37. [PMID: 24757177 DOI: 10.1126/scisignal.2004872] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In many cell types, nuclear A-type lamins regulate multiple cellular functions, including higher-order genome organization, DNA replication and repair, gene transcription, and signal transduction; however, their role in specialized immune cells remains largely unexplored. We showed that the abundance of A-type lamins was almost negligible in resting naïve T lymphocytes, but was increased upon activation of the T cell receptor (TCR). The increase in lamin-A was an early event that accelerated formation of the immunological synapse between T cells and antigen-presenting cells. Polymerization of F-actin in T cells is a critical step for immunological synapse formation, and lamin-A interacted with the linker of nucleoskeleton and cytoskeleton (LINC) complex to promote F-actin polymerization. We also showed that lamin-A expression accelerated TCR clustering and led to enhanced downstream signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, as well as increased target gene expression. Pharmacological inhibition of the ERK pathway reduced lamin-A-dependent T cell activation. Moreover, mice lacking lamin-A in immune cells exhibited impaired T cell responses in vivo. These findings underscore the importance of A-type lamins for TCR activation and identify lamin-A as a previously unappreciated regulator of the immune response.
Collapse
Affiliation(s)
- José María González-Granado
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Silvestre-Roig
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vera Rocha-Perugini
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Laia Trigueros-Motos
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Danay Cibrián
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Giulia Morlino
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Marta Blanco-Berrocal
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fernando Garcia Osorio
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | | | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Vicente Andrés
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
18
|
Daley SR, Coakley KM, Hu DY, Randall KL, Jenne CN, Limnander A, Myers DR, Polakos NK, Enders A, Roots C, Balakishnan B, Miosge LA, Sjollema G, Bertram EM, Field MA, Shao Y, Andrews TD, Whittle B, Barnes SW, Walker JR, Cyster JG, Goodnow CC, Roose JP. Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios⁺ T cells and autoantibodies. eLife 2013; 2:e01020. [PMID: 24336796 PMCID: PMC3858598 DOI: 10.7554/elife.01020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/01/2013] [Indexed: 12/17/2022] Open
Abstract
Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1(Anaef), with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1(Anaef) mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44(hi) Helios(+) PD-1(+) CD4(+) T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1(Anaef) is mostly normal in vivo, although CD44 is overexpressed on naïve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1(Anaef) naïve CD4(+) T cells. CD44 expression, CD4(+) T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1(Anaef)Mtor(chino) double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1(Anaef) T cell dysregulation. DOI: http://dx.doi.org/10.7554/eLife.01020.001.
Collapse
Affiliation(s)
- Stephen R Daley
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Kristen M Coakley
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Daniel Y Hu
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Katrina L Randall
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Department of Immunology, Canberra Hospital and ANU Medical School, The Australian National University, Canberra, Australia
| | - Craig N Jenne
- Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Canada
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Noelle K Polakos
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Anselm Enders
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Carla Roots
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Bhavani Balakishnan
- Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lisa A Miosge
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Geoff Sjollema
- Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Edward M Bertram
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Matthew A Field
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Yunli Shao
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - T Daniel Andrews
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - S Whitney Barnes
- Department of Genetics, Genomics Institute, Novartis Research Foundation, San Diego, United States
| | - John R Walker
- Department of Genetics, Genomics Institute, Novartis Research Foundation, San Diego, United States
| | - Jason G Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
19
|
Litvinova LS, Sokhonevich NA, Gutsol AA, Kofanova KA. The influence of immunoregulatory cytokines IL-2, IL-7, and IL-15 upon activation, proliferation, and apoptosis of immune memory T-cells in vitro. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13060072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Wheeler ML, Dong MB, Brink R, Zhong XP, DeFranco AL. Diacylglycerol kinase ζ limits B cell antigen receptor-dependent activation of ERK signaling to inhibit early antibody responses. Sci Signal 2013; 6:ra91. [PMID: 24129701 DOI: 10.1126/scisignal.2004189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Signaling downstream of the B cell antigen receptor (BCR) is tightly regulated to enable cells to gauge the strength and duration of antigen-receptor interactions and to respond appropriately. We investigated whether metabolism of the second messenger diacylglycerol (DAG) by members of the family of DAG kinases (DGKs) played a role in modulating the magnitude of signaling by DAG downstream of the BCR. In the absence of DGKζ, the threshold for BCR signaling, measured as activation of the Ras-extracellular signal-regulated kinase (ERK) pathway, was markedly reduced in mature follicular B cells, which resulted in enhanced responses to antigen in vitro and in vivo. Inhibition of DAG signaling by DGKζ limited the number of antibody-secreting cells that were generated early in response to T cell-independent type 2 antigens, as well as to T cell-dependent antigens. Furthermore, the effect of loss of DGKζ closely resembled the effect of increasing the affinity of the BCR for antigen during the T cell-dependent antibody response. These results suggest that the magnitude of DAG signaling is important for translating the affinity of the BCR for antigen into the amount of antibody produced during the early stages of an immune response.
Collapse
Affiliation(s)
- Matthew L Wheeler
- 1Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
21
|
Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS. Mol Cell Biol 2013; 33:2470-84. [DOI: 10.1128/mcb.01593-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation.
Collapse
|
22
|
Dillon TJ, Takahashi M, Li Y, Tavisala S, Murray SE, Moran AE, Parker DC, Stork PJS. B-Raf is required for positive selection and survival of DP cells, but not for negative selection of SP cells. Int Immunol 2013; 25:259-69. [PMID: 23334952 DOI: 10.1093/intimm/dxs104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The duration of signaling through the MAP kinase (or ERK pathway) cascade has been implicated in thymic development, particularly positive and negative selection. In T cells, two isoforms of the MAP kinase kinase kinase Raf function to transmit signals from the T-cell receptor to ERK: C-Raf and B-Raf. In this study, we conditionally ablated B-Raf expression within thymocytes to assess the effects on ERK activation and thymocyte development. The complete loss of B-Raf is accompanied by a dramatic loss of ERK activation in both the double positive (DP) and single positive (SP) thymocytes, as well as peripheral splenocytes. There was a significant decrease in the cellularity of KO thymi, largely due to a loss of pre-selected DP cells, a decrease in DP cells undergoing positive selection, and a defect in SP maturation. B-Raf plays significant roles in survival of DP thymocytes and function of SP cells in the periphery. Surprisingly, we saw no effect of B-Raf deficiency on negative selection of autoreactive SP thymocytes, despite the greatly reduced ERK activation in these cells.
Collapse
Affiliation(s)
- Tara J Dillon
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Martinez NM, Pan Q, Cole BS, Yarosh CA, Babcock GA, Heyd F, Zhu W, Ajith S, Blencowe BJ, Lynch KW. Alternative splicing networks regulated by signaling in human T cells. RNA (NEW YORK, N.Y.) 2012; 18:1029-40. [PMID: 22454538 PMCID: PMC3334690 DOI: 10.1261/rna.032243.112] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/15/2012] [Indexed: 05/24/2023]
Abstract
The formation and execution of a productive immune response requires the maturation of competent T cells and a robust change in cellular activity upon antigen challenge. Such changes in cellular function depend on regulated alterations to protein expression. Previous research has focused on defining transcriptional changes that regulate protein expression during T-cell maturation and antigen stimulation. Here, we globally analyze another critical process in gene regulation during T-cell stimulation, alternative splicing. Specifically, we use RNA-seq profiling to identify 178 exons in 168 genes that exhibit robust changes in inclusion in response to stimulation of a human T-cell line. Supporting an important role for the global coordination of alternative splicing following T-cell stimulation, these signal-responsive exons are significantly enriched in genes with functional annotations specifically related to immune response. The vast majority of these genes also exhibit differential alternative splicing between naive and activated primary T cells. Comparison of the responsiveness of splicing to various stimuli in the cultured and primary T cells further reveals at least three distinct networks of signal-induced alternative splicing events. Importantly, we find that each regulatory network is specifically associated with distinct sequence features, suggesting that they are controlled by independent regulatory mechanisms. These results thus provide a basis for elucidating mechanisms of signal pathway-specific regulation of alternative splicing during T-cell stimulation.
Collapse
Affiliation(s)
- Nicole M. Martinez
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | - Qun Pan
- Banting and Best Department of Medical Research and
| | - Brian S. Cole
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | - Christopher A. Yarosh
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | - Grace A. Babcock
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | - Florian Heyd
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | - William Zhu
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | - Sandya Ajith
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | - Benjamin J. Blencowe
- Banting and Best Department of Medical Research and
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| |
Collapse
|
24
|
Rosenthal KM, Edwards LJ, Sabatino JJ, Hood JD, Wasserman HA, Zhu C, Evavold BD. Low 2-dimensional CD4 T cell receptor affinity for myelin sets in motion delayed response kinetics. PLoS One 2012; 7:e32562. [PMID: 22412888 PMCID: PMC3296730 DOI: 10.1371/journal.pone.0032562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/31/2012] [Indexed: 01/12/2023] Open
Abstract
T cells recognizing self-peptides that mediate autoimmune disease and those that are responsible for efficacious immunity against pathogens may differ in affinity for antigen due to central and peripheral tolerance mechanisms. Here we utilize prototypical self-reactive (myelin) and viral-specific (LCMV) T cells from T cell receptor (TCR) transgenic mice (2D2 and SMARTA, respectively) to explore affinity differences. The T cells responsive to virus possessed >10,000 fold higher 2D affinity as compared to the self-reactive T cells. Despite their dramatically lower affinity for their cognate ligand, 2D2 T cells respond with complete, albeit delayed, activation (proliferation and cytokine production). SMARTA activation occurs rapidly, achieving peak phosphorylation of p38 (1 minute), Erk (30 minutes), and Jun (3 hours) as well as CD69 and CD25 upregulation (3 and 6 hours, respectively), with a corresponding early initiation of proliferation. 2D2 stimulation with MOG results in altered signaling--no phospho-Erk or phospho-p38 accumulation, significantly delayed activation kinetics of Jun (12 hours), and delayed but sustained SHP-1 activity--as well as delayed CD69 and CD25 expression (12-24 hours), and slow initiation of proliferation. This delay was not intrinsic to the 2D2 T cells, as a more potent antigen with >100-fold increased 2D affinity restored rapid response kinetics in line with those identified for the viral antigen. Taken together, these data demonstrate that time can offset low TCR affinity to attain full activation and suggest a mechanism by which low affinity T cells participate in autoimmune disease.
Collapse
Affiliation(s)
- Kristen M. Rosenthal
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Lindsay J. Edwards
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Joseph J. Sabatino
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Jennifer D. Hood
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Heather A. Wasserman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Nyakeriga AM, Ying J, Shire NJ, Fichtenbaum CJ, Chougnet CA. Highly active antiretroviral therapy in patients infected with human immunodeficiency virus increases CD40 ligand expression and IL-12 production in cells ex vivo. Viral Immunol 2011; 24:281-9. [PMID: 21830900 DOI: 10.1089/vim.2010.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Highly active anti-retroviral therapy (HAART) restores CD4(+) T-cell numbers in the periphery; however, its efficacy in restoring functional immunity is not fully elucidated. Here we evaluated longitudinal changes in the expression of several key markers of T-cell activation, namely CD40 ligand (CD154), OX40 (CD134), or CD69, after anti-CD3/CD28 activation, as well as levels of IL-12 production after Staphylococcus aureus Cowan stimulation in 28 HIV-infected adult patients. Patients were followed up to 12 mo post-HAART initiation. Viral burdens and CD4 cell counts were measured at the same time points. A control group of 15 HIV-uninfected adult subjects was included for comparison. Significant increases in CD40L and OX40 expression, but not of CD69 expression, were observed over time in the overall patient population, and more particularly in patients with baseline CD4 counts lower than or equal to 200 cells/μL, or those with baseline viral loads lower than or equal to 10(5) RNA copies/mL. Similar increases were seen for IL-12 production. Viral loads were inversely associated with CD40L expression or IL-12 production in a mixed linear model analysis, while CD4 counts were directly associated. CD40L expression and IL-12 production were significantly correlated. In conclusion, HAART-mediated control of viral replication led to partial restoration of CD40L upregulation/expression, and to increased IL-12 production, but the magnitude of the response depended on the baseline characteristics of the treated patients.
Collapse
Affiliation(s)
- Alice M Nyakeriga
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
26
|
Kong KF, Yokosuka T, Canonigo-Balancio AJ, Isakov N, Saito T, Altman A. A motif in the V3 domain of the kinase PKC-θ determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat Immunol 2011; 12:1105-12. [PMID: 21964608 PMCID: PMC3197934 DOI: 10.1038/ni.2120] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 08/29/2011] [Indexed: 12/13/2022]
Abstract
Protein kinase C-θ (PKC-θ) translocates to the center of the immunological synapse, but the underlying mechanism and its importance in T cell activation are unknown. Here we found that the V3 domain of PKC-θ was necessary and sufficient for localization to the immunological synapse mediated by association with the coreceptor CD28 and dependent on the kinase Lck. We identified a conserved proline-rich motif in V3 required for association with CD28 and immunological synapse localization. We found association with CD28 to be essential for PKC-θ-mediated downstream signaling and the differentiation of T helper type 2 cells (T(H)2 cells) and interleukin 17-producing helper T cells (T(H)17 cells) but not of T helper type 1 cells (T(H)1 cells). Ectopic expression of V3 sequestered PKC-θ from the immunological synapse and interfered with its functions. Our results identify a unique mode of CD28 signaling, establish a molecular basis for the immunological synapse localization of PKC-θ and indicate V3-based 'decoys' may be therapeutic modalities for T cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Kok-Fai Kong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
27
|
Markegard E, Trager E, Yang CWO, Zhang W, Weiss A, Roose JP. Basal LAT-diacylglycerol-RasGRP1 signals in T cells maintain TCRα gene expression. PLoS One 2011; 6:e25540. [PMID: 21966541 PMCID: PMC3180458 DOI: 10.1371/journal.pone.0025540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/07/2011] [Indexed: 12/18/2022] Open
Abstract
In contrast to the well-characterized T cell receptor (TCR) signaling pathways that induce genes that drive T cell development or polarization of naïve CD4 T cells into the diverse T(H)1, T(H)2, T(H)17 and T(reg) lineages, it is unclear what signals maintain specific gene expression in mature resting T cells. Resting T cells residing in peripheral lymphoid organs exhibit low-level constitutive signaling. Whereas tonic signals in B cells are known to be critical for survival, the roles of tonic signals in peripheral T cells are unknown. Here we demonstrate that constitutive signals in Jurkat T cell lines are transduced via the adapter molecule LAT and the Ras exchange factor RasGRP1 to maintain expression of TCRα mRNA and surface expression of the TCR/CD3 complex. Independent approaches of reducing basal activity through the LAT-diacylglycerol-RasGRP pathway led to reduced constitutive Ras-MEK-ERK signals and decreased TCRα mRNA and surface TCR expression in Jurkat cells. However, loss of TCR expression takes several days in these cell line experiments. In agreement with these in vitro approaches, inducible deletion of Lat in vivo results in reduced TCRα mRNA- and surface TCR-expression in a delayed temporal manner as well. Lastly, we demonstrate that loss of basal LAT-RasGRP signals appears to lead to silencing or repression of TCRα transcription. We postulate that basal LAT-diacylglycerol-RasGRP signals fulfill a regulatory function in peripheral T lymphocytes by maintaining proper gene expression programs.
Collapse
Affiliation(s)
- Evan Markegard
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Evan Trager
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Chih-wen Ou Yang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Arthur Weiss
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco, San Francisco, California, United States of America
| | - Jeroen P. Roose
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
28
|
Kremer KN, Kumar A, Hedin KE. G alpha i2 and ZAP-70 mediate RasGRP1 membrane localization and activation of SDF-1-induced T cell functions. THE JOURNAL OF IMMUNOLOGY 2011; 187:3177-85. [PMID: 21856938 DOI: 10.4049/jimmunol.1100206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RasGRP1, a Ras guanine-nucleotide exchange factor, critically mediates T cell development and function and controls immunodeficiency and autoimmunity. In this study, we describe a unique mechanism of mobilization and activation of RasGRP1 in response to SDF-1, a chemokine that signals via the G protein-coupled receptor CXCR4. Depletion of RasGRP1 impaired SDF-1-stimulated human T cell migration, expression of the activation marker CD69, and activation of the ERK MAPK pathway, indicating that RasGRP1 mediates SDF-1 functions. SDF-1 treatment caused RasGRP1 to localize to the plasma membrane to activate K-Ras and to the Golgi to activate N-Ras. These events were required for cellular migration and for ERK activation that mediates downstream transcriptional events in response to SDF-1. SDF-1-dependent localization of RasGRP1 did not require its diacylglycerol-binding domain, even though diacyglycerol was previously shown to mediate localization of RasGRP1 in response to Ag stimulation. This domain was, however, required for activity of RasGRP1 after its localization. Intriguingly, SDF-1 treatment of T cells induced the formation of a novel molecular signaling complex containing RasGRP1, Gαi2, and ZAP-70. Moreover, SDF-1-mediated signaling by both Gi proteins and ZAP-70 was required for RasGRP1 mobilization. In addition, RasGRP1 mobilization and activation in response to SDF-1 was dependent on TCR expression, suggesting that CXCR4 heterodimerizes with the TCR to couple to ZAP-70 and mobilize RasGRP1. These results increase understanding of the molecular mechanisms that mediate SDF-1 effects on T cells and reveal a novel mechanism of RasGRP1 regulation. Other G protein-coupled receptors may similarly contribute to regulation of RasGRP1.
Collapse
Affiliation(s)
- Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
29
|
The modulation of adaptive immune responses by bacterial zwitterionic polysaccharides. Int J Microbiol 2010; 2010:917075. [PMID: 21234388 PMCID: PMC3017905 DOI: 10.1155/2010/917075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/15/2010] [Accepted: 10/05/2010] [Indexed: 02/06/2023] Open
Abstract
The detection of pathogen-derived molecules as foreign particles by adaptive immune cells triggers T and B lymphocytes to mount protective cellular and humoral responses, respectively. Recent immunological advances elucidated that proteins and some lipids are the principle biological molecules that induce protective T cell responses during microbial infections. Polysaccharides are important components of microbial pathogens and many vaccines. However, research concerning the activation of the adaptive immune system by polysaccharides gained interest only recently. Traditionally, polysaccharides were considered to be T cell-independent antigens that did not directly activate T cells or induce protective immune responses. Here, we review several recent advances in “carbohydrate immunobiology”. A group of bacterial polysaccharides that are known as “zwitterionic polysaccharides (ZPSs)” were recently identified as potent immune modulators. The immunomodulatory effect of ZPSs required antigen processing and presentation by antigen presenting cells, the activation of CD4 T cells and subpopulations of CD8 T cells and the modulation of host cytokine responses. In this review, we also discuss the potential use of these unique immunomodulatory ZPSs in new vaccination strategies against chronic inflammatory conditions, autoimmunity, infectious diseases, allergies and asthmatic conditions.
Collapse
|
30
|
Vazquez BN, Laguna T, Carabana J, Krangel MS, Lauzurica P. CD69 gene is differentially regulated in T and B cells by evolutionarily conserved promoter-distal elements. THE JOURNAL OF IMMUNOLOGY 2009; 183:6513-21. [PMID: 19841192 DOI: 10.4049/jimmunol.0900839] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD69 is a type II C-type lectin involved in lymphocyte migration and cytokine secretion. CD69 expression represents one of the earliest available indicators of leukocyte activation and its rapid induction occurs through transcriptional activation. In this study we examined the molecular mechanism underlying mouse CD69 gene transcription in vivo in T and B cells. Analysis of the 45-kb region upstream of the CD69 gene revealed evolutionary conservation at the promoter and at four noncoding sequences (CNS) that were called CNS1, CNS2, CNS3, and CNS4. These regions were found to be hypersensitive sites in DNase I digestion experiments, and chromatin immunoprecipitation assays showed specific epigenetic modifications. CNS2 and CNS4 displayed constitutive and inducible enhancer activity in transient transfection assays in T cells. Using a transgenic approach to test CNS function, we found that the CD69 promoter conferred developmentally regulated expression during positive selection of thymocytes but could not support regulated expression in mature lymphocytes. Inclusion of CNS1 and CNS2 caused suppression of CD69 expression, whereas further addition of CNS3 and CNS4 supported developmental-stage and lineage-specific regulation in T cells but not in B cells. We concluded CNS1-4 are important cis-regulatory elements that interact both positively and negatively with the CD69 promoter and that differentially contribute to CD69 expression in T and B cells.
Collapse
Affiliation(s)
- Berta N Vazquez
- Departament de Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Genetic evidence for the role of Erk activation in a lymphoproliferative disease of mice. Proc Natl Acad Sci U S A 2009; 106:14502-7. [PMID: 19667175 DOI: 10.1073/pnas.0903894106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germline mutation of the linker for activation of T cells (LAT) gene at the phospholipase C-gamma1 (PLC-gamma1)-binding site leads to a fatal lymphoproliferative disease in mice. The hyperactivated T cells that develop in these mice have defective T-cell antigen receptor (TCR)-induced calcium flux but enhanced mitogen-activated protein kinase (MAPK) activation. We used genetic analysis to investigate genes whose products might suppress MAPK activation and lymphoproliferative disease in LAT mutant mice. B-lymphocyte adaptor molecule of 32 kDa (Bam32) is a known mediator of MAPK activation in B cells. We recently reported that in CD4(+) T cells, Bam32 deficiency decreased MAPK activation and specifically extracellular-signal-regulated kinase (Erk) signaling, following TCR stimulation. By crossing the Bam32 null mutation onto the LAT knock-in background, we found that the Bam32 null mutation delayed the onset and decreased the severity of lymphoproliferative disease in LAT knock-in mice. The pulmonary lymphocyte infiltration seen in LAT knock-in mice was also markedly decreased in double-mutant mice. Additionally, Erk activation was diminished in LAT knock-in Bam32 knockout CD4(+) T cells. To more accurately determine the role of Erk in this delay of lymphoproliferative disease, we also bred a transgenic, hypersensitive Erk allele (the Erk2 sevenmaker mutant) onto the LAT knock-in Bam32 knockout double-mutant background. These triple transgenic mice demonstrated a role for Erk activation in lymphoproliferative disease caused by the LAT knock-in mutation.
Collapse
|
32
|
Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J Cell Biol 2009; 185:521-34. [PMID: 19398758 PMCID: PMC2700390 DOI: 10.1083/jcb.200809136] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 04/08/2009] [Indexed: 01/09/2023] Open
Abstract
The interaction between a T cell and an antigen-presenting cell (APC) can trigger a signaling response that leads to T cell activation. Prior studies have shown that ligation of the T cell receptor (TCR) triggers a signaling cascade that proceeds through the coalescence of TCR and various signaling molecules (e.g., the kinase Lck and adaptor protein LAT [linker for T cell activation]) into microdomains on the plasma membrane. In this study, we investigated another ligand-receptor interaction (CD58-CD2) that facilities T cell activation using a model system consisting of Jurkat T cells interacting with a planar lipid bilayer that mimics an APC. We show that the binding of CD58 to CD2, in the absence of TCR activation, also induces signaling through the actin-dependent coalescence of signaling molecules (including TCR-zeta chain, Lck, and LAT) into microdomains. When simultaneously activated, TCR and CD2 initially colocalize in small microdomains but then partition into separate zones; this spatial segregation may enable the two receptors to enhance signaling synergistically. Our results show that two structurally distinct receptors both induce a rapid spatial reorganization of molecules in the plasma membrane, suggesting a model for how local increases in the concentration of signaling molecules can trigger T cell signaling.
Collapse
Affiliation(s)
- Yoshihisa Kaizuka
- The Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Adam D. Douglass
- The Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Santosh Vardhana
- Program in Molecular Pathogenesis, Helen and Martin Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Michael L. Dustin
- Program in Molecular Pathogenesis, Helen and Martin Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Ronald D. Vale
- The Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
33
|
Abstract
This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor
Collapse
Affiliation(s)
- Jennifer E Smith-Garvin
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
34
|
Wang X, Chen X, Rodenkirch L, Simonson W, Wernimont S, Ndonye RM, Veerapen N, Gibson D, Howell AR, Besra GS, Painter GF, Huttenlocher A, Gumperz JE. Natural killer T-cell autoreactivity leads to a specialized activation state. Blood 2008; 112:4128-38. [PMID: 18779390 PMCID: PMC2581981 DOI: 10.1182/blood-2008-05-157529] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/25/2008] [Indexed: 01/24/2023] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells that recognize specific microbial antigens and also display autoreactivity to self-antigens. The nature of NKT-cell autoreactive activation remains poorly understood. We show here that the mitogen-activated protein kinase (MAPK) pathway is operative during human NKT-cell autoreactive activation, but calcium signaling is severely impaired. This results in a response that is biased toward granulocyte macrophage colony-stimulating factor (GM-CSF) secretion because this cytokine requires extracellular signal-regulated kinase (ERK) signaling but is not highly calcium dependent, whereas interferon-gamma (IFN-gamma), interleukin (IL)-4, and IL-2 production are minimal. Autoreactive activation was associated with reduced migration velocity but did not induce arrest; thus, NKT cells retained the ability to survey antigen presenting cells (APCs). IL-12 and IL-18 stimulated autoreactively activated NKT cells to secrete IFN-gamma, and this was mediated by Janus kinase-signal transducers and activators of transcription (JAK-STAT)-dependent signaling without induction of calcium flux. This pathway did not require concurrent contact with CD1d(+) APCs but was strictly dependent on preceding autoreactive stimulation that induced ERK activation. In contrast, NKT-cell responses to the glycolipid antigen alpha-galactosyl ceramide (alpha-GalCer) were dampened by prior autoreactive activation. These results show that NKT-cell autoreactivity induces restricted cytokine secretion and leads to altered basal activation that potentiates innate responsiveness to costimulatory cytokines while modulating sensitivity to foreign antigens.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Blank N, Schiller M, Krienke S, Busse F, Schätz B, Ho AD, Kalden JR, Lorenz HM. Atorvastatin inhibits T cell activation through 3-hydroxy-3-methylglutaryl coenzyme A reductase without decreasing cholesterol synthesis. THE JOURNAL OF IMMUNOLOGY 2007; 179:3613-21. [PMID: 17785796 DOI: 10.4049/jimmunol.179.6.3613] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The localization of the TCR and other signaling molecules in membrane rafts (MR) is essential for the activation of T lymphocytes. MR are stabilized by sphingolipids and cholesterol. Activation of T lymphocytes leads to the confluence of small MR and the formation of an immunological synapse that is essential for sustained activation and proliferation. In this study, we investigated the effect of statins on MR and T cell activation in superantigen-stimulated human PBMC. Atorvastatin significantly inhibited cellular activation and proliferation. The binding of cholera toxin B subunit to isolated MR and to whole cells was inhibited by low doses of statins. Statins reduce the association of critical signaling proteins such as Lck and linker of activation in T cells with MR in stimulated T cells. The expression of activation markers CD69 and CD25 was inhibited. Several statin-mediated mechanisms, such as a lower stimulation with MHC-II, an inhibition of costimulation by direct binding of statins to LFA-1, a reduced secretion of cytokines, or a depletion of cellular cholesterol pools, were excluded. Inhibition of protein prenylation had a similar effect on T cell proliferation, suggesting that a reduced protein prenylation might contribute to the statin-mediated inhibition of T cell activation. Statins induce both lower levels of low-density lipoprotein cholesterol and inhibition of T cell activation, which might contribute to an inhibition of atherosclerosis.
Collapse
Affiliation(s)
- Norbert Blank
- Department of Medicine V, Division of Rheumatology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aspalter RM, Eibl MM, Wolf HM. Defective T-cell activation caused by impairment of the TNF receptor 2 costimulatory pathway in common variable immunodeficiency. J Allergy Clin Immunol 2007; 120:1193-200. [PMID: 17825894 DOI: 10.1016/j.jaci.2007.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND Patients with common variable immunodeficiency have defective T-cell activation after stimulation via T-cell receptor (TCR)/CD28 or by recall antigens. OBJECTIVE In the current study, we investigated whether TNF-receptor 2 (RII) costimulation, which is important for sufficient TCR/CD28 stimulation, was significantly impaired in common variable immunodeficiency (CVID). METHODS We studied T-cell activation events such as CD69 induction, calcium flux through store operated calcium channels, protein kinase C-theta translocation, and costimulation via TNF-RII compared with costimulation via CD28. RESULTS By measuring TNF receptor-associated factor 1 expression, which is induced by TCR alone and can be upregulated by either CD28 or TNF-RII costimulation, we show that costimulation via CD28 is intact, whereas costimulation via TNF-RII in these patients is impaired. The ras-activation pathway as tested by CD69 induction, calcium flux through store operated calcium channels, and protein kinase C-theta translocation were comparable in CVID and control T cells. CONCLUSION Taken together, these data indicate that the primary TCR signal as well as the signal derived from CD28 are normal but that TNF-RII-supported TCR costimulation is defective, most likely leading to impairment of an important amplification loop, such as TNF-RII augmented nuclear factor-kappaB activation. CLINICAL IMPLICATIONS The finding of defective TNF-RII cosignaling in patients with CVID may help to define the activation pathway affected, thus potentially leading to a characterization of the molecular defect and molecular diagnosis in at least some of these patients.
Collapse
|
37
|
RasGRF2, a guanosine nucleotide exchange factor for Ras GTPases, participates in T-cell signaling responses. Mol Cell Biol 2007; 27:8127-42. [PMID: 17923690 DOI: 10.1128/mcb.00912-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ras pathway is critical for the development and function of T lymphocytes. The stimulation of this GTPase in T cells occurs primarily through the Vav1- and phospholipase C-gamma1-dependent activation of RasGRP1, a diacylglycerol-responsive Ras GDP/GTP exchange factor. Here, we show that a second exchange factor, RasGRF2, also participates in T-cell signaling. RasGRF2 is expressed in T cells, translocates to immune synapses, activates Ras, and stimulates the transcriptional factor NF-AT (nuclear factor of activated T cells) through Ras- and phospholipase C-gamma1-dependent routes. T-cell receptor-, Vav1-, and Ca2+-elicited pathways synergize with RasGRF2 for NF-AT stimulation. The analysis of RasGRF2-deficient mice indicates that this protein is required for the induction of bona fide NF-AT targets such as the cytokines tumor necrosis factor alpha and interleukin 2, while it plays minor roles in Ras activation itself. The comparison of lymphocytes from Vav1-/-, Rasgrf2-/-, and Vav1-/-; Rasgrf2-/- mice demonstrates that the RasGRF2 pathway cooperates with the Vav1/RasGRP1 route in the blasting transformation and proliferation of mature T cells. These results identify RasGRF2 as an additional component of the signaling machinery involved in T-cell receptor- and NF-AT-mediated immune responses.
Collapse
|
38
|
Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 2007; 27:2732-45. [PMID: 17283063 PMCID: PMC1899892 DOI: 10.1128/mcb.01882-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras activation is crucial for lymphocyte development and effector function. Both T and B lymphocytes contain two types of Ras activators: ubiquitously expressed SOS and specifically expressed Ras guanyl nucleotide-releasing protein (RasGRP). The need for two activators is enigmatic since both are activated following antigen receptor stimulation. In addition, RasGRP1 appears to be dominant over SOS in an unknown manner. The crystal structure of SOS provides a clue: an unusual allosteric Ras-GTP binding pocket. Here, we demonstrate that RasGRP orchestrates Ras signaling in two ways: (i) by activating Ras directly and (ii) by facilitating priming of SOS with RasGTP that binds the allosteric pocket. Priming enhances SOS' in vivo activity and creates a positive RasGTP-SOS feedback loop that functions as a rheostat for Ras activity. Without RasGRP1, initiation of this loop is impaired because SOS' catalyst is its own product (RasGTP)-hence the dominance of RasGRP1. Introduction of an active Ras-like molecule (RasV12C40) in T- and B-cell lines can substitute for RasGRP function and enhance SOS' activity via its allosteric pocket. The unusual RasGRP-SOS interplay results in sensitive and robust Ras activation that cannot be achieved with either activator alone. We hypothesize that this mechanism enables lymphocytes to maximally respond to physiologically low levels of stimulation.
Collapse
Affiliation(s)
- Jeroen P Roose
- Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0795, USA
| | | | | | | | | |
Collapse
|
39
|
Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE, Hedin KE. CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 2006; 25:213-24. [PMID: 16919488 DOI: 10.1016/j.immuni.2006.06.015] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 04/26/2006] [Accepted: 06/06/2006] [Indexed: 11/17/2022]
Abstract
SDF-1alpha (CXCL12) signaling via its receptor, CXCR4, stimulates T cell chemotaxis and gene expression. The ZAP-70 tyrosine kinase critically mediates SDF-1alpha-dependent migration and prolonged ERK mitogen-activated protein (MAP) kinase activation in T cells. However, the molecular mechanism by which CXCR4 or other G protein-coupled receptors activate ZAP-70 has not been characterized. Here we show that SDF-1alpha stimulates the physical association of CXCR4 and the T cell receptor (TCR) and utilizes the ZAP-70 binding ITAM domains of the TCR for signal transduction. This pathway is responsible for several of the effects of SDF-1alpha on T cells, including prolonged ERK MAP kinase activity, increased intracellular calcium ion concentrations, robust AP-1 transcriptional activity, and SDF-1alpha costimulation of cytokine secretion. These results suggest new paradigms for understanding the effects of SDF-1alpha and other chemokines on immunity.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Calcium/metabolism
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/pharmacology
- Enzyme Activation/drug effects
- Humans
- Interleukin-10/metabolism
- Interleukin-2/metabolism
- Lectins, C-Type
- Models, Immunological
- Phosphotyrosine/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/immunology
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcription Factor AP-1/metabolism
- Transcriptional Activation/genetics
- ZAP-70 Protein-Tyrosine Kinase/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Hickman SP, Yang J, Thomas RM, Wells AD, Turka LA. Defective activation of protein kinase C and Ras-ERK pathways limits IL-2 production and proliferation by CD4+CD25+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2186-94. [PMID: 16887978 DOI: 10.4049/jimmunol.177.4.2186] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Naturally occurring CD4+CD25+ regulatory T cells (Tregs), which play an important role in the maintenance of self-tolerance, proliferate poorly and fail to produce IL-2 following stimulation in vitro with peptide-pulsed or anti-CD3-treated APCs. When TCR proximal and distal signaling events were examined in Tregs, we observed impairments in the amplitude and duration of tyrosine phosphorylation when compared with the response of CD4+CD25- T cells. Defects were also seen in the activity of phospholipase C-gamma and in signals downstream of this enzyme including calcium mobilization, NFAT, NF-kappaB, and Ras-ERK-AP-1 activation. Enhanced stimulation of diacylglycerol-dependent pathways by inhibition of diacylglycerol metabolism could overcome the "anergic state" and support the ability of Tregs to up-regulate CD69, produce IL-2, and proliferate. Our results demonstrate that Tregs maintain their hyporesponsive state by suppressing the induction and propagation of TCR-initiated signals to control the accumulation of second messengers necessary for IL-2 production and proliferation.
Collapse
Affiliation(s)
- Somia P Hickman
- Department of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
41
|
Tsukamoto H, Irie A, Chen YZ, Takeshita K, Kim JR, Nishimura Y. TCR ligand avidity determines the mode of B-Raf/Raf-1/ERK activation leading to the activation of human CD4+ T cell clone. Eur J Immunol 2006; 36:1926-37. [PMID: 16791876 DOI: 10.1002/eji.200535803] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interactions between peptide/MHC complexes and their cognate TCR are essential for various T cell responses. However, the relationship between the avidity of TCR ligand and the subsequent intracellular signaling through the TCR is still unclear. To investigate the effects of TCR ligand avidity on TCR-mediated signaling, we established L cells expressing HLA-DR4 molecules covalently linked with agonistic peptide (high-affinity ligand) or altered peptide ligand (APL; low-affinity ligand) at various densities as APC for a cognate human CD4(+) T cell clone. Using this system, we demonstrated that the T cell clone stimulated with APL/HLA-DR4 complexes presented at an excessive density provoked the up-regulation of CD69, IL-2 production and proliferation, but no detectable phosphorylation of ZAP-70/LAT/SLP-76. Furthermore, in contrast to the high-affinity stimulation, the low-affinity stimulation evoked delayed and sustained activation of the B-Raf/extracellular signal-regulated kinase (ERK) pathway without Raf-1 activation. The strength and duration of B-Raf/ERK activations closely correlated with the density of the TCR ligand. A knockdown approach confirmed that B-Raf activation was indispensable for the APL-induced T cell responses. These observations suggest that the differences in TCR-peptide/MHC interactions reflect the strength and duration of B-Raf/Raf-1/ERK activation in the human CD4(+) T cells.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunogenetics, Graduate School of Medical Sciences,Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Priatel JJ, Chen X, Dhanji S, Abraham N, Teh HS. RasGRP1 Transmits Prodifferentiation TCR Signaling That Is Crucial for CD4 T Cell Development. THE JOURNAL OF IMMUNOLOGY 2006; 177:1470-80. [PMID: 16849453 DOI: 10.4049/jimmunol.177.3.1470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
TCR signaling plays a governing role in both the survival and differentiation of bipotent double-positive thymocytes into the CD4(+) and CD8(+) single-positive T cell lineages. A central mediator of this developmental program is the small GTPase Ras, emitting cytoplasmic signals through downstream MAPK pathways and eventually affecting gene expression. TCR signal transduction orchestrates the activation of Ras by integrating at least two Ras-guanyl nucleotide exchange factors, RasGRP1 and Sos. In this study, we have characterized the relationship between RasGRP1 function and its potential roles in promoting ERK activity, cell survival, maturation, and lineage commitment. Investigations on RasGRP1(-/-) mice expressing a transgenic (Tg) MHC class II-restricted TCR revealed that the development of CD4 T cells expressing this Tg TCR is completely dependent on RasGRP1. Unexpectedly, a small number of functional CD8 single-positive thymocytes expressing the Tg MHC class II-restricted TCR exists in mutant mice. In addition, RasGRP1(-/-) double-positive thymocytes exhibit marked deficits in TCR-stimulated up-regulation of the positive selection marker CD69 and the antiapoptotic protein Bcl-2, whereas CD5 induction is unaffected. To evaluate the role of RasGRP1 in providing cellular survival signaling, we enforced Bcl-2 expression in RasGRP1(-/-) thymocytes. These studies demonstrate that RasGRP1 function cannot be fully complemented by Tg Bcl-2 expression. Therefore, we propose that RasGRP1 transmits differentiation signaling critically required for CD4 T cell development.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Survival/genetics
- Cell Survival/immunology
- Guanine Nucleotide Exchange Factors/deficiency
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/physiology
- Histocompatibility Antigens Class II/physiology
- MAP Kinase Signaling System/genetics
- MAP Kinase Signaling System/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Thymus Gland/cytology
- Thymus Gland/enzymology
- Thymus Gland/immunology
- ras Proteins/genetics
- ras Proteins/physiology
Collapse
Affiliation(s)
- John J Priatel
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
43
|
Barbee SD, Alberola-Ila J. Phosphatidylinositol 3-kinase improves the efficiency of positive selection. Int Immunol 2006; 18:921-30. [PMID: 16636016 DOI: 10.1093/intimm/dxl027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have generated transgenic mice expressing the amino-terminal fragment of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110ABD) in thymocytes. Expression of p110ABD results in constitutive activation of PI3K and in significant increases in the numbers of mature, single-positive thymocytes. We previously reported that the increase in mature cells was in part due to a defect in thymic emigration. In this study we identify another component to this phenotype. Expression of p110ABD results in an enhancement of positive selection, without alterations in thymocyte lifespan or negative selection. Since PI3K can affect activation of Btk, which in turn potentiates calcium fluxes, during B cell development, our results suggest that PI3K could play a role in the regulation of Itk kinases in T cells, and that both cell types share a common signaling network to modulate calcium responses downstream of their antigen receptor.
Collapse
Affiliation(s)
- Susannah D Barbee
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, Mail code 147-75, Pasadena, CA 91125, USA
| | | |
Collapse
|
44
|
Si MS, Ji P, Lee M, Kwok J, Kusumoto J, Naasz E, Ng SC, Imagawa DK. Potent farnesyltransferase inhibitor ABT-100 abrogates acute allograft rejection. J Heart Lung Transplant 2006; 24:1403-9. [PMID: 16143263 DOI: 10.1016/j.healun.2004.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 05/19/2004] [Accepted: 06/03/2004] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Farnesyltransferase inhibitors (FTIs) inhibit the function of Ras, a GTPase involved in carcinogenesis and T cell activation. We evaluated the in vitro and in vivo immunomodulatory properties of a rationally designed FTI, ABT-100. METHODS The effects of ABT-100 on human peripheral blood mononuclear cell (PBMC) proliferation and the expression of the T cell activation markers CD25 and CD69 were studied. In a Wistar to Lewis rat heterotopic cardiac transplant model, ABT-100 was orally dosed alone or with a subtherapeutic course of cyclosporine (CsA). The degree of graft immune cell infiltrate was determined. RESULTS ABT-100 potently inhibited PBMC proliferation, but did not decrease expression of CD25 and CD69 during activation. Treatment with 25, 50 and 100 mg/kg ABT-100 BID increased allograft mean survival time (MST) to 12.8+/-3 days, 13.5+/-5 days and 13.8+/-3 days, respectively (vs 6.5+/-3 days for controls, p<0.001 by log rank). A subtherapeutic course of CsA increased MST to 12.7+/-3 days (p<0.001 vs control). Combination with ABT-100 at 25 and 100 mg/kg BID improved MST to 18.7+/-5 days and 19.5+/-4 days (both p<0.001 vs control and respective monotherapy groups). ABT-100 treatment at 100 mg/kg BID significant decreased the amount of graft infiltrate (2.5+/-4 mononuclear cells/high power field (hpf) vs 29+/-11 cells/hpf, p<0.001). CONCLUSIONS This is the first report that a specific FTI delays the development of acute rejection and supports the strategy of inhibiting Ras to impart immunomodulation. The antirejection and anticarcinogenic effects make FTIs a potentially useful adjunct in the antirejection regimens of malignancy-prone organ transplant recipients.
Collapse
Affiliation(s)
- Ming-Sing Si
- UCI Transplantation Laboratory, Department of Surgery, University of California Irvine College of Medicine, Irvine, California 92868, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Eck SC, Zhu P, Pepper M, Bensinger SJ, Freedman BD, Laufer TM. Developmental alterations in thymocyte sensitivity are actively regulated by MHC class II expression in the thymic medulla. THE JOURNAL OF IMMUNOLOGY 2006; 176:2229-37. [PMID: 16455979 DOI: 10.4049/jimmunol.176.4.2229] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developing thymocytes are positively selected if they respond to self-MHC-peptide complexes, yet mature T cells are not activated by those same self-complexes. To avoid autoimmunity, positive selection must be followed by a period of maturation when the cellular response to TCR signals is altered. The mechanisms that mediate this postselection developmental tuning remain largely unknown. Specifically, it is unknown whether developmental tuning is a preprogrammed outcome of positive selection or if it is sensitive to ongoing interactions between the thymocyte and the thymic stroma. We probed the requirement for MHC class II-TCR interactions in postselection maturation by studying single positive (SP) CD4 thymocytes from K14/A(beta)(b) mice, in which CD4 T cells cannot interact with MHC class II in the thymic medulla. We report here that SP CD4 thymocytes must receive MHC class II signals to avoid hyperactive responses to TCR signals. This hyperactivity correlates with decreased expression of CD5; however, developmental tuning can occur independently of CD5, correlating instead with differences in the distribution of Lck. Thus, the maturation of postselection SP CD4 thymocytes is an active process mediated by ongoing interactions between the T cell and MHC class II molecules. This represents a novel mechanism by which the thymic medulla prevents autoreactivity.
Collapse
Affiliation(s)
- Steven C Eck
- Department of Medicine, University of Pennsylvania, Philadephia, 19104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Jordan MS, Sadler J, Austin JE, Finkelstein LD, Singer AL, Schwartzberg PL, Koretzky GA. Functional hierarchy of the N-terminal tyrosines of SLP-76. THE JOURNAL OF IMMUNOLOGY 2006; 176:2430-8. [PMID: 16456002 DOI: 10.4049/jimmunol.176.4.2430] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.
Collapse
Affiliation(s)
- Martha S Jordan
- Signal Transduction Program, Leonard and Madlyn Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Han J, Shui JW, Zhang X, Zheng B, Han S, Tan TH. HIP-55 is important for T-cell proliferation, cytokine production, and immune responses. Mol Cell Biol 2005; 25:6869-78. [PMID: 16055701 PMCID: PMC1190228 DOI: 10.1128/mcb.25.16.6869-6878.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of the T-cell receptor (TCR) triggers a series of signaling events that lead to the activation of T cells. HIP-55 (SH3P7 or mAbp1), an actin-binding adaptor protein, interacts with and is tyrosine phosphorylated by ZAP-70, which is a crucial proximal protein tyrosine kinase for TCR signaling. HIP-55 is important for JNK and HPK1 activation induced by TCR signaling. In this study, we report the generation and characterization of HIP-55 knockout mice. We found that HIP-55 knockout mice were viable and fertile but showed decreased body weight and increased occurrence of death within the first 4 weeks after birth. The lymphoid organs in HIP-55 knockout mice showed cellularity and T-cell development comparable to that of the wild-type mice. HIP-55 knockout T cells displayed defective T-cell proliferation, decreased cytokine production, and decreased up-regulation of the activation markers induced by TCR stimulation. TCR internalization was slightly increased in HIP-55 knockout T cells. These phenotypes were accompanied by reduced immune responses, including antigen-specific antibody production and T-cell proliferation in HIP-55 knockout mice. The TCR-induced signaling events, including LAT/phospholipase Cgamma1 phosphorylation and HPK1/JNK activation, were partially defective in HIP-55 knockout T cells. These results demonstrate the importance of HIP-55 as an adaptor protein in the TCR signaling and immune system.
Collapse
MESH Headings
- Actins/chemistry
- Alleles
- Animals
- Blotting, Southern
- Blotting, Western
- Body Weight
- Cell Proliferation
- Cytokines/biosynthesis
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Flow Cytometry
- Humans
- Immune System
- Immunoprecipitation
- Jurkat Cells
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Microfilament Proteins/physiology
- Models, Genetic
- Mutation
- Phospholipase C gamma
- Phosphorylation
- Polymerase Chain Reaction
- Protein Binding
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- RNA/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes/cytology
- Time Factors
- Type C Phospholipases/metabolism
- Tyrosine/chemistry
- ZAP-70 Protein-Tyrosine Kinase
- src Homology Domains/physiology
Collapse
Affiliation(s)
- Jin Han
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030.
| | | | | | | | | | | |
Collapse
|
48
|
Ragin MJ, Hu J, Henderson AJ, August A. A role for the Tec family kinase ITK in regulating SEB-induced interleukin-2 production in vivo via c-jun phosphorylation. BMC Immunol 2005; 6:19. [PMID: 16042784 PMCID: PMC1200558 DOI: 10.1186/1471-2172-6-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 07/22/2005] [Indexed: 12/02/2022] Open
Abstract
Background Exposure to Staphylococcal Enterotoxin B (SEB), a bacterial superantigen secreted by the Gram-positive bacteria Staphyloccocus aureus, results in the expansion and eventual clonal deletion and anergy of Vβ8+ T cells, as well as massive cytokine release, including Interleukin-2 (IL-2). This IL-2 is rapidly secreted following exposure to SEB and may contribute to the symptoms seen following exposure to this bacterial toxin. The Tec family kinase ITK has been shown to be important for the production of IL-2 by T cells stimulated in vitro and may represent a good target for blocking the production of this cytokine in vivo. In order to determine if ITK represents such a target, mice lacking ITK were analyzed for their response to SEB exposure. Results It was found that T cells from mice lacking ITK exhibited significantly reduced proliferative responses to SEB exposure in vitro, as well as in vivo. Examination of IL-2 production revealed that ITK null mice produced reduced levels of this cytokine in vitro, and more dramatically, in vivo. In vivo analysis of c-jun phosphorylation, previously shown to be critical for regulating IL-2 production, revealed that this pathway was specifically activated in SEB reactive Vβ8+ (but not non-reactive Vβ6+) T cells from WT mice, but not in Vβ8+ T cells from ITK null mice. However, toxicity analysis indicated that both WT and ITK null animals were similarly affected by SEB exposure. Conclusion These data show that ITK is required for IL-2 production induced by SEB in vivo, and may regulate signals leading IL-2 production, in part by regulating phosphorylation of c-jun. The data also suggest that perturbing T cell activation pathways leading to IL-2 does not necessarily lead to improved responses to SEB toxicity.
Collapse
Affiliation(s)
- Melanie J Ragin
- Pathobiology Graduate Program, Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianfang Hu
- Immunobiology Option of the Integrated Bioscience Graduate Program, Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew J Henderson
- Pathobiology Graduate Program, Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
- Immunobiology Option of the Integrated Bioscience Graduate Program, Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science The Pennsylvania State University, University Park, PA 16802, USA
| | - Avery August
- Pathobiology Graduate Program, Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
- Immunobiology Option of the Integrated Bioscience Graduate Program, Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary Science The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
49
|
Roose JP, Mollenauer M, Gupta VA, Stone J, Weiss A. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol 2005; 25:4426-41. [PMID: 15899849 PMCID: PMC1140631 DOI: 10.1128/mcb.25.11.4426-4441.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ras GTPases are on/off switches regulating numerous cellular responses by signaling to various effector molecules. In T lymphocytes, Ras can be activated by two Ras exchange factors, SOS and RasGRP1, which are recruited through the adapters Grb2 and LAT and via the second-messenger diacylglycerol (DAG), respectively. Mitogen-activated protein (MAP) kinase phosphorylation patterns induced by active Ras can vary and contribute to distinct cellular responses. The different consequences of Ras activation by either guanine exchange factor are unknown. DAG also recruits and activates the kinase protein kinase Ctheta (PKCtheta) turning on the Erk MAP kinase pathway, but the biochemical mechanism responsible is unclear. We generated T-cell clones deficient in phorbol myristate acetate (a surrogate for DAG)-induced Ras activation. Analysis of a RasGRP1-deficient Jurkat T-cell clone and RasGRP1 RNA interference in wild-type cells revealed that RasGRP1 is required for optimal, antigen receptor-triggered Ras-Erk activation. RasGRP1 relies on its DAG-binding domain to selectively activate Erk kinases. Activation of Erk correlates with the phosphorylation of threonine residue 184 in RasGRP1. This phosphorylation event requires the activities of novel PKC kinases. Conversely, active PKCtheta depends on RasGRP1 sufficiency to effectively trigger downstream events. Last, DAG-PKC-RasGRP1-driven Ras-Erk activation in T cells is a unique signaling event, not simply compensated for by SOS activity.
Collapse
Affiliation(s)
- Jeroen P Roose
- Department of Medicine, UCSF, 533 Parnassus Avenue, Room U-330, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
50
|
Sommers CL, Lee J, Steiner KL, Gurson JM, Depersis CL, El-Khoury D, Fuller CL, Shores EW, Love PE, Samelson LE. Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. ACTA ACUST UNITED AC 2005; 201:1125-34. [PMID: 15795236 PMCID: PMC1538971 DOI: 10.1084/jem.20041869] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Linker for activation of T cells (LAT) is a scaffolding adaptor protein that is critical for T cell development and function. A mutation of LAT (Y136F) that disrupts phospholipase C-γ1 activation and subsequent calcium influx causes a partial block in T cell development and leads to a severe lymphoproliferative disease in homozygous knock-in mice. One possible contribution to the fatal disease of LAT Y136F knock-in mice could be from autoreactive T cells generated in these mice because of altered thymocyte selection. To examine the impact of the LAT Y136F mutation on thymocyte positive and negative selection, we bred this mutation onto the HY T cell receptor (TCR) transgenic, recombination activating gene-2 knockout background. Female mice with this genotype showed a severe defect in positive selection, whereas male mice exhibited a phenotype resembling positive selection (i.e., development and survival of CD8hi HY TCR-specific T cells) instead of negative selection. These results support the hypothesis that in non-TCR transgenic, LAT Y136F knock-in mice, altered thymocyte selection leads to the survival and proliferation of autoreactive T cells that would otherwise be negatively selected in the thymus.
Collapse
Affiliation(s)
- Connie L Sommers
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|