1
|
Prakash PS, Weber MHW, van Hellemond JJ, Falcone FH. Are humanized IgE reporter systems potential game changers in serological diagnosis of human parasitic infection? Parasitol Res 2021; 121:1137-1144. [PMID: 34767081 PMCID: PMC8986668 DOI: 10.1007/s00436-021-07352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022]
Abstract
Immunoglobulin E (IgE) is thought to have evolved to protect mammalian hosts against parasitic infections or toxins and plays a central role in the pathogenesis, diagnosis, and therapy of IgE-mediated allergy. Despite the prominence of IgE responses in most parasitic infections, and in stark contrast to its use in the diagnosis of allergy, this isotype is almost completely unexploited for parasite diagnosis. Here, we discuss the perceived or real limitations of IgE-based diagnosis in parasitology and suggest that the recent creation of a new generation of very sensitive cellular IgE-based reporters may represent a powerful new diagnostic platform, but needs to be based on a very careful choice of diagnostic allergens.
Collapse
Affiliation(s)
- Prema S Prakash
- Biomedical Research Centre Seltersberg (BFS), Institute for Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Michael H W Weber
- Biomedical Research Centre Seltersberg (BFS), Institute for Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Franco H Falcone
- Biomedical Research Centre Seltersberg (BFS), Institute for Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Berger AE, Durrieu C, Dzviga C, Perrot JL, Lambert C. Human peripheral basophils extended phenotype shows a high expression of CD244 immuno-regulatory receptor. J Immunol Methods 2021; 492:112951. [PMID: 33493550 DOI: 10.1016/j.jim.2020.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Basophils play a major physio-pathological role in hypersensitivity related diseases. Basophils express high affinity Immunoglobulin (Ig) E receptors (FcεRI), IgG and complement regulatory. Basophils also have immunoregulatory activity through interaction with T cells. The aim of this study was to look for the expression of markers reflecting the activation status of peripheral Basophil in healthy donors. METHOD the study was performed on 29 healthy donors, 62% females with a mean age of 50.1 + 17.0 years. Basophils were identified on their expression of CD123 without HLA-DR and/or CD193 in two 8 colors panels including CD46, CD55, CD59, CD203c, CD32 (FcγRII), CD64 (FcγRIII), CD163, CD137L (4-1BBL), CD252 (OX40L), CD244 (2B4) and CD3 on whole blood. Basophil activation with anti IgE was performed on 14 donors. RESULTS AND DISCUSSION Our results confirmed the Basophil expression of CD123, CD193 and CD203 (the latter is strongly increased under stimulation). Complement regulatory proteins (CD46, CD55, CD59) were expressed at the same levels as on other leukocytes; CD46, CD59 expression being slightly increased under stimulation. CD32 and CD163 scavenger were slightly higher than on lympho and not influenced by activation. CD252 or CD137L were expressed at low levels and significantly induced by stimulation. Most of all, CD244 was highly expressed on Basophils as compared to any other leukocytes in fresh peripheral blood. CONCLUSIONS Our study shows that human resting Basophils express IgE and IgG Fc receptors and check point receptor CD244 that could potentially play a role in their previously reported immunoregulatory activity in sensitization and even in tumor immune escape.
Collapse
Affiliation(s)
- Anne-Emmanuelle Berger
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Coralie Durrieu
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Charles Dzviga
- Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Jean-Luc Perrot
- Dermatology department, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Claude Lambert
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France; Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France.
| |
Collapse
|
3
|
Deak PE, Vrabel MR, Kiziltepe T, Bilgicer B. Determination of Crucial Immunogenic Epitopes in Major Peanut Allergy Protein, Ara h2, via Novel Nanoallergen Platform. Sci Rep 2017; 7:3981. [PMID: 28638052 PMCID: PMC5479826 DOI: 10.1038/s41598-017-04268-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Current methods for detection and diagnosis of allergies do not provide epitope specific immunogenic information and hence lack critical information that could aid in the prediction of clinical responses. To address this issue, we developed a nanoparticle based platform, called nanoallergens that enable multivalent display of potential allergy epitopes for determining the immunogenicity of each IgE binding epitope. By synthesizing nanoallergens that present various epitopes from the major peanut allergen, Ara h2, we directly determined the immunogenicity of each epitope, alone and in combination with other epitopes, using patient sera. This information provided insights on which epitopes are most critical for physiological responses to Ara h2 and revealed the importance of both high and low affinity epitopes for allergic responses. We anticipate the nanoallergen platform to be used to provide information regarding allergic reactions and therefore potentially aid in more accurate diagnosis and design of personalized treatment options.
Collapse
Affiliation(s)
- Peter E Deak
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Maura R Vrabel
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tanyel Kiziltepe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
4
|
Shah S, Gibson AW, Ji C, Darrington E, Mobley J, Kojima K, Edberg JC, Kimberly RP. Regulation of FcRγ function by site-specific serine phosphorylation. J Leukoc Biol 2016; 101:421-428. [PMID: 27630214 DOI: 10.1189/jlb.2ab0516-228r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
The common FcRγ, an immunoreceptor tyrosine-based activation motif (ITAM)- containing adaptor protein, associates with multiple leukocyte receptor complexes and mediates signal transduction through the ITAM in the cytoplasmic domain. The presence of multiple serine and threonine residues within this motif suggests the potential for serine/threonine phosphorylation in modulating signaling events. Single-site mutational analysis of these residues in RBL-2H3 cells indicates that each may contribute to net FcRγ-mediated signaling, and mass spectrometry of WT human FcRγ from receptor-stimulated cells shows consistent preferential phosphorylation of the serine residue at position 51. Immunoblot analysis, mass spectrometry, and mutational analyses showed that phosphorylation of serine 51 in the 7-residue spacer between the 2 YxxL sequences regulates FcRγ signaling by inhibiting tyrosine phosphorylation at the membrane proximal Y47 position of the ITAM, but not phosphorylation at position Y58. This inhibition results in reduced Syk recruitment and activation. With in vitro kinase assays, PKC-δ and PKA show preferential phosphorylation of S51. Serine/threonine phosphorylation of the FcRγ ITAM, which functions as an integrator of multiple signaling elements, may explain in part the contribution of variants in PKC-δ and other PKC isoforms to some autoimmune phenotypes.
Collapse
Affiliation(s)
- Spandan Shah
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Andrew W Gibson
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chuanyi Ji
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Eric Darrington
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyoko Kojima
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey C Edberg
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Robert P Kimberly
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
5
|
Thrasher SM, Scalfone LK, Holowka D, Appleton JA. In vitro modelling of rat mucosal mast cell function in Trichinella spiralis infection. Parasite Immunol 2013; 35:21-31. [PMID: 23094823 DOI: 10.1111/pim.12014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/14/2012] [Indexed: 11/28/2022]
Abstract
Intestinal infection with the parasitic nematode, Trichinella spiralis, provides a robust context for the study of mucosal mast cell function. In rats, mucosal mast cells are exposed to parasites during the earliest stage of infection, affording an opportunity for mast cells to contribute to an innate response to infection. During secondary infection, degranulation of rat mucosal mast cells coincides with expulsion of challenge larvae from the intestine. The goal of this study was to evaluate the rat bone marrow-derived mast cells (BMMC) and the rat basophilic leukaemia cell line (RBL-2H3) as models for mucosal mast cells, using parasite glycoproteins and antibody reagents that have been tested extensively in rats in vivo. We found that BMMC displayed a more robust mucosal phenotype. Although T. spiralis glycoproteins bound to mast cell surfaces in the absence of antibodies, they did not stimulate degranulation, nor did they inhibit degranulation triggered by immune complexes. Parasite glycoproteins complexed with specific monoclonal IgGs provoked release of rat mast cell protease II (RMCPII) and β-hexosaminidase from both cell types in a manner that replicated results observed previously in passively immunized rats. Our results document that RBL-2H3 cells and BMMC model rat mucosal mast cells in the contexts of innate and adaptive responses to T. spiralis.
Collapse
Affiliation(s)
- S M Thrasher
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
6
|
Rashid A, Housden JEM, Helm BA, Draber P. Fc receptor-γ subunits with both polar or non-polar amino acids at position of T22 are capable of restoring surface expression of the high-affinity IgE receptor and degranulation in γ subunit-deficient rat basophilic leukemia cells. Mol Immunol 2012; 53:270-3. [PMID: 22964482 DOI: 10.1016/j.molimm.2012.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
Abstract
The high-affinity IgE receptor (FcɛRI) is formed by the IgE-binding α subunit, β subunit and γ subunits homodimer. All three subunits are required for proper expression of the receptor on the plasma membrane of mast cells and basophils. However, the exact molecular mechanism of inter-subunit interactions required for correct expression and function of the FcɛRI complex remains to be identified. A recent study suggested that polar aspartate at position 194 within the transmembrane domain of the α subunit could interact by hydrogen bonding with polar threonine at position 22 in the transmembrane domains of the γ subunits. To verify this, we used previously isolated rat basophilic leukemia (RBL)-2H3 variant cells deficient in the expression of the FcɛRI-γ subunit (FcR-γ), and transfected them with DNA vectors coding for FcR-γ of the wild-type or mutants in which T22 was substituted for nonpolar alanine (T22A mutant) or polar serine (T22S mutant). Analysis of the transfectants showed that both T22A and T22S mutants were capable to restore surface expression of the FcɛRI similar to wild-type FcR-γ. Furthermore, cells transfected with wild-type, T22A or T22S FcR-γ showed comparably enhanced FcɛRI-mediated degranulation. Our data indicate that substitution of FcR-γ T22 with non-polar amino acid does not interfere with surface expression of the FcɛRI and its signaling capacity.
Collapse
Affiliation(s)
- Amir Rashid
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
7
|
Cemerski S, Chu SY, Moore GL, Muchhal US, Desjarlais JR, Szymkowski DE. Suppression of mast cell degranulation through a dual-targeting tandem IgE-IgG Fc domain biologic engineered to bind with high affinity to FcγRIIb. Immunol Lett 2012; 143:34-43. [PMID: 22305932 DOI: 10.1016/j.imlet.2012.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/11/2022]
Abstract
Mast cells and basophils play a central role in allergy, asthma, and anaphylaxis, as well as in non-allergic inflammatory, neurological and autoimmune diseases. Allergen-mediated cross-linking of IgE bound to FcεRI leads to cellular activation, and the low-affinity Fc receptor FcγRIIb is a key inhibitor of subsequent degranulation. FcγRIIb, when coengaged with FcεRI via allergen bound to IgE, stimulates ITIM domain-mediated inhibitory signaling that efficiently suppresses mast cell and basophil activation. To assess the therapeutic potential of directed coengagement of FcεRI and FcγRIIb in the absence of FcεRI crosslinking, we developed a fusion protein comprising the coupled Fc domains of murine IgE and human IgG1. As a key functional component of this tandem Fcε-Fcγ biologic, we engineered its IgG1 Fc domain to bind to human FcγRIIb with 100-fold enhanced affinity relative to native IgG1 Fc. Using mast cells from mice transgenic for human FcγRIIb, we show that this tandem Fc binds with high affinity to murine FcεRI and human FcγRIIb on mast cells, triggers phosphorylation of FcγRIIb, and inhibits FcεRI-dependent calcium mobilization. Control tandem Fc biologics containing a native IgG1 Fc domain or lacking binding to Fcγ receptors were markedly less active, demonstrating that the affinity-optimized tandem Fc can inhibit degranulation through stimulation of FcγRIIb signaling as well as through competition with allergen-IgE immune complex for FcεRI binding. We propose that in the context of a fully human tandem Fc biologic, high-affinity coengagement of FcεRI and FcγRIIb has potential as a novel therapy for allergy and other mast cell and basophil-mediated pathologies.
Collapse
Affiliation(s)
- Saso Cemerski
- Xencor, Inc., 111 W. Lemon Ave., Monrovia, CA 91016, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Caubet JC, Bencharitiwong R, Moshier E, Godbold JH, Sampson HA, Nowak-Węgrzyn A. Significance of ovomucoid- and ovalbumin-specific IgE/IgG(4) ratios in egg allergy. J Allergy Clin Immunol 2012; 129:739-47. [PMID: 22277199 DOI: 10.1016/j.jaci.2011.11.053] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/10/2011] [Accepted: 11/23/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND The role of specific IgG(4) antibodies in natural tolerance acquisition remains a matter of debate; the specific IgE/IgG(4) ratio might add value to the measurement of absolute amounts of IgE for assessing the ongoing status of egg reactivity. OBJECTIVE We sought to determine the significance of IgG(4) antibodies to ovalbumin (OVA) and ovomucoid (OVM) in egg-allergic children. METHODS One hundred seven egg-allergic children (mean age 6.9 years; range 1.6-18.6 years) were challenged to baked egg. The outcomes of the challenges were related to the level of specific IgE and IgG(4) to OVM and OVA, component IgE/IgG(4) ratios, and mediator release in a functional assay based on the rat basophil leukemia cell line. RESULTS Baked egg-reactive children had significantly higher OVA and OVM ratios of IgE/IgG(4) and mediator release in the rat basophil leukemia-based assay than did tolerant children (P < .05 for both). The OVA- and OVM-specific IgE/IgG(4) ratios and mediator release were correlated. In the receiver operating characteristic analysis, the areas under the curve for a logistic regression model including specific IgE and IgG(4) to OVA and OVM were significantly greater compared with the areas under the curve for egg white-specific IgE and OVM-specific IgE. CONCLUSIONS The balance between IgE and IgG(4) to OVA and OVM has functional consequences. A model that includes the interactions between IgE and IgG(4) to OVA and OVM accurately predicts reactivity to baked egg and warrants further investigation.
Collapse
Affiliation(s)
- Jean Christoph Caubet
- Department of Pediatrics, Division of Allergy and Immunology, Jaffe Food Allergy Institute, Mount Sinai School of Medicine, New York, NY 10028, USA
| | | | | | | | | | | |
Collapse
|
9
|
Rashid A, Iodice MW, Carroll KM, Housden JE, Hunter M, Sabban S, Artymiuk PJ, Helm BA. Assessing the role of Asp 194 in the transmembrane domains of the α-chain of the high-affinity receptor complex for immunoglobulin E in signal transduction. Mol Immunol 2010; 48:128-36. [DOI: 10.1016/j.molimm.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
|
10
|
Zeyrek D, Tanac R, Altinoz S, Berdeli A, Gulen F, Koksoy H, Demir E. FcgammaRIIIa-V/F 158 polymorphism in Turkish children with asthma bronchiale and allergic rhinitis. Pediatr Allergy Immunol 2008; 19:20-4. [PMID: 18199088 DOI: 10.1111/j.1399-3038.2007.00553.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fc receptors (FcR) play an important role in immune regulation. This might be linked to the variability in immune response, therefore relating to the pathogenesis of atopic diseases. The aim of the present study was to evaluate the FcgammaRIIIa gene polymorphism in Turkish children with asthma and allergic rhinitis. The study included 364 atopic children (184 bronchial asthma, 180 allergic rhinitis) and 234 healthy subjects as the control group, aged between 5 to 16 years. Patients were recruited from outpatient clinics of allergy and general pediatric care. Plasma IgE concentrations were measured by immunoassays and skin prick test was done in children with atopic diseases. The FcgammaRIIIa gene polymorphism was determined using the polymerase chain reaction method. Distribution of V158V genotype was significantly different among patient groups compared to controls (for asthmatic children OR: 5.33, 95% CI: 2.80-10.23, p < 0.001; for allergic rhinitis OR: 3.25, 95% CI: 1.75-6.07, p = 0.001). Distribution of 158 V allele was significantly different among asthmatic children (OR: 2.20, 95% CI: 1.65-2.92, p < 0.001) and allergic rhinitis patients (OR: 1.77, 95% CI: 1.32-2.35, p < 0.001) compared to healthy controls. Our study shows that the V158V genotype in FcgammaRIIIa gene polymorphism may be a genetic risk factor for the development of atopic diseases.
Collapse
Affiliation(s)
- Dost Zeyrek
- Department of Pediatric Allergy and Pulmonology, Aegean University, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
11
|
Mousavi SA, Sporstøl M, Fladeby C, Kjeken R, Barois N, Berg T. Receptor-mediated endocytosis of immune complexes in rat liver sinusoidal endothelial cells is mediated by FcgammaRIIb2. Hepatology 2007; 46:871-84. [PMID: 17680646 DOI: 10.1002/hep.21748] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Liver sinusoidal endothelial cells (LSECs) display a number of receptors for efficient uptake of potentially injurious molecules. The receptors for the Fc portion of immunoglobulin G (IgG) antibodies (FcgammaRs) regulate a number of physiological and pathophysiological events. We used reverse transcription polymerase chain reaction (RT-PCR) and Western blotting to determine the expression of different types of FcgammaRs in LSECs. Biochemical approaches and immunofluorescence microscopy were used to characterize the FcgammaR-mediated endocytosis of immune complexes (ICs). FcgammaRIIb2 was identified as the main receptor for the efficient uptake of ICs in LSECs. The receptor was shown to use the clathrin pathway for IC uptake; however, the association with lipid rafts may slow the rate of its internalization. Moreover, despite trafficking through lysosomal integral membrane protein-II (LIMP-II)-containing compartments, the receptor was not degraded. Finally, it was shown that the receptor recycles to the cell surface both with and without IC. CONCLUSION FcgammaRIIb2 is the main receptor for endocytosis of ICs in rat LSECs. Internalized ICs are degraded with slow kinetics, and IC internalization is not linked to receptor downregulation. After internalization, the receptor recycles to the cell surface both with and without ICs. Thus, FcgammaRIIb2 in rat LSECs is used as both a recycling receptor and a receptor for efficient IC clearance.
Collapse
|
12
|
Barbu AE, Pecht I. Desensitization of mast cells' secretory response to an immuno-receptor stimulus. Immunol Lett 2005; 100:78-87. [PMID: 16111771 DOI: 10.1016/j.imlet.2005.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 05/31/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
Knowledge of the desensitization process of responses to the type I receptor for IgE (FcepsilonRI) is rather limited. We investigated whether mast cells' secretory response to this receptor's stimulus can be subjected to desensitization under protocols usually employed for hormonal or neural receptors, i.e. by excessive, prolonged or repetitive exposure to the stimulus. To study this we have employed the rat mucosal-type mast cells of the RBL-2H3 line, which enables a rigorous examination of the response to the FcepsilonRI stimulus. These cells exhibited a marked decrease of both, secretion of granule-stored and de novo synthesized mediators to an optimal stimulation, when first exposed to prolonged FcepsilonRI-IgE clustering by specific antigen (DNP(11)-BSA) or by the IgE specific mAb 95.3 at concentrations that are below the threshold of inducing secretion. The extent of desensitization depended on the employed concentrations of IgE and on the clustering agents, as well as on the length of the desensitization period. The levels of cell surface FcepsilonRI expression and of cell-bound IgE were determined following the desensitization period and no significant correlation has been observed between the extent of endocytosis and the observed desensitization. Thus, a different process, which interferes with FcepsilonRI stimulus-response coupling network, is responsible for the observed desensitization.
Collapse
Affiliation(s)
- Alina E Barbu
- Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
13
|
Posner RG, Paar JM, Licht A, Pecht I, Conrad DH, Hlavacek WS. Interaction of a monoclonal IgE-specific antibody with cell-surface IgE-Fc epsilon RI: characterization of equilibrium binding and secretory response. Biochemistry 2004; 43:11352-60. [PMID: 15366945 DOI: 10.1021/bi049686o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aggregation of FcepsilonRI, the high-affinity cell-surface receptor for IgE antibody, is required for degranulation of basophils and mast cells, but not all receptor aggregates elicit this cellular response. The stereochemical constraints on clusters of FcepsilonRI that are able to signal cellular responses, such as degranulation, have yet to be fully defined. To improve our understanding of the properties of FcepsilonRI aggregates that influence receptor signaling, we have studied the interaction of 23G3, a rat IgG(1)(kappa) IgE-specific monoclonal antibody, with IgE-FcepsilonRI complexes on rat mucosal-type mast cells (RBL-2H3 line). We find that 23G3 is a potent secretagogue. This property and the structural features of 23G3 (two symmetrically arrayed IgE-specific binding sites) make 23G3 a potentially valuable reagent for investigating the relationship between FcepsilonRI clustering and FcepsilonRI-mediated signaling events. To develop a mathematical model of 23G3-induced aggregation of FcepsilonRI, we used fluorimetry and flow cytometry to quantitatively monitor equilibrium binding of FITC-labeled 23G3 intact Ab and its Fab' fragment to cell-surface IgE. The results indicate that IgE bound to FcepsilonRI expresses two epitopes for 23G3 binding; that 23G3 binds IgE resident on the cell surface with negative cooperativity; and that 23G3 appears to induce mostly but not exclusively noncyclic dimeric aggregates of FcepsilonRI. There is no simple relationship between receptor aggregation at equilibrium and the degranulation response. Further studies are needed to establish how 23G3-induced aggregation of IgE-FcepsilonRI correlates with cellular responses.
Collapse
Affiliation(s)
- Richard G Posner
- Department of Biology, Northern Arizona University, Flagstaff, Arizona 86011, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Ohyama N, Furuno T, Hirashima N, Nakanishi M. The effects of ITIM-bearing FcgammaRIIB on the nuclear shuttling of MAP kinase in RBL-2H3 cells. Immunol Lett 2004; 90:173-6. [PMID: 14687721 DOI: 10.1016/j.imlet.2003.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have studied the effects of ITIM-bearing FcgammaRIIB2 on the FcepsilonRI-dependent nuclear shuttling of mitogen-activated protein (MAP) kinase (ERK2) in rat basophilic leukemia (RBL-2H3) cells. The cross-linking of FcepsilonRI elicited the sustained increase of the intracellular calcium ion concentration ([Ca(2+)](i)) and the translocation of ERK2 from the cytoplasm to the nucleus. The import of ERK2 to the nucleus reached the maximum at 6-7 min, thereafter ERK2 was exported within 30 min. The co-clustering of FcepsilonRI and FcgammaRIIB2 increased the [Ca(2+)](i) and induced the import of ERK2. However, the calcium increase was transient and ERK2 was rapidly exported to the cytoplasm. In addition, the phosphorylation of ERK2 and the production of TNF-alpha were decreased in case of co-clustering of FcepsilonRI and FcgammaRIIB2. This suggested that the co-clustering negatively control the production of pro-inflammatory cytokines through the suppression of nuclear shuttling of ERK2.
Collapse
Affiliation(s)
- Nobuyuki Ohyama
- Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | |
Collapse
|
15
|
Gurish MF, Bryce PJ, Tao H, Kisselgof AB, Thornton EM, Miller HR, Friend DS, Oettgen HC. IgE Enhances Parasite Clearance and Regulates Mast Cell Responses in Mice Infected withTrichinella spiralis. THE JOURNAL OF IMMUNOLOGY 2004; 172:1139-45. [PMID: 14707089 DOI: 10.4049/jimmunol.172.2.1139] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trichinella spiralis infection elicits a vigorous IgE response and pronounced intestinal and splenic mastocytosis in mice. Since IgE both activates mast cells (MC) and promotes their survival in culture, we examined its role in MC responses and parasite elimination in T. spiralis-infected mice. During primary infection, wild-type but not IgE-deficient (IgE(-/-)) BALB/c mice mounted a strong IgE response peaking 14 days into infection. The splenic mastocytosis observed in BALB/c mice following infection with T. spiralis was significantly diminished in IgE(-/-) mice while eosinophil responses were not diminished in either the blood or jejunum. Similar levels of peripheral blood eosinophilia and jejunal mastocytosis occurred in wild-type and IgE-deficient animals. Despite the normal MC response in the small intestine, serum levels of mouse MC protease-1 also were lower in parasite-infected IgE(-/-) animals and these animals were slower to eliminate the adult worms from the small intestine. The number of T. spiralis larvae present in the skeletal muscle of IgE(-/-) mice 28 days after primary infection was about twice that in BALB/c controls, and the fraction of larvae that was necrotic was reduced in the IgE-deficient animals. An intense deposition of IgE in and around the muscle larvae was observed in wild-type but not in IgE null mice. We conclude that IgE promotes parasite expulsion from the gut following T. spiralis infection and participates in the response to larval stages of the parasite. Furthermore, our observations support a role for IgE in the regulation of MC homeostasis in vivo.
Collapse
MESH Headings
- Adjuvants, Immunologic/deficiency
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antibodies, Helminth/genetics
- Antibodies, Helminth/physiology
- Chymases
- Immunoglobulin E/genetics
- Immunoglobulin E/physiology
- Larva/growth & development
- Larva/immunology
- Mast Cells/enzymology
- Mast Cells/immunology
- Mast Cells/metabolism
- Mast Cells/parasitology
- Mastocytosis/immunology
- Mastocytosis/parasitology
- Mastocytosis/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Muscle, Skeletal/immunology
- Muscle, Skeletal/parasitology
- Muscle, Skeletal/pathology
- Secretory Vesicles/enzymology
- Secretory Vesicles/metabolism
- Secretory Vesicles/parasitology
- Serine Endopeptidases/metabolism
- Trichinella spiralis/growth & development
- Trichinella spiralis/immunology
- Trichinellosis/immunology
- Trichinellosis/parasitology
- Trichinellosis/pathology
- Trichinellosis/therapy
Collapse
Affiliation(s)
- Michael F Gurish
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Song J, Hagen G, Smith SML, Roess DA, Pecht I, Barisas BG. Interactions of the mast cell function-associated antigen with the type I Fcepsilon receptor. Mol Immunol 2002; 38:1315-21. [PMID: 12217401 DOI: 10.1016/s0161-5890(02)00081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Clustering the mast cell function-associated antigen (MAFA), a membrane glycoprotein expressed on 2H3 cells, by its specific monoclonal antibody G63 substantially inhibits secretion normally triggered by aggregating these cells' Type I Fcepsilon receptor (FcepsilonRI). To explore possible MAFA-FcepsilonRI interactions giving rise to this inhibition, we have studied by time-resolved phosphorescence anisotropy the rotational behavior of both MAFA and FcepsilonRI as ligated by various reagents involved in FcepsilonRI-induced degranulation and MAFA-mediated inhibition thereof. From 4 to 37 degrees C the rotational correlation times (mean+/-S.D.) of FcepsilonRI-bound, erythrosin-conjugated IgE resemble those observed for MAFA-bound erythrosin-conjugated G63 Fab, 82+/-17 micros and 79+/-31 micros at 4 degrees C, respectively. Clustering the FcepsilonRI-IgE complex by antigen or by anti-IgE increases the phosphorescence anisotropy of G63 Fab and slows its rotational relaxation. Lateral diffusion of G63 Fab is also slowed by antigen clustering of the receptor. Taken together, these results suggest that unperturbed MAFA associates with clustered FcepsilonRI. They are also consistent with its interaction with the isolated receptor, a situation also suggested by FRET measurements on the system.
Collapse
Affiliation(s)
- Jinming Song
- Department of Physiology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
17
|
Rajapakse PS, O'Brien-Simpson NM, Slakeski N, Hoffmann B, Reynolds EC. Immunization with the RgpA-Kgp proteinase-adhesin complexes of Porphyromonas gingivalis protects against periodontal bone loss in the rat periodontitis model. Infect Immun 2002; 70:2480-6. [PMID: 11953385 PMCID: PMC127921 DOI: 10.1128/iai.70.5.2480-2486.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A major virulence factor of Porphyromonas gingivalis is the extracellular noncovalently associated complexes of Arg-X- and Lys-X-specific cysteine proteinases and adhesins designated the RgpA-Kgp complexes. In this study we investigated the ability of RgpA-Kgp as an immunogen to protect against P. gingivalis-induced periodontal bone loss in the rat. Specific-pathogen-free Sprague-Dawley rats were immunized with either formalin-killed whole P. gingivalis ATCC 33277 cells with incomplete Freund's adjuvant, RgpA-Kgp with incomplete Freund's adjuvant, or incomplete Freund's adjuvant alone. The animals were then challenged by oral inoculation with live P. gingivalis ATCC 33277 cells. Marked periodontal bone loss was observed in animals immunized with incomplete Freund's adjuvant alone; this bone loss was significantly (P < 0.05) greater than that detected in animals immunized with formalin-killed whole cells or RgpA-Kgp or in unchallenged animals. There was no significant difference in periodontal bone loss between animals immunized with formalin-killed whole cells and those immunized with RgpA-Kgp. The bone loss in these animals was also not significantly different from that in unchallenged animals. DNA probe analysis of subgingival plaque samples showed that 100% of the animals immunized with incomplete Freund's adjuvant alone and challenged with P. gingivalis ATCC 33277 were positive for the bacterium. However, P. gingivalis ATCC 33277 could not be detected in subgingival plaque samples from animals immunized with formalin-killed whole cells or with RgpA-Kgp. Immunization with formalin-killed whole cells or RgpA-Kgp induced a high-titer serum immunoglobulin G2a response. Western blot analysis of RgpA-Kgp using pooled protective antisera taken from rats immunized with RgpA-Kgp revealed immunodominant bands at 44, 39, and 27 kDa. In conclusion, immunization with RgpA-Kgp restricted colonization by P. gingivalis and periodontal bone loss in the rat.
Collapse
|
18
|
Hálová I, Dráberová L, Dráber P. A novel lipid raft-associated glycoprotein, TEC-21, activates rat basophilic leukemia cells independently of the type 1 Fc epsilon receptor. Int Immunol 2002; 14:213-23. [PMID: 11809740 DOI: 10.1093/intimm/14.2.213] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent data suggest that initiation of signal transduction via type 1 Fc epsilon receptor (Fc epsilon RI) and other immunoreceptors is spatially constrained to lipid rafts. In order to better understand the complexity and function of these structures, we prepared mAb against lipid rafts from the rat basophilic leukemia cell line, RBL-2H3, which is extensively used for analysis of Fc epsilon RI-mediated activation. One of the antibodies was found to recognize a novel glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of 250 amino acids, designated TEC-21, containing a cysteine-rich domain homologous to those found in the urokinase plasminogen activator receptor/Ly-6/snake neurotoxin family. TEC-21 is abundant on the surface of RBL-2H3 cells (>10 (6) molecules/cell), but is absent in numerous rat tissues except for testes. Aggregation of TEC-21 on RBL-2H3 cells induced a rapid increase in tyrosine phosphorylation of several substrates including Syk kinase and LAT adaptor, calcium flux, and release of secretory components. Similar but more profound activation events were observed in cells activated via Fc epsilon RI. However, aggregation of TEC-21 did not induce changes in density of IgE-Fc epsilon RI complexes, tyrosine phosphorylation of Fc epsilon RI beta and gamma subunits, and co-aggregation of Lyn kinase. TEC-21-induced activation events were also observed in Fc epsilon RI(-) mutants of RBL-2H3 cells. Thus, TEC-21 is a novel lipid raft component of RBL-2H3 cells whose aggregation induces activation independently of Fc epsilon RI.
Collapse
Affiliation(s)
- Ivana Hálová
- Department of Mammalian Genes Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
19
|
Xu R, Abramson J, Fridkin M, Pecht I. SH2 domain-containing inositol polyphosphate 5'-phosphatase is the main mediator of the inhibitory action of the mast cell function-associated antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6394-402. [PMID: 11714805 DOI: 10.4049/jimmunol.167.11.6394] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mast cell function-associated Ag (MAFA) is a type II membrane glycoprotein originally found on the plasma membrane of rat mucosal-type mast cells (RBL-2H3 line). A C-type lectin domain and an immunoreceptor tyrosine-based inhibitory motif (ITIM) are located in the extracellular and intracellular domains of MAFA, respectively. MAFA clustering has previously been shown to suppress the secretory response of these cells to the FcepsilonRI stimulus. Here we show that the tyrosine of the ITIM undergoes phosphorylation, on MAFA clustering, that is markedly enhanced on pervanadate treatment of the cells. Furthermore, the Src homology 3 domain of the protein tyrosine kinase Lyn binds directly to a peptide containing nonphosphorylated MAFA ITIM and PAAP motif. Results of both in vitro and in vivo experiments suggest that Lyn is probably responsible for this ITIM phosphorylation, which increases the Src homology domain 2 (SH2) affinity of Lyn for the peptide. In vitro measurements established that tyrosine-phosphorylated MAFA ITIM peptides also bind the SH2 domains of inositol 5'-phosphatase (SHIP) as well as protein tyrosine phosphatase-2. However, the former single domain is bound 8-fold stronger than both of the latter. Further support for the role of SHIP in the action of MAFA stems from in vivo experiments in which tyrosine-phosphorylated MAFA was found to bind primarily SHIP. In RBL-2H3 cells overexpressing wild-type SHIP, MAFA clustering causes markedly stronger inhibition of the secretory response than in control cells expressing normal SHIP levels or cells overexpressing either wild-type protein tyrosine phosphatase-2 or its dominant negative form. In contrast, on overexpression of the SH2 domain of SHIP, the inhibitory action of MAFA is essentially abolished. Taken together, these results suggest that SHIP is the primary enzyme responsible for mediating the inhibition by MAFA of RBL-2H3 cell response to the FcepsilonRI stimulus.
Collapse
Affiliation(s)
- R Xu
- Department Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
20
|
Abstract
Since the description of the first mouse knockout for an IgG Fc receptor seven years ago, considerable progress has been made in defining the in vivo functions of these receptors in diverse biological systems. The role of activating Fc gamma Rs in providing a critical link between ligands and effector cells in type II and type III inflammation is now well established and has led to a fundamental revision of the significance of these receptors in initiating cellular responses in host defense, in determining the efficacy of therapeutic antibodies, and in pathological autoimmune conditions. Considerable progress has been made in the last two years on the in vivo regulation of these responses, through the appreciation of the importance of balancing activation responses with inhibitory signaling. The inhibitory FcR functions in the maintenance of peripheral tolerance, in regulating the threshold of activation responses, and ultimately in terminating IgG mediated effector stimulation. The consequences of deleting the inhibitory arm of this system are thus manifested in both the afferent and efferent immune responses. The hyperresponsive state that results leads to greatly magnified effector responses by cytotoxic antibodies and immune complexes and can culminate in autoimmunity and autoimmune disease when modified by environmental or genetic factors. Fc gamma Rs offer a paradigm for the biological significance of balancing activation and inhibitory signaling in the expanding family of activation/inhibitory receptor pairs found in the immune system.
Collapse
Affiliation(s)
- J V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, 1230 York Ave, New York, NY 10021, USA.
| | | |
Collapse
|
21
|
Affiliation(s)
- C Tkaczyk
- Laboratory of Allergic Diseases, National Institutes of Allergy and Inflammatory Diseases, National Institutes of Health, Building 10, Room 11C213, MSC 1881, 10 Center Drive, Bethesda, MD 20892-1881, USA
| | | |
Collapse
|
22
|
Nakamura R, Nakanishi M. Atomic force microscopy to study the effects of ITIM-bearing FcgammaRIIB on the activation of RBL-2H3 cells. Immunol Lett 2000; 72:167-70. [PMID: 10880837 DOI: 10.1016/s0165-2478(00)00175-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have studied here the effects of ITIM-bearing FcgammaRIIB2 on the FcvarepsilonRI-dependent activation of rat basophilic leukemia (RBL-2H3) cells by atomic force microscopy (AFM). AFM images showed that ruffling and degranulation of RBL-2H3 cells were significantly reduced but the cell spreading was not by the co-clustering of FcgammaRIIB2 and FcvarepsilonRI. From the results it was shown that the co-clustering of ITIM-bearing negative co-receptors in a single RBL cell hardly induce the degranulation though the [Ca(2+)](i) increased transiently in the cell. This suggested that secretory responses and the membrane ruffling which were induced by the crosslinkng of FcgammaRII should be negatively controlled by the co-clustering of FcgammaRII.
Collapse
Affiliation(s)
- R Nakamura
- Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, 467-8603, Nagoya, Japan
| | | |
Collapse
|
23
|
Higginbottom A, Wilkinson I, McCullough B, Lanza F, Azorsa DO, Partridge LJ, Monk PN. Antibody cross-linking of human CD9 and the high-affinity immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells. Immunology 2000; 99:546-52. [PMID: 10792502 PMCID: PMC2327194 DOI: 10.1046/j.1365-2567.2000.00992.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that antibody cross-linking of the tetraspanin protein CD9 stimulates the degranulation of platelets and eosinophils, although the mechanism of activation is unclear. In this work we transfected human CD9 into the rat basophilic leukaemia (RBL-2H3) cell line and studied the stimulation of secretion from these cells in response to a panel of anti-CD9 antibodies. Intact immunoglobulin G1 (IgG1) antibodies activated transfected cells whereas F(ab')2 fragments of antibody and an intact IgG2a did not. Stimulation of secretion was inhibited by co-incubation with monomer murine immunoglobulin E (IgE) but not with an IgG1 isotype control, indicating that the response involves the endogenous high-affinity IgE receptor (FcepsilonRI). The anti-CD9 antibody activation curve was biphasic, and supraoptimal antibody concentrations stimulated little or no degranulation, indicating that multivalent binding of human CD9 molecules is necessary for the formation of an active complex with rat FcepsilonRI. Immunoprecipitation of FcepsilonRI under mild detergent conditions co-precipitated CD9, suggesting the presence of pre-existing complexes of CD9 and FcepsilonRI that could be activated by antibody cross-linking. These data are further evidence that tetraspanins are involved in FcepsilonRI signalling and may reflect the participation of tetraspanins in the formation of complexes with other membrane proteins that use components of Fc receptors for signal transduction.
Collapse
Affiliation(s)
- A Higginbottom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Swann PG, Odom S, Zhou YJ, Szallasi Z, Blumberg PM, Draber P, Rivera J. Requirement for a negative charge at threonine 60 of the FcRgamma for complete activation of Syk. J Biol Chem 1999; 274:23068-77. [PMID: 10438475 DOI: 10.1074/jbc.274.33.23068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggregation of FcepsilonRI on mast cells results in the phosphorylation of the FcepsilonRIgamma chain on tyrosine and threonine residues within the immunoreceptor tyrosine-based activation motif. In the present study we sought to identify the site of threonine phosphorylation in FcepsilonRIgamma and investigate its functional importance. We found that threonine 60 was phosphorylated in vitro and in vivo. Expression of a mutated FcepsilonRIgamma (T60A), in either FcepsilonRIgamma-deficient or gamma-null mast cells, resulted in a delay of FcepsilonRI endocytosis, inhibition of TNF-alpha mRNA production, and inhibition of degranulation but did not affect FcepsilonRI-induced cell adhesion. Tyrosine phosphorylation of the T60A mutant gamma chain was normal, but Syk phosphorylation was dramatically reduced in these transfectants. This correlated with reduced co-immunoprecipitation of FcepsilonRIgamma with Syk. Substitution of an aspartic residue for threonine 60 of the FcepsilonRIgamma reconstituted complete activation of Syk and co-immunoprecipitation of FcepsilonRIgamma with Syk. We conclude that the negative charge provided by phosphorylation of threonine 60 of the FcepsilonRIgamma is required for the appropriate interaction and activation of Syk. This is a likely requirement for immunoreceptor tyrosine-based activation motifs involved in Syk activation.
Collapse
Affiliation(s)
- P G Swann
- Section on Chemical Immunology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ujike A, Ishikawa Y, Ono M, Yuasa T, Yoshino T, Fukumoto M, Ravetch JV, Takai T. Modulation of immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG. J Exp Med 1999; 189:1573-9. [PMID: 10330436 PMCID: PMC2193631 DOI: 10.1084/jem.189.10.1573] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
It is widely accepted that immunoglobulin (Ig)E triggers immediate hypersensitivity responses by activating a cognate high-affinity receptor, FcepsilonRI, leading to mast cell degranulation with release of vasoactive and proinflammatory mediators. This apparent specificity, however, is complicated by the ability of IgE to bind with low affinity to Fc receptors for IgG, FcgammaRII and III. We have addressed the in vivo significance of this interaction by studying IgE-mediated passive systemic anaphylaxis in FcgammaR-deficient mice. Mice deficient in the inhibitory receptor for IgG, FcgammaRIIB, display enhanced IgE-mediated anaphylactic responses, whereas mice deficient in an IgG activation receptor, FcgammaRIII, display a corresponding attenuation of IgE-mediated responses. Thus, in addition to modulating IgG-triggered hypersensitivity responses, FcgammaRII and III on mast cells are potent regulators of IgE-mediated responses and reveal the existence of a regulatory pathway for IgE triggering of effector cells through IgG Fc receptors that could contribute to the etiology of the atopic response.
Collapse
Affiliation(s)
- A Ujike
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Philips JR, Brouwer W, Edwards M, Mahler S, Ruhno J, Collins AM. The effectiveness of different rat IgG subclasses as IgE-blocking antibodies in the rat basophil leukaemia cell model. Immunol Cell Biol 1999; 77:121-6. [PMID: 10234546 DOI: 10.1046/j.1440-1711.1999.00801.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The degranulation of mast cells in an allergic response is initiated by the aggregation of high-affinity IgE receptors (Fc epsilon RI) by IgE and antigen. Recently it has been shown that such degranulation can be inhibited by cross-linking Fc epsilon RI and low-affinity IgG receptors (Fc gamma RII) which are also expressed by mast cells. The ability of various monoclonal antibodies to block the degranulation of rat basophil leukaemia (RBL) cells sensitized with IgE antidinitrophenyl (DNP) antibodies has been investigated. Sensitized cells were challenged with immune complexes formed using varying concentrations of antigen, and of both high- and low-valency antigen. It is reported here that rat IgG1 antibodies, which are associated in the rat with a Th1-type response, act as highly effective blocking antibodies over a wide concentration range. Rat IgG2a antibodies, which are associated with a Th2-type response, were able only to inhibit degranulation when immune complexes were formed with very low concentrations of high-valency antigen (DNP32-HSA). Under these conditions, some inhibitory activity was seen with high-affinity murine IgA anti-DNP but not with low-affinity rat IgG2b anti-DNP antibody-containing immune complexes. In addition to this inhibitory activity, IgG2a antibodies were shown to be capable of inducing degranulation of cells via unoccupied Fc epsilon RI. These results demonstrate that blocking activity may arise via both inhibitory receptors and by masking of antigen.
Collapse
Affiliation(s)
- J R Philips
- School of Microbiology and Immunology, University of New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Chen H, Centola M, Altschul SF, Metzger H. Characterization of gene expression in resting and activated mast cells. J Exp Med 1998; 188:1657-68. [PMID: 9802978 PMCID: PMC2212524 DOI: 10.1084/jem.188.9.1657] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To characterize gene expression in activated mast cells more comprehensively than heretofore, we surveyed the changes in genetic transcripts by the method of serial analysis of gene expression in the RBL-2H3 line of rat mast cells before and after they were stimulated through their receptors with high affinity for immunoglobulin E (FcepsilonRI). A total of 40,759 transcripts derived from 11,300 genes were analyzed. Among the diverse genes that had not been previously associated with mast cells and that were constitutively expressed were those for the cytokine macrophage migration inhibitory factor neurohormone receptors such as growth hormone- releasing factor and melatonin and components of the exocytotic machinery. In addition, several dozen transcripts were differentially expressed in response to antigen-induced clustering of the FcepsilonRI. Included among these were the genes for preprorelaxin, mitogen-activated protein kinase kinase 3, and the dual specificity protein phosphatase, rVH6. Significantly, the majority of genes differentially expressed in this well-studied model of mast cell activation have not been identified before this analysis.
Collapse
Affiliation(s)
- H Chen
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
28
|
Yamashita Y, Ono M, Takai T. Inhibitory and Stimulatory Functions of Paired Ig-Like Receptor (PIR) Family in RBL-2H3 Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.8.4042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In this study, we demonstrate potent regulatory function of the murine killer cell inhibitory receptor-like molecules, paired Ig-like receptors (PIRs) or p91, using chimeric receptors expressed on the rat basophilic leukemia cell line RBL-2H3. One of the chimeras, which has the transmembrane and cytoplasmic domain of PIR-B fused to the extracellular portion of type IIB receptor for IgG, was able to inhibit the type I receptor for IgE-mediated degranulation response upon coaggregation. This chimera also suppressed cytoplasmic Ca2+ mobilization in the presence and absence of calcium ion in the extracellular medium. Tyrosine to phenylalanine point mutations at the third and fourth immunoreceptor tyrosine-based inhibitory motif-like sequences of PIR-B attenuated the inhibitory effects on degranulation and on cytoplasmic Ca2+ mobilization, indicating the important role of these tyrosines for the delivery of negative signal. In contrast, the cross-linking of another chimeric receptor composed of the type IIB receptor for IgG extracellular portion and the transmembrane and short cytoplasmic sequence of PIR-A elicited Ca2+ mobilization and degranulation. These results indicate that PIR molecules may regulate cellular functions both positively and negatively.
Collapse
Affiliation(s)
- Yumi Yamashita
- *Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kawaguchi Japan
- †Department of Biotechnology, Faculty of Engineering, Okayama University, Okayama, Japan; and
| | - Masao Ono
- *Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kawaguchi Japan
- ‡Department of Experimental Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Toshiyuki Takai
- *Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kawaguchi Japan
- ‡Department of Experimental Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Tolar P, Dráberová L, Dráber P. Protein tyrosine kinase Syk is involved in Thy-1 signaling in rat basophilic leukemia cells. Eur J Immunol 1997; 27:3389-97. [PMID: 9464827 DOI: 10.1002/eji.1830271238] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thy-1, a glycosyl-phosphatidylinositol-anchored surface glycoprotein, has been shown to possess transmembrane signaling capacity. In rat mast cells and rat basophilic leukemia cells (RBL) aggregation of surface Thy-1 with antibodies triggers a series of intracellular events, resembling those induced by aggregation of the high-affinity receptor for IgE (Fc epsilonRI), including tyrosine phosphorylation of multiple proteins and release of secretory components. Unlike the Fc epsilonRI-mediated activation, where both the membrane-associated protein tyrosine kinase (PTK) Lyn and the cytoplasmic PTK Syk are responsible for initiating the signaling cascade, only Lyn has been implicated in Thy-1-mediated activation in RBL cells. Here we report that Syk is also rapidly tyrosine phosphorylated upon Thy-1 cross-linking. Increased Syk tyrosine phosphorylation is observed only in cells in which extensive aggregation of Thy-1 is induced by two layers of cross-linking reagents. RBL-derived mutant cells deficient in the expression of surface Thy-1 and transfectants re-expressing surface Thy-1 were used to exclude the possibility that Syk activation reflects an interaction of the cross-linking reagents with surface molecules other than Thy-1. As Fc epsilonRI gamma subunits are well known to promote activation of Syk and its recruitment to membrane complexes, we also investigated the role of these subunits in Thy-1-mediated Syk activation, using RBL-derived mutant cells deficient in the expression of Fc epsilonRI gamma subunits and their revertants. Consistent with the lack of Fc epsilonRI expression, no IgE-induced response could be elicited, while Thy-1-inducible Syk phosphorylation was preserved. Our results suggest that Syk might be one of the kinases responsible for signal propagation upon Thy-1 cross-linking in a Fc epsilonRI-independent pathway.
Collapse
Affiliation(s)
- P Tolar
- Department of Mammalian Gene Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | |
Collapse
|
30
|
Amoui M, Dráberová L, Tolar P, Dráber P. Direct interaction of Syk and Lyn protein tyrosine kinases in rat basophilic leukemia cells activated via type I Fc epsilon receptors. Eur J Immunol 1997; 27:321-8. [PMID: 9022035 DOI: 10.1002/eji.1830270146] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation of rat mast cells through the receptor with high affinity for IgE (Fc epsilonRI) requires a complex set of interactions involving transmembrane subunits of the Fc epsilonRI and two classes of nonreceptor protein tyrosine kinase (PTK). the Src family PTK p53/p56(lyn) (Lyn) and the Syk/ZAP-family PTK p72(syk) (Syk). Early activation events involve increased activity of Lyn and Syk kinases and their translocation into membrane domains containing aggregated Fc epsilonRI, but the molecular mechanisms responsible for these changes have remained largely unclear. To determine the role of Fc epsilonRI subunits in this process, we have analyzed Syk- and Lyn-associated proteins in activated rat basophilic leukemia (RBL) cells and their variants deficient in the expression of Fc epsilonRI beta or gamma subunits. Sepharose 4B gel chromatography of postnuclear supernatants from Nonidet-P40-solubilized antigen (Ag)- or pervanadate-activated RBL cells revealed extensive changes in the size of complexes formed by Lyn and Syk kinases and other cellular components. A fusion protein containing Src homology 2 (SH2) and SH3 domains of Lyn bound Syk from lysates of nonactivated RBL cells; an increased binding was observed when lysates from Ag- or pervanadate-activated cells were used. A similar amount of Syk was bound when lysates from pervanadate-activated variant cells deficient in the expression of Fc epsilonRI beta or gamma subunits were used, suggesting that Fc epsilonRI does not function as the only intermediate in the formation of the Syk-Lyn complexes. Further experiments have indicated that Syk-Lyn interactions occur in Ag-activated RBL cells under in vivo conditions and that these interactions could involve direct binding of the Lyn SH2 domain with phosphorylated tyrosine of Syk. The physical association of Lyn and Syk during mast-like cell activation supports the recently proposed functional cooperation of these two tyrosine kinases in Fc epsilonRI signaling.
Collapse
Affiliation(s)
- M Amoui
- Department of Mammalian Gene Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | | | |
Collapse
|
31
|
Beaven MA, Baumgartner RA. Downstream signals initiated in mast cells by Fc epsilon RI and other receptors. Curr Opin Immunol 1996; 8:766-72. [PMID: 8994853 DOI: 10.1016/s0952-7915(96)80002-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The significant contributions this past year to our understanding of IgE receptor (Fc epsilon RI) signaling in mast cells include studies with truncated Syk in a vaccinia expression system and Syk-negative variants of rat basophilic (RBL-2H3) cells. These studies demonstrate an essential role for Syk in initiating signals for secretion and release of arachidonic acid via phospholipase A2 and mitogen-activated protein kinase. A newly recognized addition to the repertoire of Fc epsilon RI-mediated signaling systems is the activation of sphingosine kinase, which contributes to calcium mobilization in mast cells. Advances have been made in our understanding of other receptors that regulate proliferation and differentiation of mast cells, and in our understanding of the ability of mast cells to mount acquired and acute responses to antigenic and bacterial challenge.
Collapse
Affiliation(s)
- M A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-1760, USA.
| | | |
Collapse
|