1
|
Liu J, Verweij FJ, van Niel G, Galli T, Danglot L, Bun P. ExoJ - a Fiji/ImageJ2 plugin for automated spatiotemporal detection and analysis of exocytosis. J Cell Sci 2024; 137:jcs261938. [PMID: 39219469 DOI: 10.1242/jcs.261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Exocytosis is a dynamic physiological process that enables the release of biomolecules to the surrounding environment via the fusion of membrane compartments to the plasma membrane. Understanding its mechanisms is crucial, as defects can compromise essential biological functions. The development of pH-sensitive optical reporters alongside fluorescence microscopy enables the assessment of individual vesicle exocytosis events at the cellular level. Manual annotation represents, however, a time-consuming task that is prone to selection biases and human operational errors. Here, we introduce ExoJ, an automated plugin based on Fiji/ImageJ2 software. ExoJ identifies user-defined genuine populations of exocytosis events, recording quantitative features including intensity, apparent size and duration. We designed ExoJ to be fully user-configurable, making it suitable for studying distinct forms of vesicle exocytosis regardless of the imaging quality. Our plugin demonstrates its capabilities by showcasing distinct exocytic dynamics among tetraspanins and vesicular SNARE protein reporters. Assessment of performance on synthetic data shows that ExoJ is a robust tool that is capable of correctly identifying exocytosis events independently of signal-to-noise ratio conditions. We propose ExoJ as a standard solution for future comparative and quantitative studies of exocytosis.
Collapse
Affiliation(s)
- Junjun Liu
- Jinan Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China
| | | | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Endosomal dynamics in neuropathies, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
| | - Thierry Galli
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
| | - Lydia Danglot
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| |
Collapse
|
2
|
Wang D, Yu L. Migrasome biogenesis: when biochemistry meets biophysics on membranes. Trends Biochem Sci 2024; 49:829-840. [PMID: 38945731 DOI: 10.1016/j.tibs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.
Collapse
Affiliation(s)
- Dongju Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Susa KJ, Kruse AC, Blacklow SC. Tetraspanins: structure, dynamics, and principles of partner-protein recognition. Trends Cell Biol 2024; 34:509-522. [PMID: 37783654 PMCID: PMC10980598 DOI: 10.1016/j.tcb.2023.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Tetraspanins are a large, highly conserved family of four-pass transmembrane (TM) proteins that play critical roles in a variety of essential cellular functions, including cell migration, protein trafficking, maintenance of membrane integrity, and regulation of signal transduction. Tetraspanins carry out these biological functions primarily by interacting with partner proteins. Here, we summarize significant advances that have revealed fundamental principles underpinning structure-function relationships in tetraspanins. We first review the structural features of tetraspanin ectodomains and full-length apoproteins, and then discuss how recent structural studies of tetraspanin complexes have revealed plasticity in partner-protein recognition that enables tetraspanins to bind to remarkably different protein families, viral proteins, and antibody fragments. Finally, we discuss major questions and challenges that remain in studying tetraspanin complexes.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Zhang H, Song Q, Shang K, Li Y, Jiang L, Yang L. Tspan protein family: focusing on the occurrence, progression, and treatment of cancer. Cell Death Discov 2024; 10:187. [PMID: 38649381 PMCID: PMC11035590 DOI: 10.1038/s41420-024-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
The Tetraspanins (Tspan) protein family, also known as the tetraspanin family, contains 33 family members that interact with other protein molecules such as integrins, adhesion molecules, and T cell receptors by forming dimers or heterodimers. The Tspan protein family regulates cell proliferation, cell cycle, invasion, migration, apoptosis, autophagy, tissue differentiation, and immune response. More and more studies have shown that Tspan proteins are involved in tumorigenesis, epithelial-mesenchymal transition, thrombosis, tumor stem cell, and exosome signaling. Some drugs and microRNAs can inhibit Tspan proteins, thus providing new strategies for tumor therapy. An in-depth understanding of the functions and regulatory mechanisms of the Tspan protein family, which can promote or inhibit tumor development, will provide new strategies for targeted interventions in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Kaiwen Shang
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Liangqian Jiang
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Schmidt SC, Massenberg A, Homsi Y, Sons D, Lang T. Microscopic clusters feature the composition of biochemical tetraspanin-assemblies and constitute building-blocks of tetraspanin enriched domains. Sci Rep 2024; 14:2093. [PMID: 38267610 PMCID: PMC10808221 DOI: 10.1038/s41598-024-52615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
Biochemical approaches revealed that tetraspanins are multi-regulatory proteins forming a web, where they act in tetraspanin-enriched-microdomains (TEMs). A microscopic criterion differentiating between web and TEMs is lacking. Using super-resolution microcopy, we identify co-assemblies between the tetraspanins CD9 and CD81 and CD151 and CD81. CD9 assemblies contain as well the CD9/CD81-interaction partner EWI-2. Moreover, CD9 clusters are proximal to clusters of the CD81-interaction partner CD44 and CD81-/EWI-2-interacting ezrin-radixin-moesin proteins. Assemblies scatter unorganized across the cell membrane; yet, upon EWI-2 elevation, they agglomerate into densely packed arranged-crowds in a process independent from actin dynamics. In conclusion, microscopic clusters are equivalent to biochemical tetraspanin-assemblies, defining in their entirety the tetraspanin web. Cluster-agglomeration enriches tetraspanins, which makes agglomerations to a microscopic complement of TEMs. The microscopic classification of tetraspanin assemblies advances our understanding of this enigmatic protein family, whose members play roles in a plethora of cellular functions, diseases, and pathogen infections.
Collapse
Affiliation(s)
- Sara C Schmidt
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Annika Massenberg
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Yahya Homsi
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Dominik Sons
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Thorsten Lang
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Fontelonga T, Hall AJ, Brown JL, Jung YL, Alexander MS, Dominov JA, Mouly V, Vieira N, Zatz M, Vainzof M, Gussoni E. Tetraspanin CD82 Associates with Trafficking Vesicle in Muscle Cells and Binds to Dysferlin and Myoferlin. Adv Biol (Weinh) 2023; 7:e2300157. [PMID: 37434585 PMCID: PMC10784410 DOI: 10.1002/adbi.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Tetraspanins organize protein complexes at the cell membrane and are responsible for assembling diverse binding partners in changing cellular states. Tetraspanin CD82 is a useful cell surface marker for prospective isolation of human myogenic progenitors and its expression is decreased in Duchenne muscular dystrophy (DMD) cell lines. The function of CD82 in skeletal muscle remains elusive, partly because the binding partners of this tetraspanin in muscle cells have not been identified. CD82-associated proteins are sought to be identified in human myotubes via mass spectrometry proteomics, which identifies dysferlin and myoferlin as CD82-binding partners. In human dysferlinopathy (Limb girdle muscular dystrophy R2, LGMDR2) myogenic cell lines, expression of CD82 protein is near absent in two of four patient samples. In the cell lines where CD82 protein levels are unaffected, increased expression of the ≈72 kDa mini-dysferlin product is identified using an antibody recognizing the dysferlin C-terminus. These data demonstrate that CD82 binds dysferlin/myoferlin in differentiating muscle cells and its expression can be affected by loss of dysferlin in human myogenic cells.
Collapse
Affiliation(s)
- Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Arielle J Hall
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jaedon L Brown
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Youngsook L Jung
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at Children's of Alabama, 1900 University Blvd, Birmingham, AL, 35294, USA
- Department of Genetics, University of Alabama at Birmingham, 1900 University Avenue, Birmingham, AL, 35294, USA
| | - Janice A Dominov
- Department of Neurology, University of Massachusetts, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Vincent Mouly
- Center for research In Myology, Institute de Myologie/Myology Institute, UMRS 974 Sorbonne Université-INSERM Batiment Babinski, GH Pitié-Salpétrière 47 bd de l'Hôpital, Paris Cedex 13, 75651, France
| | - Natassia Vieira
- Stemcorp, R. Mato Grosso, 306, Higienópolis, São Paulo, 01239-040, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo, R. do Matão, 277, Butantã, São Paulo, 05508-090, Brazil
| | - Mariz Vainzof
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo, R. do Matão, 277, Butantã, São Paulo, 05508-090, Brazil
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- The Stem Cell Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Leinung N, Mentrup T, Patel M, Gallagher T, Schröder B. Dynamic association of the intramembrane proteases SPPL2a/b and their substrates with tetraspanin-enriched microdomains. iScience 2023; 26:107819. [PMID: 37736044 PMCID: PMC10509304 DOI: 10.1016/j.isci.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Signal peptide peptidase-like 2a and b (SPPL2a/b) are aspartyl intramembrane proteases and cleave tail-anchored proteins as well as N-terminal fragments (NTFs) derived from type II-oriented transmembrane proteins. How these proteases recruit substrates and cleavage is regulated, is still incompletely understood. We found that SPPL2a/b localize to detergent-resistant membrane (DRM) domains with the characteristics of tetraspanin-enriched microdomains (TEMs). Based on this, association with several tetraspanins was evaluated. We demonstrate that not only SPPL2a/b but also their substrates tumor necrosis factor (TNF) and CD74 associate with tetraspanins like CD9, CD81, and CD82 and/or TEMs and analyze the stability of these complexes in different detergents. CD9 and CD81 deficiency has protease- and substrate-selective effects on SPPL2a/b function. Our findings suggest that reciprocal interactions with tetraspanins may assist protease-substrate encounters of SPPL2a/b within the membrane. Beyond SPP/SPPL proteases, this supports previous concepts that tetraspanins facilitate membrane-embedded proteolytic processes.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Mehul Patel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Zhu Y, Saint-Pol J, Nguyen V, Rubinstein E, Boucheix C, Greco C. The Tetraspanin Tspan8 Associates with Endothelin Converting Enzyme ECE1 and Regulates Its Activity. Cancers (Basel) 2023; 15:4751. [PMID: 37835445 PMCID: PMC10571763 DOI: 10.3390/cancers15194751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Tspan8 is a member of the tetraspanins family of cell surface molecules. The ability of tetraspanins to organize membrane microdomains with other membrane molecules and interfere with their function suggests that they could act as surface integrators of external or internal signals. Among the first identified tetraspanins, Tspan8 promotes tumor progression and metastasis, presumably by stimulating angiogenesis and cell motility. In patients, its expression on digestive tract tumors seems to be associated with a bad prognosis. We showed previously that Tspan8 associates with E-cadherin and EGFR and modulates their effects on cell motility. Using Mass spectrometry and western blot, we found a new partner, the endothelin converting enzyme ECE1, and showed that Tspan8 amplifies its activity of conversion of the endothelin-1 precursor bigET1 to endothelin. This was observed by transduction of the colon carcinoma cell line Isreco1, which does not express Tspan8, and on ileum tissue fragments of tspan8ko mice versus wild type mice. Given these results, Tspan8 appears to be a modulator of the endothelin axis, which could possibly be targeted in case of over-activity of endothelins in biological processes of tissues expressing Tspan8.
Collapse
Affiliation(s)
- Yingying Zhu
- UMR-S 1004, SFR André Lwoff, Inserm, 94800 Villejuif, France; (Y.Z.); (J.S.-P.); (E.R.)
- Université Paris Saclay, 91190 Gif-sur-Yvette, France;
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Julien Saint-Pol
- UMR-S 1004, SFR André Lwoff, Inserm, 94800 Villejuif, France; (Y.Z.); (J.S.-P.); (E.R.)
- Université Artois, UR 2465, Blood-Brain Barrier Laboratory (LBHE), 62300 Lens, France
| | - Viet Nguyen
- Université Paris Saclay, 91190 Gif-sur-Yvette, France;
- Plateforme Spectrométrie de Masse, Laboratoire Biochimie-Hormonologie, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris (APHP), 75610 Paris, France
| | - Eric Rubinstein
- UMR-S 1004, SFR André Lwoff, Inserm, 94800 Villejuif, France; (Y.Z.); (J.S.-P.); (E.R.)
- Centre d’Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, 75013 Paris, France
| | - Claude Boucheix
- Université Paris Saclay, 91190 Gif-sur-Yvette, France;
- UMR-S 1197, SFR André Lwoff, Inserm, 94800 Villejuif, France
| | - Céline Greco
- Department of Pain and Palliative Care, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), 75610 Paris, France
- U1163, IMAGINE Institute, Université de Paris Cité, Inserm, 75014 Paris, France
| |
Collapse
|
9
|
Distribution of tetraspanins in bovine ovarian tissue and fresh/vitrified oocytes. Histochem Cell Biol 2023; 159:163-183. [PMID: 36242635 PMCID: PMC9922244 DOI: 10.1007/s00418-022-02155-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
Abstract
Tetraspanin proteins are mostly known as organizers of molecular complexes on cell membranes, widely expressed on the surface of most nucleated cells. Although tetraspanins participate in many physiological processes of mammals, including reproduction, their relevance to the processes of folliculogenesis and oogenesis has not yet been fully elucidated. We bring new information regarding the distribution of tetraspanins CD9, CD81, CD151, CD82, and CD63 at different stages of follicular development in cattle. The found distribution of tetraspanin CD9, CD63, and integrin alpha V in similar areas of ovarian tissue outlined their possible cooperation. We also describe yet-unknown distribution patterns of CD151, CD82, and CD63 on immature and mature bovine oocytes. The unique localization of tetraspanins CD63 and CD82 in the zona pellucida of bovine oocytes suggested their involvement in transzonal projections. Furthermore, we present an unchanged distribution pattern of the studied tetraspanins in vitrified mature bovine oocytes. The immunofluorescent analysis was supplemented by in silico data addressing tetraspanins expression in the ovarian cells and oocytes across several species. The obtained results suggest that in the study of the oocyte development and potentially the fertilization process of cattle, the role of tetraspanins and integrins should also be taken into account.
Collapse
|
10
|
Shi Y, Ding W, Gu W, Shen Y, Li H, Zheng Z, Zheng X, Liu Y, Ling Y. Single-cell phenotypic profiling to identify a set of immune cell protein biomarkers for relapsed and refractory diffuse large B cell lymphoma: A single-center study. J Leukoc Biol 2022; 112:1633-1648. [PMID: 36040107 DOI: 10.1002/jlb.6ma0822-720rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 01/04/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common invasive type of non-Hodgkin lymphoma. Cell-of-origin (COO) classification is related to patients' prognoses. Primary drug resistance in treatment for DLBCL has been observed. The specific serum biomarkers in these patients who suffer from relapsed and refractory (R/R)-DLBCL remains unclear. In the current study, using single-cell RNA sequencing (scRNA-seq) and mass cytometry (CyTOF), we determined and verified immune cell biomarkers at the mRNA and protein levels in single-cell resolution from 18 diagnostic PBMC specimens collected from patients with R/R DLBCL. As controls, 5 PBMC specimens from healthy volunteers were obtained. We identified a panel of 35 surface marker genes for the features of R/R DLBCL unique cell cluster by scRNA-seq of 8 R/R DLBCL patient samples and validated its efficiency in an external cohort consisting of 10 R/R DLBCL patients by CyTOF. The cell clustering and dimension reduction were compared among R/R DLBCL samples in CyTOF Space with COO as well as the C-MYC expression designation. Immune cells from each patient occupied unique regions in the 32-dimensional phenotypic space with no apparent clustering of samples into discrete subtypes. Significant heterogeneity observed in subgroups was mainly attributed to individual differences among samples and not to expression differences in a single, homogeneous immune cell subpopulation. The marker panel showed reliability in labeling R/R DLBCL without any influence from COO stratification and C-MYC expression designation. Furthermore, we compared all the markers between R/R DLBCL and normal samples. A total of 12 biomarkers were significantly overexpressed in R/R DLBCL relative to the normal samples. Therefore, we further optimized the diagnostic biomarker panel of R/R DLBCL comprising CD82, CD55, CD36, CD63, CD59, IKZF1, CD69, CD163, CD14, CD226, CD84, and CD31. In summary, we developed a novel set of biomarkers for the diagnoses of patients with R/R DLBCL. Detections procedures at single-cell resolution provide precise biomarkers, which may substantially overcome intertumoral and intratumoral heterogeneity among primary samples. The findings confirmed that each case was unique and may comprise multiple, genetically distinct subclones.
Collapse
Affiliation(s)
- Yuan Shi
- Department of hematology laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weidong Ding
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yangling Shen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Haiqian Li
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.,Institute for Cell Therapy of Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.,Institute for Cell Therapy of Soochow University, Changzhou, China
| | - Yan Liu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
11
|
Kaur S, Livak F, Daaboul G, Anderson L, Roberts DD. Single vesicle analysis of CD47 association with integrins and tetraspanins on extracellular vesicles released by T lymphoblast and prostate carcinoma cells. J Extracell Vesicles 2022; 11:e12265. [PMID: 36107309 PMCID: PMC9477112 DOI: 10.1002/jev2.12265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
CD47 regulates the trafficking of specific coding and noncoding RNAs into extracellular vesicles (EVs), and the RNA contents of CD47+ EVs differ from that of CD63+ EVs released by the same cells. Single particle interferometric reflectance imaging sensing combined with immunofluorescent imaging was used to analyse the colocalization of tetraspanins, integrins, and CD47 on EVs produced by wild type and CD47-deficient Jurkat T lymphoblast and PC3 prostate carcinoma cell lines. On Jurkat cell-derived EVs, β1 and α4 integrin subunits colocalized predominantly with CD47 and CD81 but not with CD63 and CD9, conserving the known lateral interactions between these proteins in the plasma membrane. Although PC3 cell-derived EVs lacked detectable α4 integrin, specific association of CD81 with β1 and CD47 was preserved. Loss of CD47 expression in Jurkat cells significantly reduced β1 and α4 levels on EVs produced by these cells while elevating CD9+ , CD63+ , and CD81+ EVs. In contrast, loss of CD47 in PC3 cells decreased the abundance of CD63+ and CD81+ EVs. These data establish that CD47+ EVs are mostly distinct from EVs bearing the tetraspanins CD63 and CD9, but CD47 also indirectly regulates the abundance of EVs bearing these non-interacting tetraspanins via mechanisms that remain to be determined.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | | | - David D. Roberts
- Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
12
|
Garcia-Mayea Y, Mir C, Carballo L, Sánchez-García A, Bataller M, LLeonart ME. TSPAN1, a novel tetraspanin member highly involved in carcinogenesis and chemoresistance. Biochim Biophys Acta Rev Cancer 2021; 1877:188674. [PMID: 34979155 DOI: 10.1016/j.bbcan.2021.188674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
The tetraspanin (TSPAN) family constitutes a poorly explored family of membrane receptors involved in various physiological processes, with relevant roles in anchoring multiple proteins, acting as scaffolding proteins, and cell signaling. Recent studies have increasingly demonstrated the involvement of TSPANs in cancer. In particular, tetraspanin 1 (also known as TSPAN1, NET-1, TM4C, C4.8 or GEF) has been implicated in cell survival, proliferation and invasion. Recently, our laboratory revealed a key role of TSPAN1 in the acquired resistance of tumor cells to conventional chemotherapy (e.g., cisplatin). In this review, we summarize and discuss the latest research on the physiological mechanisms of TSPANs in cancer and, in particular, on TSPAN1 regulating resistance to chemotherapy. A model of TSPAN1 action is proposed, and the potential of targeting TSPAN1 in anticancer therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Laia Carballo
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Marina Bataller
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Center in Oncology, CIBERONC, Spain.
| |
Collapse
|
13
|
De Martino V, Rossi M, Battafarano G, Pepe J, Minisola S, Del Fattore A. Extracellular Vesicles in Osteosarcoma: Antagonists or Therapeutic Agents? Int J Mol Sci 2021; 22:12586. [PMID: 34830463 PMCID: PMC8619425 DOI: 10.3390/ijms222212586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is a skeletal tumor affecting mainly children and adolescents. The presence of distance metastasis is frequent and it is localized preferentially to the lung, representing the main reason for death among patients. The therapeutic approaches are based on surgery and chemotherapeutics. However, the drug resistance and the side effects associated with the chemotherapy require the identification of new therapeutic approaches. The understanding of the complex biological scenario of the osteosarcoma will open the way for the identification of new targets for its treatment. Recently, a great interest of scientific community is for extracellular vesicles (EVs), that are released in the tumor microenvironment and are important regulators of tumor proliferation and the metastatic process. At the same time, circulating extracellular vesicles can be exploited as diagnostic and prognostic biomarkers, and they can be loaded with drugs as a new therapeutic approach for osteosarcoma patients. Thus, the characterization of OS-related EVs could represent a way to convert these vesicles from antagonists for human health into therapeutic and/or diagnostic agents.
Collapse
Affiliation(s)
- Viviana De Martino
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| |
Collapse
|
14
|
Justo BL, Jasiulionis MG. Characteristics of TIMP1, CD63, and β1-Integrin and the Functional Impact of Their Interaction in Cancer. Int J Mol Sci 2021; 22:9319. [PMID: 34502227 PMCID: PMC8431149 DOI: 10.3390/ijms22179319] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Tissue Inhibitor of Metalloproteases 1, also known as TIMP-1, is named for its well-established function of inhibiting the proteolytic activity of matrix metalloproteases. Given this function, many studies were carried out to verify if TIMP-1 was able to interrupt processes such as tumor cell invasion and metastasis. In contrast, many studies have shown that TIMP-1 expression is increased in several types of tumors, and this increase was correlated with a poor prognosis and lower survival in cancer patients. Later, it was shown that TIMP-1 is also able to modulate cell behavior through the induction of signaling pathways involved in cell growth, proliferation, and survival. The mechanisms involved in the regulation of the pleiotropic functions of TIMP-1 are still poorly understood. Thus, this review aimed to present literature data that show its ability to form a membrane complex with CD63 and β1-integrin, and point to N-glycosylation as a potential regulatory mechanism of the functions exerted by TIMP-1. This article reviewed the characteristics and functions performed individually by TIMP1, CD63, and β1-integrin, the roles of the TIMP-1/CD63/β1-integrin complex, both in a physiological context and in cancer, and the regulatory mechanisms involved in its assembly.
Collapse
Affiliation(s)
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 5 Floor, São Paulo 04039-032, Brazil;
| |
Collapse
|
15
|
Ordas L, Costa L, Lozano A, Chevillard C, Calovoulos A, Kantar D, Fernandez L, Chauvin L, Dosset P, Doucet C, Heron-Milhavet L, Odintsova E, Berditchevski F, Milhiet PE, Bénistant C. Mechanical Control of Cell Migration by the Metastasis Suppressor Tetraspanin CD82/KAI1. Cells 2021; 10:cells10061545. [PMID: 34207462 PMCID: PMC8234748 DOI: 10.3390/cells10061545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023] Open
Abstract
The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration. Tetraspanin CD82 (also named KAI-1) is an integral membrane protein and a metastasis suppressor. Its expression is lost in many cancers including breast cancer. It is a strong inhibitor of cell migration by a little-known mechanism. We demonstrated here that CD82 controls persistent 2D migration of EGF-induced single cells, stress fibers and focal adhesion sizes and dynamics. Mechanistically, we found that CD82 regulates membrane tension, cell surface caveolae abundance and YAP nuclear translocation in a caveolin-1-dependent manner. Altogether, our data show that CD82 controls 2D cell migration using membrane-driven mechanics involving caveolin and the YAP pathway.
Collapse
Affiliation(s)
- Laura Ordas
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Luca Costa
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Anthony Lozano
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, 34293 Montpellier, France
| | - Christopher Chevillard
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Alexia Calovoulos
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Diala Kantar
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194—University Montpellier—Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France; (D.K.); (L.H.-M.)
| | - Laurent Fernandez
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- European Institute of Chemistry and Biology (IECB), University of Bordeaux, 33607 Pessac, France
| | - Lucie Chauvin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, University Montpellier, 34293 Montpellier, France;
| | - Patrice Dosset
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Christine Doucet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Lisa Heron-Milhavet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194—University Montpellier—Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France; (D.K.); (L.H.-M.)
| | - Elena Odintsova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.O.); (F.B.)
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.O.); (F.B.)
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Correspondence: (P.-E.M.); (C.B.)
| | - Christine Bénistant
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Correspondence: (P.-E.M.); (C.B.)
| |
Collapse
|
16
|
Abstract
Extracellular vesicles (EVs) refer to vesicles that are released by cells into the extracellular space. EVs mediate cell-to-cell communication via delivery of functional biomolecules between host and recipient cells. EVs can be categorised based on their mode of biogenesis and secretion and include apoptotic bodies, ectosomes or shedding microvesicles and exosomes among others. EVs have gained immense interest in recent years owing to their implications in pathophysiological conditions. Indeed, EVs have been proven useful in clinical applications as potential drug delivery vehicles and as source of diagnostic biomarkers. Despite the growing body of evidence supporting the clinical benefits, the processes involved in the biogenesis of EVs are poorly understood. Hence, it is critical to gain a deeper understanding of the underlying molecular machineries that ultimately govern the biogenesis and secretion of EVs. This chapter discusses the current knowledge on molecular mechanisms involved in the biogenesis of various subtypes of EVs.
Collapse
Affiliation(s)
- Taeyoung Kang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ishara Atukorala
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
He J, Gu H, Wang W, Hu Y. Two CD9 tetraspanin family members of Japanese flounder (Paralichthys olivaceus): characterization and comparative analysis of the anti-infectious immune function. Vet Res 2021; 52:28. [PMID: 33597018 PMCID: PMC7890607 DOI: 10.1186/s13567-021-00903-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
CD9 is a glycoprotein of the transmembrane 4 superfamily that is involved in various cellular processes. Studies related to the immune functions and activities of CD9 in teleost fish are limited. In this study, we characterized two CD9 homologs, PoCD9.1 and PoCD9.3, from Japanese flounder (Paralichthys olivaceus). Sequence analysis showed that PoCD9.1 and PoCD9.3 possess characteristic transmembrane 4 superfamily (TM4SF) structures. PoCD9.1 shares 70.61% sequence identity with PoCD9.3. The expression of PoCD9.1 and PoCD9.3 in the three main immune tissues was significantly induced in a time-dependent manner by extracellular and intracellular pathogen infection, which indicates that the two CD9 homologs play an important role in the response to pathogenic infection. Following infection with the extracellular pathogen Vibrio anguillarum, the expression profiles of both PoCD9.1 and PoCD9.3 were similar. After infection with the intracellular pathogen Edwardsiella piscicida, the expression levels of PoCD9.1 and PoCD9.3 were different at different stages of infection, especially in the spleen. The spleen was the most important tissue for the PoCD9.1 and PoCD9.3 responses to pathogen infection among the three examined immune tissues. Knockdown of PoCD9.1 and PoCD9.3 attenuated the ability of host cells to eliminate pathogenic bacteria, and PoCD9.1 knockdown was more lethal than PoCD9.3 knockdown for host cells with E. piscicida infection. Overexpression of PoCD9.1 and PoCD9.3 promoted host or host cell defence against E. piscicida infection. These findings suggest that PoCD9.1 and PoCD9.3 serve as immune-related factors, play an important role in the immune defence system of Japanese flounder, and display different functions in response to different pathogens at different stages of infection.
Collapse
Affiliation(s)
- Jiaojiao He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.,Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China
| | - Wenqi Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China. .,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China.
| |
Collapse
|
18
|
Kumar S, Crenshaw BJ, Williams SD, Bell CR, Matthews QL, Sims B. Cocaine-Specific Effects on Exosome Biogenesis in Microglial Cells. Neurochem Res 2021; 46:1006-1018. [PMID: 33559104 PMCID: PMC7946671 DOI: 10.1007/s11064-021-03231-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Cocaine is a highly addictive stimulant and a well-known drug, with multiple effects on physiology. Cocaine can have direct effects on all cell types in the brain, including microglia. Microglia can be activated by other conditions, such as infection, inflammation, or injury. However, how cocaine regulates microglia and the influence of cocaine on microglial-derived exosomes remains unknown. Exosomes are nanovesicles that are responsible for intercellular communications, signaling, and trafficking necessary cargo for cell homeostasis. In this study, we hypothesized that cocaine affects exosome biogenesis and composition in BV2 microglial cells. BV2 microglial cells were cultured in exosome-depleted RPMI-1640 media and were treated according to the experimental designs. We observed that cell viability decreased by 11% at 100 µM cocaine treatment but was unaffected at other concentrations. After treatments, the exosomes were isolated from the condition media. Purified exosomes were characterized and quantified using transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA). By NTA, there was a significant decrease in particles/mL after cocaine treatment. There was a 39.5%, 58.1%, 32.3% and 28.1% decrease in particles/mL at 100 nM, 1 μM, 10 μM and 100 μM cocaine, respectively. The characterization of exosomes and exosomal protein was performed by western/dot blot analyses. Tetraspanins CD11b, CD18 and CD63 were relatively unchanged after cocaine treatment. The heat shock proteins (Hsps), Hsp70 and Hsp90, were both significantly increased at 10 μM and 100 μM, but only hsp70 was significantly increased at 10 nM. The Rab proteins were assessed to investigate their role in cocaine-mediated exosomal decrease. Rab11 was significantly decreased at 10 nM, 100 nM, 1 μM, 10 μM and 100 μM by 15%, 28%, 25%, 38% and 22%, respectively. Rab27 was decreased at all concentrations but only significantly decreased at 100 nM, 1 μM and 100 μM cocaine by 21%, 24% and 23%, respectively. Rab35 had no significant changes noted when compared to control. Rab7 increased at all cocaine concentrations but only a significant increase in expression at 100 nM and 10 μM by 1.32-fold and 1.4-fold increase. Cocaine was found to alter exosome biogenesis and composition in BV2 microglial cells. Western and dot blot analyses verified the identities of purified exosomes, and the specific protein compositions of exosomes were found to change in the presence of cocaine. Furthermore, cocaine exposure modulated the expression of exosomal proteins, such as Hsps and Rab GTPases, suggesting the protein composition and formation of microglial-derived exosomes were regulated by cocaine.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Sparkle D Williams
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Brian Sims
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama, 1700 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
19
|
Yu S, Chen J, Quan M, Li L, Li Y, Gao Y. CD63 negatively regulates hepatocellular carcinoma development through suppression of inflammatory cytokine-induced STAT3 activation. J Cell Mol Med 2021; 25:1024-1034. [PMID: 33277798 PMCID: PMC7812266 DOI: 10.1111/jcmm.16167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Tetraspanin CD63 has been widely implicated in tumour progression of human malignancies. However, its role in the tumorigenesis and metastasis of hepatocellular carcinoma (HCC) remains unclear yet. In the present study, we aimed to investigate the specific function and underlying mechanisms of CD63 in HCC progression. CD63 expression in HCC tissues was detected using immunohistochemistry and quantitative real-time PCR analyses; effects of CD63 on HCC cell proliferation and migration were investigated by CCK-8 assay, colony formation assay, transwell assay and a xenograft model of nude mice. RNA-sequencing, bioinformatics analysis, dual-luciferase reporter assay and Western blot analysis were performed to explore the underlying molecular mechanisms. Results of our experiments showed that CD63 expression was frequently reduced in HCC tissues compared with adjacent normal tissues, and decreased CD63 expression was significantly associated with larger tumour size, distant site metastasis and higher tumour stages of HCC. Overexpression of CD63 inhibited HCC cell proliferation and migration, whereas knockdown of CD63 promoted these phenotypes. IL-6, IL-27 and STAT3 activity was regulated by CD63, and blockade of STAT3 activation impaired the promotive effects of CD63 knockdown on HCC cell growth and migration. Our findings identified a novel CD63-IL-6/IL-27-STAT3 axis in the development of HCC and provided a potential target for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Shijun Yu
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jingde Chen
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Ming Quan
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Li Li
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yandong Li
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yong Gao
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
20
|
van Deventer S, Arp AB, van Spriel AB. Dynamic Plasma Membrane Organization: A Complex Symphony. Trends Cell Biol 2020; 31:119-129. [PMID: 33248874 DOI: 10.1016/j.tcb.2020.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
Membrane protein organization is essential for proper cellular functioning and the result of a dynamic exchange between protein monomers, nanoscale protein clusters, and microscale higher-order structures. This exchange is affected by both lipid bilayer intrinsic factors, such as lipid rafts and tetraspanins, and extrinsic factors, such as cortical actin and galectins. Because membrane organizers act jointly like instruments in a symphony, it is challenging to define the 'key' organizers. Here, we posit, for the first time, definitions of key intrinsic and extrinsic membrane organizers. Tetraspanin nanodomains are key organizers that are often overlooked. We discuss how different key organizers can collaborate, which is important to get a full grasp of plasma membrane biology.
Collapse
Affiliation(s)
- Sjoerd van Deventer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Abbey B Arp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Oosterheert W, Xenaki KT, Neviani V, Pos W, Doulkeridou S, Manshande J, Pearce NM, Kroon-Batenburg LM, Lutz M, van Bergen En Henegouwen PM, Gros P. Implications for tetraspanin-enriched microdomain assembly based on structures of CD9 with EWI-F. Life Sci Alliance 2020; 3:3/11/e202000883. [PMID: 32958604 PMCID: PMC7536822 DOI: 10.26508/lsa.202000883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
Crystal and single-particle cryo-EM structures reveal how the tetraspanin CD9 interacts with its prototypical partner EWI-F and provide a new concatenation model for the assembly of tetraspanin-enriched microdomains. Tetraspanins are eukaryotic membrane proteins that contribute to a variety of signaling processes by organizing partner-receptor molecules in the plasma membrane. How tetraspanins bind and cluster partner receptors into tetraspanin-enriched microdomains is unknown. Here, we present crystal structures of the large extracellular loop of CD9 bound to nanobodies 4C8 and 4E8 and, the cryo-EM structure of 4C8-bound CD9 in complex with its partner EWI-F. CD9–EWI-F displays a tetrameric arrangement with two central EWI-F molecules, dimerized through their ectodomains, and two CD9 molecules, one bound to each EWI-F transmembrane helix through CD9-helices h3 and h4. In the crystal structures, nanobodies 4C8 and 4E8 bind CD9 at loops C and D, which is in agreement with the 4C8 conformation in the CD9–EWI-F complex. The complex varies from nearly twofold symmetric (with the two CD9 copies nearly anti-parallel) to ca. 50° bent arrangements. This flexible arrangement of CD9–EWI-F with potential CD9 homo-dimerization at either end provides a “concatenation model” for forming short linear or circular assemblies, which may explain the occurrence of tetraspanin-enriched microdomains.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Katerina T Xenaki
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Viviana Neviani
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wouter Pos
- uniQure Biopharma, Amsterdam, The Netherlands
| | - Sofia Doulkeridou
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jip Manshande
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nicholas M Pearce
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Loes Mj Kroon-Batenburg
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Martin Lutz
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Paul Mp van Bergen En Henegouwen
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Slac2-b Coordinates Extracellular Vesicle Secretion to Regulate Keratinocyte Adhesion and Migration. J Invest Dermatol 2020; 141:523-532.e2. [PMID: 32890627 DOI: 10.1016/j.jid.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022]
Abstract
Slac2-b, also known as exophilin-5, is a Rab27b effector protein with a role in exosome transport and is encoded by the EXPH5 gene. We previously described biallelic loss-of-function mutations in EXPH5 in an autosomal recessive form of epidermolysis bullosa simplex. However, how the loss of Slac2-b expression leads to skin fragility and erosions is unknown. In this study, we demonstrate that keratinocytes (KCs) isolated from two different individuals with mutations in EXPH5 have significant defects in cell‒matrix adhesion. EXPH5-mutant KCs also showed increased perinuclear accumulation and significantly reduced trafficking of CD63+ vesicles. These phenotypes were also seen in Slac2-b‒deficient KCs. This was coincident with a reduction in Rab27a protein expression in Slac2-b‒mutant KCs as well as reduced secretion of extracellular vesicles containing extracellular matrix proteins. Live imaging analysis revealed a strong correlation between CD63+ vesicle trafficking to the plasma membrane and focal adhesion dynamics. These findings support a role for Slac2-b in regulating local focal adhesion dynamics to support effective KC adhesion and provide insight into the underlying pathophysiology of inherited skin blistering.
Collapse
|
23
|
Vidal M. Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev 2020; 161-162:110-123. [PMID: 32828789 DOI: 10.1016/j.addr.2020.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Exosomes are 50-100 nm membranous vesicles actively released by cells which can be indicative of a diseased cell status. They contain various kinds of molecule - proteins, mRNA, miRNA, lipids - that are actively being studied as potential biomarkers. Hereafter I put forward several arguments in favor of the potential use of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as biomarkers especially of cancerous diseases. I will briefly update readers on the exosome field and review various features of GPI-APs, before further discussing the advantages of this class of proteins as potential exosomal biomarkers. I will finish with a few examples of exosomal GPI-APs that have already been demonstrated to be good prognostic markers, as well as innovative approaches developed to quantify these exosomal biomarkers.
Collapse
|
24
|
Liu C, Yang C, Wang M, Jiang S, Yi Q, Wang W, Wang L, Song L. A CD63 Homolog Specially Recruited to the Fungi-Contained Phagosomes Is Involved in the Cellular Immune Response of Oyster Crassostrea gigas. Front Immunol 2020; 11:1379. [PMID: 32793193 PMCID: PMC7387653 DOI: 10.3389/fimmu.2020.01379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/29/2020] [Indexed: 02/02/2023] Open
Abstract
Cluster of differentiation 63 (CD63), a four-transmembrane glycoprotein in the subfamily of tetraspanin, has been widely recognized as a gateway from the infection of foreign invaders to the immune defense of hosts. Its role in Pacific oyster Crassostrea gigas is, however, yet to be discovered. This work makes contributions by identifying CgCD63H, a CD63 homolog with four transmembrane domains and one conservative CCG motif, and establishing its role as a receptor that participates in immune recognition and hemocyte phagocytosis. The presence of CgCD63H messenger RNA (mRNA) in hepatopancreas, labial palps, gill, and hemocytes is confirmed. The expression level of mRNA in hemocytes is found significantly (p < 0.01) upregulated after the injection of Vibrio splendidus. CgCD63H protein, typically distributed over the plasma membrane of oyster hemocytes, is recruited to the Yarrowia lipolytica-containing phagosomes after the stimulation of Y. lipolytica. The recombinant CgCD63H protein expresses binding capacity to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS) in the presence of lyophilized hemolymph. The phagocytic rate of hemocytes toward V. splendidus and Y. lipolytica is significantly inhibited (p < 0.01) after incubation with anti-CgCD63H antibody. Our work further suggests that CgCD63H functions as a receptor involved in the immune recognition and hemocyte phagocytosis against invading pathogen, which can be a marker candidate for the hemocyte typing in C. gigas.
Collapse
Affiliation(s)
- Conghui Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
25
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
26
|
Dunlock VE. Tetraspanin CD53: an overlooked regulator of immune cell function. Med Microbiol Immunol 2020; 209:545-552. [PMID: 32440787 PMCID: PMC7395052 DOI: 10.1007/s00430-020-00677-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022]
Abstract
Tetraspanins are membrane organizing proteins that play a role in organizing the cell surface through the formation of subcellular domains consisting of tetraspanins and their partner proteins. These complexes are referred to as tetraspanin enriched microdomains (TEMs) or the tetraspanin web. The formation of TEMs allows for the regulation of a variety of cellular processes such as adhesion, migration, signaling, and cell fusion. Tetraspanin CD53 is a member of the tetraspanin superfamily expressed exclusively within the immune compartment. Amongst others, B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and natural killer cells have all been found to express high levels of this protein on their surface. Almost three decades ago it was reported that patients who lacked CD53 suffered from an increased susceptibility to pathogens resulting in the clinical manifestation of recurrent viral, bacterial, and fungal infections. This clearly suggests a vital and non-redundant role for CD53 in immune function. Yet, despite this striking finding, the specific functional roles of CD53 within the immune system have remained elusive. This review aims to provide a concise overview of the published literature concerning CD53 and reflect on the underappreciated role of this protein in immune cell regulation and function.
Collapse
Affiliation(s)
- V E Dunlock
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Neviani V, van Deventer S, Wörner TP, Xenaki KT, van de Waterbeemd M, Rodenburg RNP, Wortel IMN, Kuiper JK, Huisman S, Granneman J, van Bergen En Henegouwen PMP, Heck AJR, van Spriel AB, Gros P. Site-specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9. FEBS J 2020; 287:5323-5344. [PMID: 32181977 PMCID: PMC7818406 DOI: 10.1111/febs.15295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/19/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell–cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrometry we determined that wild‐type human tetraspanins CD9 and CD81 exhibit nonstochastic distributions of bound acyl chains. We revealed CD9 lipidation at its three most frequent lipidated sites suffices for EWI‐F binding, while cysteine‐to‐alanine CD9 mutations markedly reduced binding of EWI‐F. EWI‐F binding by CD9 was rescued by mutating all or, albeit to a lesser extent, only the three most frequently lipidated sites into tryptophans. These mutations did not affect the nanoscale distribution of CD9 in cell membranes, as shown by super‐resolution microscopy using a CD9‐specific nanobody. Thus, these data demonstrate site‐specific, possibly conformation‐dependent, functionality of lipidation in tetraspanin CD9 and identify tryptophan mimicry as a possible biochemical approach to study site‐specific transmembrane‐protein lipidation.
Collapse
Affiliation(s)
- Viviana Neviani
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Sjoerd van Deventer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Katerina T Xenaki
- Cell Biology, Department of Biology, Utrecht University, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Remco N P Rodenburg
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Inge M N Wortel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Jeroen K Kuiper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Sofie Huisman
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Joke Granneman
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| |
Collapse
|
28
|
Huang C, Hays FA, Tomasek JJ, Benyajati S, Zhang XA. Tetraspanin CD82 interaction with cholesterol promotes extracellular vesicle-mediated release of ezrin to inhibit tumour cell movement. J Extracell Vesicles 2019; 9:1692417. [PMID: 31807237 PMCID: PMC6882436 DOI: 10.1080/20013078.2019.1692417] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
Tumour metastasis suppressor KAI1/CD82 inhibits tumour cell movement. As a transmembrane protein, tetraspanin CD82 bridges the interactions between membrane microdomains of lipid rafts and tetraspanin-enriched microdomains (TEMs). In this study, we found that CD82 and other tetraspanins contain cholesterol recognition/interaction amino-acid consensus (CRAC) sequences in their transmembrane domains and revealed that cholesterol binding of CD82 determines its interaction with lipid rafts but not with TEMs. Functionally, CD82 needs cholesterol binding to inhibit solitary migration, collective migration, invasion and infiltrative outgrowth of tumour cells. Importantly, CD82–cholesterol/–lipid raft interaction not only promotes extracellular release of lipid raft components such as cholesterol and gangliosides but also facilitates extracellular vesicle (EV)–mediated release of ezrin–radixin–moesin (ERM) protein Ezrin. Since ERM proteins link actin cytoskeleton to the plasma membrane, we show for the first time that cell movement can be regulated by EV-mediated releases, which disengage the plasma membrane from cytoskeleton and then impair cell movement. Our findings also conceptualize that interactions between membrane domains, in this case converge of lipid rafts and TEMs by CD82, can change cell movement. Moreover, CD82 coalescences with both lipid rafts and TEMs are essential for its inhibition of tumour cell movement and for its enhancement of EV release. Finally, our study underpins that tetraspanins as a superfamily of functionally versatile molecules are cholesterol-binding proteins. Abbreviations:Ab: antibody; CBM: cholesterol-binding motif; CCM: cholesterol consensus motif; CRAC/CARC: cholesterol recognition or interaction amino-acid consensus; CTxB: cholera toxin B subunit; ECM: extracellular matrix; ERM: ezrin, radixin and moesin; EV: extracellular vesicles; FBS: foetal bovine serum; mAb: monoclonal antibody; MST: microscale thermophoresis; pAb: polyclonal antibody; and TEM: tetraspanin-enriched microdomain
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James J Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siribhinya Benyajati
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
29
|
High frequency of inactivating tetraspanin C D37 mutations in diffuse large B-cell lymphoma at immune-privileged sites. Blood 2019; 134:946-950. [PMID: 31366619 DOI: 10.1182/blood.2019001185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022] Open
Abstract
Tetraspanin CD37 is predominantly expressed on the cell surface of mature B lymphocytes and is currently being studied as novel therapeutic target for B-cell lymphoma. Recently, we demonstrated that loss of CD37 induces spontaneous B-cell lymphoma in Cd37-knockout mice and correlates with inferior survival in patients with diffuse large B-cell lymphoma (DLBCL). Here, CD37 mutation analysis was performed in a cohort of 137 primary DLBCL samples, including 44 primary immune-privileged site-associated DLBCL (IP-DLBCL) samples originating in the testis or central nervous system. CD37 mutations were exclusively identified in IP-DLBCL cases (10/44, 23%) but absent in non-IP-DLBCL cases. The aberrations included 10 missense mutations, 1 deletion, and 3 splice-site CD37 mutations. Modeling and functional analysis of CD37 missense mutations revealed loss of function by impaired CD37 protein expression at the plasma membrane of human lymphoma B cells. This study provides novel insight into the molecular pathogenesis of IP-DLBCL and indicates that anti-CD37 therapies will be more beneficial for DLBCL patients without CD37 mutations.
Collapse
|
30
|
Vogt S, Stadlmayr G, Stadlbauer K, Sádio F, Andorfer P, Grillari J, Rüker F, Wozniak-Knopp G. Stabilization of the CD81 Large Extracellular Loop with De Novo Disulfide Bonds Improves Its Amenability for Peptide Grafting. Pharmaceutics 2018; 10:E138. [PMID: 30150531 PMCID: PMC6160918 DOI: 10.3390/pharmaceutics10030138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Tetraspan proteins are significantly enriched in the membranes of exosomal vesicles (EVs) and their extracellular domains are attractive targets for engineering towards specific antigen recognition units. To enhance the tolerance of a tetraspanin fold to modification, we achieved significant thermal stabilization of the human CD81 large extracellular loop (hCD81 LEL) via de novo disulfide bonds. The best mutants were shown to exhibit a positive shift in the melting temperature (Tm) of up to 25 °C. The combination of two most potent disulfide bonds connecting different strands of the protein resulted in a mutant with a Tm of 109 °C, 43 °C over the Tm of the wild-type hCD81 LEL. A peptide sequence binding to the human transferrin receptor (hTfr) was engrafted into the D-segment of the hCD81 LEL, resulting in a mutant that still exhibited a compact fold. Grafting of the same peptide sequence between helices A and B resulted in a molecule with an aberrant profile in size exclusion chromatography (SEC), which could be improved by a de novo cysteine bond connecting both helices. Both peptide-grafted proteins showed an enhanced internalization into the cell line SK-BR3, which strongly overexpresses hTfr. In summary, the tetraspan LEL fold could be stabilized to enhance its amenability for engineering into a more versatile protein scaffold.
Collapse
Affiliation(s)
- Stefan Vogt
- acib GmbH (Austrian Centre of Industrial Biotechnology), Petersgasse 14, A-8010 Graz, Austria.
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Flávio Sádio
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Peter Andorfer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria;.
- Evercyte GmbH, Muthgasse 18, 1190 Wien, Austria.
| | - Florian Rüker
- acib GmbH (Austrian Centre of Industrial Biotechnology), Petersgasse 14, A-8010 Graz, Austria.
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | - Gordana Wozniak-Knopp
- acib GmbH (Austrian Centre of Industrial Biotechnology), Petersgasse 14, A-8010 Graz, Austria.
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
31
|
Schaper F, van Spriel AB. Antitumor Immunity Is Controlled by Tetraspanin Proteins. Front Immunol 2018; 9:1185. [PMID: 29896201 PMCID: PMC5986925 DOI: 10.3389/fimmu.2018.01185] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Antitumor immunity is shaped by the different types of immune cells that are present in the tumor microenvironment (TME). In particular, environmental signals (for instance, soluble factors or cell–cell contact) transmitted through the plasma membrane determine whether immune cells are activated or inhibited. Tetraspanin proteins are emerging as central building blocks of the plasma membrane by their capacity to cluster immune receptors, enzymes, and signaling molecules into the tetraspanin web. Whereas some tetraspanins (CD81, CD151, CD9) are widely and broadly expressed, others (CD53, CD37, Tssc6) have an expression pattern restricted to hematopoietic cells. Studies using genetic mouse models have identified important immunological functions of these tetraspanins on different leukocyte subsets, and as such, may be involved in the immune response against tumors. While multiple studies have been performed with regards to deciphering the function of tetraspanins on cancer cells, the effect of tetraspanins on immune cells in the antitumor response remains understudied. In this review, we will focus on tetraspanins expressed by immune cells and discuss their potential role in antitumor immunity. New insights in tetraspanin function in the TME and possible prognostic and therapeutic roles of tetraspanins will be discussed.
Collapse
Affiliation(s)
- Fleur Schaper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
32
|
Reyes R, Cardeñes B, Machado-Pineda Y, Cabañas C. Tetraspanin CD9: A Key Regulator of Cell Adhesion in the Immune System. Front Immunol 2018; 9:863. [PMID: 29760699 PMCID: PMC5936783 DOI: 10.3389/fimmu.2018.00863] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
The tetraspanin CD9 is expressed by all the major subsets of leukocytes (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, granulocytes, monocytes and macrophages, and immature and mature dendritic cells) and also at a high level by endothelial cells. As a typical member of the tetraspanin superfamily, a prominent feature of CD9 is its propensity to engage in a multitude of interactions with other tetraspanins as well as with different transmembrane and intracellular proteins within the context of defined membranal domains termed tetraspanin-enriched microdomains (TEMs). Through these associations, CD9 influences many cellular activities in the different subtypes of leukocytes and in endothelial cells, including intracellular signaling, proliferation, activation, survival, migration, invasion, adhesion, and diapedesis. Several excellent reviews have already covered the topic of how tetraspanins, including CD9, regulate these cellular processes in the different cells of the immune system. In this mini-review, however, we will focus particularly on describing and discussing the regulatory effects exerted by CD9 on different adhesion molecules that play pivotal roles in the physiology of leukocytes and endothelial cells, with a particular emphasis in the regulation of adhesion molecules of the integrin and immunoglobulin superfamilies.
Collapse
Affiliation(s)
- Raquel Reyes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Cardeñes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Yesenia Machado-Pineda
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Carlos Cabañas
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Inmunología, Oftalmología y OTR (IO2), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
33
|
Interleukin-6 is essential for glomerular immunoglobulin A deposition and the development of renal pathology in Cd37-deficient mice. Kidney Int 2018; 93:1356-1366. [PMID: 29551516 DOI: 10.1016/j.kint.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is characterized by IgA depositions in the kidney. Deficiency of CD37, a leukocyte-specific tetraspanin, leads to spontaneous development of renal pathology resembling IgAN. However, the underlying molecular mechanism has not been resolved. Here we found that CD37 expression on B cells of patients with IgAN was significantly decreased compared to B cells of healthy donors. Circulating interleukin (IL)-6 levels, but not tumor necrosis factor-α or IL-10, were elevated in Cd37-/- mice compared to wild-type mice after lipopolysaccharide treatment. Cd37-/- mice displayed increased glomerular neutrophil influx, immune complex deposition, and worse renal function. To evaluate the role of IL-6 in the pathogenesis of accelerated renal pathology in Cd37-/-mice, we generated Cd37xIl6 double-knockout mice. These double-knockout and Il6-/- mice displayed no glomerular IgA deposition and were protected from exacerbated renal failure following lipopolysaccharide treatment. Moreover, kidneys of Cd37-/- mice showed more mesangial proliferation, endothelial cell activation, podocyte activation, and segmental podocyte foot process effacement compared to the double-knockout mice, emphasizing that IL-6 mediates renal pathology in Cd37-/- mice. Thus, our study indicates that CD37 may protect against IgA nephropathy by inhibition of the IL-6 pathway.
Collapse
|
34
|
Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1. J Virol 2018; 92:JVI.01969-17. [PMID: 29212935 DOI: 10.1128/jvi.01969-17] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells.IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major oncoprotein, LMP1, into vesicles for secretion. We have recently described a role of the host cell protein CD63 in regulating intracellular signaling of the viral oncoprotein by shuttling LMP1 into exosomes. Here, we provide strong evidence of the utility of CD63-dependent EVs in regulating global intracellular signaling, including mTOR activation by LMP1. We also demonstrate a key role of CD63 in coordinating endosomal and autophagic processes to regulate LMP1 levels within the cell. Overall, this study offers new insights into the complex intersection of cellular secretory and degradative mechanisms and the implications of these processes in viral replication.
Collapse
|
35
|
Zuidscherwoude M, Worah K, van der Schaaf A, Buschow SI, van Spriel AB. Differential expression of tetraspanin superfamily members in dendritic cell subsets. PLoS One 2017; 12:e0184317. [PMID: 28880937 PMCID: PMC5589240 DOI: 10.1371/journal.pone.0184317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs), which are essential for initiating immune responses, are comprised of different subsets. Tetraspanins organize dendritic cell membranes by facilitating protein-protein interactions within the so called tetraspanin web. In this study we analyzed expression of the complete tetraspanin superfamily in primary murine (CD4+, CD8+, pDC) and human DC subsets (CD1c+, CD141+, pDC) at the transcriptome and proteome level. Different RNA and protein expression profiles for the tetraspanin genes across human and murine DC subsets were identified. Although RNA expression levels of CD37 and CD82 were not significantly different between human DC subsets, CD9 RNA was highly expressed in pDCs, while CD9 protein expression was lower. This indicates that relative RNA and protein expression levels are not always in agreement. Both murine CD8α+ DCs and its regarded human counterpart, CD141+ DCs, displayed relatively high protein levels of CD81. CD53 protein was highly expressed on human pDCs in contrast to the relatively low protein expression of most other tetraspanins. This study demonstrates that tetraspanins are differentially expressed by human and murine DC subsets which provides a valuable resource that will aid the understanding of tetraspanin function in DC biology.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kuntal Worah
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sonja I. Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Annemiek B. van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Reducing isoform complexity of human tetraspanins by optimized expression in Dictyostelium discoideum enables high-throughput functional read-out. Protein Expr Purif 2017; 135:8-15. [DOI: 10.1016/j.pep.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/21/2022]
|
37
|
Zuidscherwoude M, Dunlock VME, van den Bogaart G, van Deventer SJ, van der Schaaf A, van Oostrum J, Goedhart J, In ‘t Hout J, Hämmerling GJ, Tanaka S, Nadler A, Schultz C, Wright MD, Adjobo-Hermans MJW, van Spriel AB. Tetraspanin microdomains control localized protein kinase C signaling in B cells. Sci Signal 2017; 10:10/478/eaag2755. [DOI: 10.1126/scisignal.aag2755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Lai X, Gu Q, Zhou X, Feng W, Lin X, He Y, Cao J, Liu P, Zhang H, Zheng X. Decreased expression of CD63 tetraspanin protein predicts elevated malignant potential in human esophageal cancer. Oncol Lett 2017; 13:4245-4251. [PMID: 28599425 PMCID: PMC5453118 DOI: 10.3892/ol.2017.6023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/13/2017] [Indexed: 01/03/2023] Open
Abstract
The tetraspanin CD63 has been described to have critical roles in multiple biological processes, including tumorigenesis and metastasis in several types of cancer. However, its role in esophageal carcinoma (EC) has not been reported. In the current study, immunohistochemistry was used to investigate CD63 expression in 106 esophageal cancer samples, 49 adjacent esophagus tissues and 17 normal esophagus mucosa tissues. The results revealed that the overexpression of CD63 was observed in esophageal cancer samples and negatively correlated with tumor stage and lymph node metastasis. To further evaluate the role of CD63 in esophageal carcinoma, the invasiveness of EC cells was analyzed using matrigel invasion assays and wound healing assays in vitro. Furthermore, it was found that CD63 knockdown increased the invasiveness of TE-1 cells through the upregulation of matrix metalloproteinase (MMP) expression via promoting epithelial-mesenchymal transition. The current data therefore suggested that low levels of CD63 expression may be involved in the tumor progression of esophageal carcinoma.
Collapse
Affiliation(s)
- Xiaojing Lai
- Department of Radiation Oncology, Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang 310022, P.R. China
| | - Qing Gu
- Department of Radiation Oncology, Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang 310022, P.R. China
| | - Xia Zhou
- Department of Radiation Oncology, Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang 310022, P.R. China
| | - Wei Feng
- Department of Radiation Oncology, Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang 310022, P.R. China
| | - Xiao Lin
- Department of Radiation Oncology, Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang 310022, P.R. China
| | - Yan He
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow, Suzhou 215123, P.R. China
| | - Jinming Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow, Suzhou 215123, P.R. China
| | - Pengfei Liu
- Department of Gastroenterology, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin, Jiangsu 214400, P.R. China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiao Zheng
- Department of Radiation Oncology, Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
39
|
CD63 Promotes Hemocyte-Mediated Phagocytosis in the Clam, Paphia undulata. J Immunol Res 2016; 2016:7893490. [PMID: 27868074 PMCID: PMC5102739 DOI: 10.1155/2016/7893490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023] Open
Abstract
As one of the surface membrane proteins of tetraspanin family, CD63 plays a crucial role in cellular trafficking and endocytosis, which also is associated with activation of a wide variety of immune cells. Here, the homolog of CD63 was characterized from one marine mollusk, Paphia undulata, which is designated as Pu-CD63. The complete cDNA of Pu-CD63 is 1,738 bp in length with an open reading frame (ORF) of 849 bp, encoding a 282 amino acid protein with four putative hydrophobic transmembrane helixes. Bioinformatic analysis revealed that Pu-CD63 contains one putative YXXØ consensus motif of “110-YVII-113” and one N-glycosylation site “155-NGT-157” within the large extracellular loop (LEL) region, supporting its conserved function in plasma membrane and endosomal/lysosomal trafficking. Moreover, temporal expression profile analysis demonstrates a drastic induction in the expression of CD63 in hemocytes after pathogenic challenge with either V. parahaemolyticus or V. alginolyticus. By performing dsRNA-mediate RNAi knockdowns of CD63, a dramatic reduction in hemocytes phagocytic activity to pathogenic Vibrio is recorded by flow cytometry, revealing the definite role of Pu-CD63 in promoting hemocyte-mediated phagocytosis. Therefore, our work has greatly enhanced our understanding about primitive character of innate immunity in marine mollusk.
Collapse
|
40
|
Koliha N, Heider U, Ozimkowski T, Wiemann M, Bosio A, Wild S. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles. Front Immunol 2016; 7:282. [PMID: 27507971 PMCID: PMC4960424 DOI: 10.3389/fimmu.2016.00282] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient’s plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses. We performed a broad protein characterization of EVs from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer (NK) cells, monocytes, monocyte-derived dendritic cells (moDCs), and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on EVs. Hierarchical clustering of protein intensity patterns grouped EVs according to their originating cell type. The analysis of EVs from stimulated B cells and moDCs revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of EVs from platelets, antigen-presenting cells and NK cells as shown by platelet markers, co-stimulatory proteins, and a NK cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers, indicating a changed vesicle secretion or protein loading of EVs by platelets and a lower CD8 signal that might be associated with a diminished activity of NK cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of EVs in melanoma plasma, but rather argue for an indirect influence of melanoma cells on the vesicle secretion or vesicle protein loading by blood cells.
Collapse
Affiliation(s)
- Nina Koliha
- R&D Reagents, Miltenyi Biotec GmbH , Bergisch Gladbach , Germany
| | - Ute Heider
- R&D Reagents, Miltenyi Biotec GmbH , Bergisch Gladbach , Germany
| | | | - Martin Wiemann
- Institute for Lung Health, IBE R&D gGmbH , Münster , Germany
| | - Andreas Bosio
- R&D Reagents, Miltenyi Biotec GmbH , Bergisch Gladbach , Germany
| | - Stefan Wild
- R&D Reagents, Miltenyi Biotec GmbH , Bergisch Gladbach , Germany
| |
Collapse
|
41
|
Hochdorfer D, Florin L, Sinzger C, Lieber D. Tetraspanin CD151 Promotes Initial Events in Human Cytomegalovirus Infection. J Virol 2016; 90:6430-42. [PMID: 27147745 PMCID: PMC4936157 DOI: 10.1128/jvi.00145-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/26/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV), a betaherpesvirus, can cause life-threatening disease in immunocompromised individuals. Viral envelope glycoproteins that mediate binding to and penetration into target cells have been identified previously. In contrast, cellular proteins supporting HCMV during entry are largely unknown. In order to systematically identify host genes affecting initial steps of HCMV infection, a targeted RNA interference screen of 96 cellular genes was performed in endothelial cells by use of a virus strain expressing the full set of known glycoprotein H and L (gH/gL) complexes. The approach yielded five proviral host factors from different protein families and eight antiviral host factors, mostly growth factor receptors. The tetraspanin CD151 was uncovered as a novel proviral host factor and was analyzed further. Like endothelial cells, fibroblasts were also less susceptible to HCMV infection after CD151 depletion. Virus strains with different sets of gH/gL complexes conferring either broad or narrow cell tropism were equally impaired. Infection of CD151-depleted cells by a fluorescent virus with differentially labeled capsid and envelope proteins revealed a role of CD151 in viral penetration but not in adsorption to the cell. In conclusion, the tetraspanin CD151 has emerged as a novel host factor in HCMV entry and as a putative antiviral target. IMPORTANCE At present, the events at the virus-cell interface and the cellular proteins involved during the HCMV entry steps are scarcely understood. In this study, several host factors with putative roles in this process were identified. The tetraspanin CD151 was discovered as a previously unrecognized proviral host factor for HCMV and was found to support viral penetration into the target cells. The findings of this study shed light on the cellular contribution during the initial steps of HCMV infection and open a new direction in HCMV research.
Collapse
Affiliation(s)
| | - Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Diana Lieber
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
42
|
Li PY, Lv J, Qi WW, Zhao SF, Sun LB, Liu N, Sheng J, Qiu WS. Tspan9 inhibits the proliferation, migration and invasion of human gastric cancer SGC7901 cells via the ERK1/2 pathway. Oncol Rep 2016; 36:448-54. [PMID: 27177197 DOI: 10.3892/or.2016.4805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/17/2016] [Indexed: 11/05/2022] Open
Abstract
Tetraspanins are a heterogeneous group of 4-transmembrane proteins that recruit other cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs). TEMs of various types are involved in the regulation of cell growth, migration and invasion of several tumor cell types, both as suppressors or promotors. Tetraspanin 9 (Tspan9, NET-5, PP1057), a member of the transmembrane 4 superfamily (TM4SF) of tetraspanins, reportedly regulates platelet function in concert with other platelet tetraspanins and their associated proteins. Our previous study demonstrated that Tspan9 is also expressed in gastric cancer (GC), but the role of Tspan9 in GC has not been well characterized. In this study, we investigated the influence of Tspan9 on proliferation, migration and invasion of human gastric cancer SGC7901 cells using CCK-8 assay, cell cycle analysis, wound-healing assay and Transwell assay. Western blot analysis and ELISA assay were also performed to identify the potential mechanisms involved. The proliferation, migration and invasion of human gastric cancer SGC7901 cells were significantly inhibited by overexpression of Tspan9. In addition, Tspan9 downregulated the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the secretion levels of proteins related to tumor metastasis, such as matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA). Our study indicated that Tspan9 inhibited SGC7901 cell proliferation, migration and invasion through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Pai-Yun Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wei-Wei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shu-Fen Zhao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li-Bin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ning Liu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jie Sheng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wen-Sheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
43
|
Krauchunas AR, Marcello MR, Singson A. The molecular complexity of fertilization: Introducing the concept of a fertilization synapse. Mol Reprod Dev 2016; 83:376-86. [PMID: 26970099 DOI: 10.1002/mrd.22634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 01/27/2023]
Abstract
The details of sperm-egg interactions remain a relative mystery despite many decades of research. As new molecular complexities are being discovered, we need to revise the framework in which we think about fertilization. As such, we propose that fertilization involves the formation of a synapse between the sperm and egg. A cellular synapse is a structure that mediates cell adhesion, signaling, and secretion through specialized zones of interaction and polarity. In this review, we draw parallels between the immune synapse and fertilization, and argue that we should consider sperm-egg recognition, binding, and fusion in the context of a "fertilization synapse." Mol. Reprod. Dev. 83: 376-386, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| | | | - Andrew Singson
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
44
|
Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, Weigt SS, Shino MY, Derhovanessian A, Sayah D, Saggar R, Ross D, Ardehali A, Lynch JP, Belperio JA. Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. Am J Respir Crit Care Med 2016. [PMID: 26308930 DOI: 10.1164/rccm.201503-0558oc].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. OBJECTIVES To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. METHODS Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. MEASUREMENTS AND MAIN RESULTS AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. CONCLUSIONS Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation.
Collapse
Affiliation(s)
- Aric L Gregson
- 1 Division of Infectious Diseases, Department of Medicine
| | - Aki Hoji
- 2 Department of Transplantation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patil Injean
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Steven T Poynter
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Claudia Briones
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Vyacheslav Palchevskiy
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - S Sam Weigt
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Michael Y Shino
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Ariss Derhovanessian
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Sayah
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Rajan Saggar
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Ross
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Abbas Ardehali
- 4 Division of Cardiothoracic Surgery, Department of Surgery, University of California, Los Angeles, California; and
| | - Joseph P Lynch
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - John A Belperio
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| |
Collapse
|
45
|
Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, Weigt SS, Shino MY, Derhovanessian A, Sayah D, Saggar R, Ross D, Ardehali A, Lynch JP, Belperio JA. Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. Am J Respir Crit Care Med 2016; 192:1490-503. [PMID: 26308930 DOI: 10.1164/rccm.201503-0558oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. OBJECTIVES To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. METHODS Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. MEASUREMENTS AND MAIN RESULTS AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. CONCLUSIONS Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation.
Collapse
Affiliation(s)
- Aric L Gregson
- 1 Division of Infectious Diseases, Department of Medicine
| | - Aki Hoji
- 2 Department of Transplantation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patil Injean
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Steven T Poynter
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Claudia Briones
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Vyacheslav Palchevskiy
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - S Sam Weigt
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Michael Y Shino
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Ariss Derhovanessian
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Sayah
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Rajan Saggar
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Ross
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Abbas Ardehali
- 4 Division of Cardiothoracic Surgery, Department of Surgery, University of California, Los Angeles, California; and
| | - Joseph P Lynch
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - John A Belperio
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| |
Collapse
|
46
|
Koliha N, Wiencek Y, Heider U, Jüngst C, Kladt N, Krauthäuser S, Johnston ICD, Bosio A, Schauss A, Wild S. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles 2016; 5:29975. [PMID: 26901056 PMCID: PMC4762227 DOI: 10.3402/jev.v5.29975] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 01/15/2023] Open
Abstract
The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.
Collapse
Affiliation(s)
- Nina Koliha
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - Ute Heider
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nikolay Kladt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | | | | | | | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Wild
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany;
| |
Collapse
|
47
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
48
|
Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, Weigt SS, Shino MY, Derhovanessian A, Sayah D, Saggar R, Ross D, Ardehali A, Lynch JP, Belperio JA. Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. Am J Respir Crit Care Med 2015. [PMID: 26308930 DOI: 10.1164/rccm.201503-0558oc]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RATIONALE The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. OBJECTIVES To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. METHODS Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. MEASUREMENTS AND MAIN RESULTS AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. CONCLUSIONS Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation.
Collapse
Affiliation(s)
- Aric L Gregson
- 1 Division of Infectious Diseases, Department of Medicine
| | - Aki Hoji
- 2 Department of Transplantation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patil Injean
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Steven T Poynter
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Claudia Briones
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Vyacheslav Palchevskiy
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - S Sam Weigt
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Michael Y Shino
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Ariss Derhovanessian
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Sayah
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Rajan Saggar
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Ross
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Abbas Ardehali
- 4 Division of Cardiothoracic Surgery, Department of Surgery, University of California, Los Angeles, California; and
| | - Joseph P Lynch
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - John A Belperio
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| |
Collapse
|
49
|
Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res 2015; 1641:139-148. [PMID: 26423932 DOI: 10.1016/j.brainres.2015.09.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 01/12/2023]
Abstract
Oligodendrocytes, the myelinating glial cells of the central nervous system (CNS), are due to their high specialization and metabolic needs highly vulnerable to various insults. This led to a general view that oligodendrocytes are defenseless victims during brain damage such as occurs in acute and chronic CNS inflammation. However, this view is challenged by increasing evidence that oligodendrocytes are capable of expressing a wide range of immunomodulatory molecules. They express various cytokines and chemokines (e.g. Il-1β, Il17A, CCL2, CXCL10), antigen presenting molecules (MHC class I and II) and co-stimulatory molecules (e.g. CD9, CD81), complement and complement receptor molecules (e.g. C1s, C2 and C3, C1R), complement regulatory molecules (e.g. CD46, CD55, CD59), tetraspanins (e.g. TSPAN2), neuroimmune regulatory proteins (e.g. CD200, CD47) as well as extracellular matrix proteins (e.g. VCAN) and many others. Their potential immunomodulatory properties can, at specific times and locations, influence ongoing immune processes as shown by numerous publications. Therefore, oligodendrocytes are well capable of immunomodulation, especially during the initiation or resolution of immune processes in which subtle signaling might tip the scale. A better understanding of the immunomodulatory oligodendrocyte can help to invent new, innovative therapeutic interventions in various diseases such as Multiple Sclerosis. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Thomas Zeis
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lukas Enz
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
50
|
Homsi Y, Schloetel JG, Scheffer KD, Schmidt TH, Destainville N, Florin L, Lang T. The extracellular δ-domain is essential for the formation of CD81 tetraspanin webs. Biophys J 2015; 107:100-13. [PMID: 24988345 DOI: 10.1016/j.bpj.2014.05.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 12/15/2022] Open
Abstract
CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function.
Collapse
Affiliation(s)
- Yahya Homsi
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan-Gero Schloetel
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Konstanze D Scheffer
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas H Schmidt
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nicolas Destainville
- Université Toulouse 3-Paul Sabatier, UPS, Laboratoire de Physique Théorique (IRSAMC), Toulouse, France
| | - Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|