1
|
Richardson JR, Schöllhorn A, Gouttefangeas C, Schuhmacher J. CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy. Cancers (Basel) 2021; 13:596. [PMID: 33546283 PMCID: PMC7913359 DOI: 10.3390/cancers13040596] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy activates the immune system to specifically target malignant cells. Research has often focused on CD8+ cytotoxic T cells, as those have the capacity to eliminate tumor cells after specific recognition upon TCR-MHC class I interaction. However, CD4+ T cells have gained attention in the field, as they are not only essential to promote help to CD8+ T cells, but are also able to kill tumor cells directly (via MHC-class II dependent recognition) or indirectly (e.g., via the activation of other immune cells like macrophages). Therefore, immunotherapy approaches have shifted from only stimulating CD8+ T cells to targeting and assessing both, CD4+ and CD8+ T cell subsets. Here, we discuss the various subsets of CD4+ T cells, their plasticity and functionality, their relevance in the antitumor immune response in patients affected by cancer, and their ever-growing role in therapeutic approaches for human cancer.
Collapse
Affiliation(s)
- Jennifer R. Richardson
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
| | - Anna Schöllhorn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Potent Anti-hepatitis C Virus (HCV) T Cell Immune Responses Induced in Mice Vaccinated with DNA-Launched RNA Replicons and Modified Vaccinia Virus Ankara-HCV. J Virol 2019; 93:JVI.00055-19. [PMID: 30674625 DOI: 10.1128/jvi.00055-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is a liver disease caused by the hepatitis C virus (HCV) affecting 71 million people worldwide with no licensed vaccines that prevent infection. Here, we have generated four novel alphavirus-based DNA-launched self-amplifying RNA replicon (DREP) vaccines expressing either structural core-E1-E2 or nonstructural p7-NS2-NS3 HCV proteins of genotype 1a placed under the control of an alphavirus promoter, with or without an alphaviral translational enhancer (grouped as DREP-HCV or DREP-e-HCV, respectively). DREP vectors are known to induce cross-priming and further stimulation of immune responses through apoptosis, and here we demonstrate that they efficiently trigger apoptosis-related proteins in transfected cells. Immunization of mice with the DREP vaccines as the priming immunization followed by a heterologous boost with a recombinant modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV (MVA-HCV) induced potent and long-lasting HCV-specific CD4+ and CD8+ T cell immune responses that were significantly stronger than those of a homologous MVA-HCV prime/boost immunization, with the DREP-e-HCV/MVA-HCV combination the most immunogenic regimen. HCV-specific CD4+ and CD8+ T cell responses were highly polyfunctional, had an effector memory phenotype, and were mainly directed against E1-E2 and NS2-NS3, respectively. Additionally, DREP/MVA-HCV immunization regimens induced higher antibody levels against HCV E2 protein than homologous MVA-HCV immunization. Collectively, these results provided an immunization protocol against HCV by inducing high levels of HCV-specific T cell responses as well as humoral responses. These findings reinforce the combined use of DREP-based vectors and MVA-HCV as promising prophylactic and therapeutic vaccines against HCV.IMPORTANCE HCV represents a global health problem as more than 71 million people are chronically infected worldwide. Direct-acting antiviral agents can cure HCV infection in most patients, but due to the high cost of these agents and the emergence of resistant mutants, they do not represent a feasible and affordable strategy to eradicate the virus. Therefore, a vaccine is an urgent goal that requires efforts to understand the correlates of protection for HCV clearance. Here, we describe for the first time the generation of novel vaccines against HCV based on alphavirus DNA replicons expressing HCV antigens. We demonstrate that potent T cell immune responses, as well as humoral immune responses, against HCV can be achieved in mice by using a combined heterologous prime/boost immunization protocol consisting of the administration of alphavirus replicon DNA vectors as the priming immunization followed by a boost with a recombinant modified vaccinia virus Ankara vector expressing HCV antigens.
Collapse
|
4
|
Isser A, Schneck JP. High-affinity T cell receptors for adoptive cell transfer. J Clin Invest 2018; 129:69-71. [PMID: 30530992 DOI: 10.1172/jci125471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell transfer (ACT) of engineered T cell receptors (TCRs) for cancer immunotherapy has evolved from simple gene transfer of isolated TCRs to various affinity enhancement techniques that overcome limitations imposed by central and peripheral tolerance on TCR affinity. In the current issue of the JCI, Poncette et al. used mice with human TCRαβ and HLA gene loci to discover CD4+ TCRs of optimal affinity for cancer testis antigen (CTA) NY-ESO-1. They combined this TCR with a previously discovered NY-ESO-1-specific CD8+ TCR in an ACT fibrosarcoma tumor model to demonstrate the importance of T cell help in mediating antitumor responses.
Collapse
Affiliation(s)
| | - Jonathan P Schneck
- Department of Pathology, Medicine and Oncology, and.,Immunology Program, Institute of Cellular Engineering, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Pifferi C, Berthet N, Renaudet O. Cyclopeptide scaffolds in carbohydrate-based synthetic vaccines. Biomater Sci 2018; 5:953-965. [PMID: 28275765 DOI: 10.1039/c7bm00072c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclopeptides have been recently used successfully as carriers for the multivalent presentation of carbohydrate and peptide antigens in immunotherapy. Beside their synthetic versatility, these scaffolds are indeed interesting due to their stability against enzyme degradation and low immunogenicity. This mini-review highlights the recent advances in the utilization of cyclopeptides to prepare fully synthetic vaccines prototypes against cancers and pathogens.
Collapse
Affiliation(s)
- Carlo Pifferi
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Nathalie Berthet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France. and Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
6
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Abstract
Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope.
Collapse
Affiliation(s)
- Magali Terme
- Inserm U970, Paris Cardiovascular Research Center (PARCC), faculté de médecine Paris-Descartes, université Paris-Descartes, Sorbonne Paris Cité, 56, rue Leblanc, 75015 Paris, France.
| | - Corinne Tanchot
- Inserm U970, Paris Cardiovascular Research Center (PARCC), faculté de médecine Paris-Descartes, université Paris-Descartes, Sorbonne Paris Cité, 56, rue Leblanc, 75015 Paris, France
| |
Collapse
|
8
|
Pathogen-Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination. Mediators Inflamm 2016; 2016:5740373. [PMID: 26980946 PMCID: PMC4766350 DOI: 10.1155/2016/5740373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 12/29/2022] Open
Abstract
A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8+ effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.
Collapse
|
9
|
Liu Q, Chernish A, DuVall JA, Ouyang Y, Li J, Qian Q, Bazydlo LAL, Haverstick DM, Landers JP. The ARTμS: a novel microfluidic CD4+ T-cell enumeration system for monitoring antiretroviral therapy in HIV patients. LAB ON A CHIP 2016; 16:506-514. [PMID: 26687070 DOI: 10.1039/c5lc01153a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on a novel and cost-effective microfluidic platform that integrates immunomagnetic separation and cell enumeration via DNA-induced bead aggregation. Using a two-stage immunocapture microdevice, 10 μL of whole blood was processed to isolate CD4+ T-cells. The first stage involved the immuno-subtraction of monocytes by anti-CD14 magnetic beads, followed by CD4+ T-cell capture with anti-CD4 magnetic beads. The super hydrophilic surface generated during polydimethylsiloxane (PDMS) plasma treatment allowed for accurate metering of the CD4+ T-cell lysate, which then interacted with silica-coated magnetic beads under chaotropic conditions to form aggregates. Images of the resulting aggregates were captured and processed to reveal the mass of DNA, which was used to back-calculate the CD4+ T-cell number. Studies with clinical samples revealed that the analysis of blood within 24 hours of phlebotomy yielded the best results. Under these conditions, an accurate cell count was achieved (R(2) = 0.98) when compared to cell enumeration via flow cytometry, and over a functional dynamic range from 106-2337 cells per μL.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia 22904, USA. and Center For Microsystems For The Life Sciences, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Alexis Chernish
- Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia 22904, USA.
| | - Jacquelyn A DuVall
- Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia 22904, USA. and Center For Microsystems For The Life Sciences, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Yiwen Ouyang
- Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia 22904, USA. and Center For Microsystems For The Life Sciences, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jingyi Li
- Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia 22904, USA. and Center For Microsystems For The Life Sciences, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Qiang Qian
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Lindsay A L Bazydlo
- Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia 22904, USA. and Department of Pathology, University of Virginia Health Science Center, Charlottesville, Virginia 22908, USA
| | - Doris M Haverstick
- Department of Pathology, University of Virginia Health Science Center, Charlottesville, Virginia 22908, USA
| | - James P Landers
- Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia 22904, USA. and Department of Pathology, University of Virginia Health Science Center, Charlottesville, Virginia 22908, USA
| |
Collapse
|
10
|
Messerschmidt JL, Prendergast GC, Messerschmidt GL. How Cancers Escape Immune Destruction and Mechanisms of Action for the New Significantly Active Immune Therapies: Helping Nonimmunologists Decipher Recent Advances. Oncologist 2016; 21:233-43. [PMID: 26834161 DOI: 10.1634/theoncologist.2015-0282] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/13/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED With the Food and Drug Administration and other worldwide regulatory authorities' approval of ipilimumab (Yervoy), sipuleucel-T (Provenge), nivolumab (Opdivo), and pembrolizumab (Keytruda), oncologic therapy has now moved into noncancer cell targets within the immune system. For many nonimmunologists, understanding how these vastly different therapies work to improve survival, like no other therapies have in the past, is a challenge. The present report reviews the normal function of the immune system, how cancers escape the normal immune system, and how these new therapies improve immune system reactions against cancers. IMPLICATIONS FOR PRACTICE Oncologists have tremendous experience with therapies that target the cancer cells. New biologic agents have been rapidly introduced recently that target not cancer cells, but the patient's immune cells. The mechanisms of action of these immune-based biologic agents are within the host immune system. To understand these new biologic therapies, basic knowledge of normal and abnormal immune function is essential. The present report explains the up-to-date basic immune normal and abnormal function and prepares the oncologist to understand how the new drugs work, why they work, and why there are associated adverse events.
Collapse
Affiliation(s)
- Jonathan L Messerschmidt
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA Lankenau Medical Center, Wynnewood, Pennsylvania, USA
| | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA Lankenau Medical Center, Wynnewood, Pennsylvania, USA
| | - Gerald L Messerschmidt
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA Lankenau Medical Center, Wynnewood, Pennsylvania, USA Clinical Research Center, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| |
Collapse
|
11
|
Nakajima H, Murakami Y, Morii E, Akao T, Tatsumi N, Odajima S, Fukuda M, Machitani T, Iwai M, Kawata S, Hojo N, Oka Y, Sugiyama H, Oji Y. Induction of eEF2-specific antitumor CTL responses in vivo by vaccination with eEF2-derived 9mer-peptides. Oncol Rep 2016; 35:1959-66. [PMID: 26820500 DOI: 10.3892/or.2016.4589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
Eukaryotic elongation factor 2 (eEF2) is an essential factor for protein synthesis. Previous studies have shown that the eEF2 gene was overexpressed and plays an oncogenic role in various types of cancers and that eEF2 gene product elicited both humoral immune responses to produce eEF2-specific IgG autoantibody in cancer-bearing individuals and cellular immune responses to induce eEF2 peptide-specific cytotoxic T lymphocytes (CTLs) in vitro. The purpose of the present study was to induce eEF2-specific, antitumor CTL responses in vivo by vaccination with MHC class I-binding eEF2-derived peptide. First, two mouse MHC class I-restricted eEF2‑derived, 9-mer peptides, EF17 (17-25 aa, ANIRNMSVI) and EF180 (180-188 aa, RIVENVNVI) were identified as eEF2-specific CTL peptides, and mice were vaccinated intradermally eight times with either EF17 or EF180 peptide emulsified with Montanide ISA51 adjuvant. Cytotoxicity assay showed that eEF2-specific CTLs were induced in both EF17‑and EF180‑vaccinated mice, and histological study showed no detectable damage in the organs of these mice. Next, to examine in vivo antitumor effects of eEF2 peptide vaccination in a therapeutic model, mice were vaccinated four times with one each of the two eEF2 peptides at weekly intervals after implantation of eEF2-expressing leukemia cells. The vaccination with eEF2 peptides induced eEF2-specific CTLs and suppressed tumor growth, and disease-free survival was significantly longer in EF180-vaccinated mice compared to control mice. The survival was associated with the robustness of eEF2-specific CTL induction. These results indicate that vaccination with MHC class I-binding eEF2 peptide induced eEF2-targeting, antitumor CTL responses in vivo without damage to normal organs, which provided us a rationale for eEF2 peptide-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yui Murakami
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiki Akao
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Tatsumi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoko Odajima
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Fukuda
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Machitani
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miki Iwai
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sayo Kawata
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nozomi Hojo
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Peres LDP, da Luz FAC, Pultz BDA, Brígido PC, de Araújo RA, Goulart LR, Silva MJB. Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnol Adv 2015; 33:1868-77. [PMID: 26523780 DOI: 10.1016/j.biotechadv.2015.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
Abstract
This review discusses peptide-based vaccines in breast cancer, immune responses and clinical outcomes, which include studies on animal models and phase I, phase I/II, phase II and phase III clinical trials. Peptide-based vaccines are powerful neoadjuvant immunotherapies that can directly target proteins expressed in tumor cells, mainly tumor-associated antigens (TAAs). The most common breast cancer TAA epitopes are derived from MUC1, HER2/neu and CEA proteins. Peptides derived from TAAs could be successfully used to elicit CD8 and CD4 T cell-specific responses. Thus, choosing peptides that adapt to natural variations of human leukocyte antigen (HLA) genes is critical. The most attractive advantage is that the target response is more specific and less toxic than for other therapies and vaccines. Prominent studies on NeuVax - E75 (epitope for HER2/neu and GM-CSF) in breast cancer and DPX-0907 (HLA-A2-TAAs) expressed in breast cancer, ovarian and prostate cancer have shown the efficacy of peptide-based vaccines as neoadjuvant immunotherapy against cancer. Future peptide vaccine strategies, although a challenge to be applied in a broad range of breast cancers, point to the development of degenerate multi-epitope immunogens against multiple targets.
Collapse
Affiliation(s)
- Lívia de Paula Peres
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil.
| | - Felipe Andrés Cordero da Luz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Brunna dos Anjos Pultz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Paula Cristina Brígido
- Laboratório de Tripanossomatídeos, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia - Universidade Federal de Uberlândia - UFU, (INGEB), Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas (ICBIM) - Universidade Federal de Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
13
|
Cellulose alters the expression of nuclear factor kappa B-related genes and Toll-like receptor-related genes in human peripheral blood mononuclear cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
Hoyer S, Prommersberger S, Pfeiffer IA, Schuler-Thurner B, Schuler G, Dörrie J, Schaft N. Concurrent interaction of DCs with CD4(+) and CD8(+) T cells improves secondary CTL expansion: It takes three to tango. Eur J Immunol 2014; 44:3543-59. [PMID: 25211552 DOI: 10.1002/eji.201444477] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/04/2014] [Accepted: 09/09/2014] [Indexed: 01/13/2023]
Abstract
T-cell help is essential for CTL-memory formation. Nevertheless, it is unclear whether the continuous presence of CD4(+) T-helper (Th) cells is required during dendritic cell (DC)/CD8(+) T-cell encounters, or whether a DC will remember the helper signal after the Th cell has departed. This question is relevant for the design of therapeutic cancer vaccines. Therefore, we investigated how human DCs need to interact with CD4(+) T cells to mediate efficient repetitive CTL expansion in vitro. We established an autologous antigen-specific in vitro system with monocyte-derived DCs, as these are primarily used for cancer vaccination. Contrary to common belief, a sequential interaction of licensed DCs with CD8(+) T cells barely improved CTL expansion. In sharp contrast, simultaneous encounter of Th cells and CTLs with the same DC during the first in vitro encounter is a prerequisite for optimal subsequent CTL expansion in our in vitro system. These data suggest that, in contrast to DC maturation, the activation of DCs by Th cells, which is necessary for optimal CTL stimulation, is transient. This knowledge has significant implications for the design of new and more effective DC-based vaccination strategies. Furthermore, our in vitro system could be a valuable tool for preclinical immunotherapeutical studies.
Collapse
Affiliation(s)
- Stefanie Hoyer
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany; Department of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Simerska P, Ziora ZM, Fagan V, Goodwin D, Edrous F, Toth I. Design, synthesis and characterisation of mannosylated ovalbumin lipid core peptide self-adjuvanting vaccine delivery system. Drug Deliv Transl Res 2014; 4:246-55. [PMID: 25786879 DOI: 10.1007/s13346-013-0173-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peptide-based vaccine delivery can be hampered by rapid peptidase activity and poor inherent immunogenicity. The self-adjuvanting lipid core peptide system (LCP) has been shown to confer improved stability and immunogenicity on peptide epitopes of group A Streptococcus, Chlamydia, hookworm, and malaria pathogens. However, various diseases, including cancer, still require targeted delivery of their vaccine candidates. For this reason, we have selected two model peptides (ovalbumin CD4(+) and/or CD8(+) T cell epitopes), and incorporated two or four copies of either epitope into our LCP vaccine. Optimised glycosylation of ovalbumin peptides yielded 46 % when microwave-assisted double coupling with 2 eq of carbohydrate derivative, activated by N,N-diisopropylethylamine and (O-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, was performed. All ovalbumin peptides were successfully synthesised and purified in 11-55 % yields by Fmoc- or Boc-chemistry using solid-phase peptide synthesis. The mannosylated ovalbumin peptides were nontoxic to human erythrocytes in haemolytic assay (<2 % haemolysis) and showed increased (up to 20-fold) stability in plasma.
Collapse
Affiliation(s)
- Pavla Simerska
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia, QLD, 4072, Australia,
| | | | | | | | | | | |
Collapse
|
16
|
Pavlenko M, Leder C, Pisa P. Plasmid DNA vaccines against cancer: cytotoxic T-lymphocyte induction against tumor antigens. Expert Rev Vaccines 2014; 4:315-27. [PMID: 16026247 DOI: 10.1586/14760584.4.3.315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, a number of tumor vaccination strategies have been developed. Most of these rely on the identification of tumor antigens that can be recognized by the immune system. DNA vaccination represents one such approach for the induction of both humoral and cellular immune responses against tumor antigens. Studies in animal models have demonstrated the feasibility of utilizing DNA vaccination to elicit protective antitumor immune responses. However, most tumor antigens expressed by cancer cells in humans are weakly immunogenic, and therefore require the development of strategies to potentiate DNA vaccine efficacy in the clinical setting. This review focuses on recent advances in understanding of the immunology of DNA vaccines, as well as strategies used to increase DNA vaccine potency with respect to cytotoxic T-lymphocyte activity.
Collapse
Affiliation(s)
- Maxim Pavlenko
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm S-171 76, Sweden.
| | | | | |
Collapse
|
17
|
Sumardi, Hertiani T, Sasmito E. Ant Plant (Myrmecodia tuberosa) Hypocotyl Extract Modulates TCD4+ and TCD8+ Cell Profile of Doxorubicin-Induced Immune-Suppressed Sprague Dawley Rats In Vivo. Sci Pharm 2013; 81:1057-69. [PMID: 24482773 PMCID: PMC3867240 DOI: 10.3797/scipharm.1302-03] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022] Open
Abstract
Myrmecodia tuberosa Jack (Rubiaceae) has been used as part of traditional Indonesian remedies for a wide range of therapeutic usages in West Papua. Our preliminary study revealed the significant potency of these plant extracts and fractions as an immunomodulator by an in vitro technique on Balb/c mice. This study explored the effect of M. tuberosa hypocotyl ethanol extract on the TCD4+ and TCD8+ cell profiles of doxorubicin (Dox)-induced immune-suppressed Sprague Dawley (SD) rats by an in vivo method. Dried powder of M. tuberosa hypocotyl was macerated in 95% ethanol. Following solvent evaporation in a vacuum, the ethanol extract (EE) was partitioned to yield an n-hexane fraction (FH) and residue (FNH). FNH was further partitioned to yield ethyl acetate (FEtOAc) and water fractions (FW). The extract and fractions in the concentrations 10, 20, 50, and 100 μg/mL were tested on macrophage cells by the latex bead method, while the proliferation of lymphocyte cells was evaluated by the MTT assay. The total phenolic and flavonoid contents of those fractions were evaluated. The active fraction was administrated orally on Dox-induced SD rats for 28 days by an in vivo method to observe the TCD4+ and TCD8+ cell profiles. The in vivo assay showed that the FNH could maintain the number of TCD4+ cells, but not the number of TCD8+ cells. The ED50 observed was 24.24 mg/kg BW. Steroid/terpenoid compounds were detected in this fraction along with the phenolics and flavonoids. The FNH contained 3.548 ± 0.058% GAE of total phenolics and 0.656 ± 0.026% QE of total flavonoids. M. tuberosa hypocotyl extract is a potent immunomodulatory agent and may act as co-chemotherapy in Dox use.
Collapse
Affiliation(s)
- Sumardi
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, 55281, Yogyakarta, Indonesia. ; Faculty of Pharmacy, Sumatera Utara University, Tri Dharma, 20155, Medan, Indonesia
| | - Triana Hertiani
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, 55281, Yogyakarta, Indonesia
| | - Ediati Sasmito
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, 55281, Yogyakarta, Indonesia
| |
Collapse
|
18
|
Mallick A, Barik S, Goswami KK, Banerjee S, Ghosh S, Sarkar K, Bose A, Baral R. Neem leaf glycoprotein activates CD8(+) T cells to promote therapeutic anti-tumor immunity inhibiting the growth of mouse sarcoma. PLoS One 2013; 8:e47434. [PMID: 23326300 PMCID: PMC3543399 DOI: 10.1371/journal.pone.0047434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
In spite of sufficient data on Neem Leaf Glycoprotein (NLGP) as a prophylactic vaccine, little knowledge currently exists to support the use of NLGP as a therapeutic vaccine. Treatment of mice bearing established sarcomas with NLGP (25 µg/mice/week subcutaneously for 4 weeks) resulted in tumor regression or dormancy (Tumor free/Regressor, 13/24 (NLGP), 4/24 (PBS)). Evaluation of CD8+ T cell status in blood, spleen, TDLN, VDLN and tumor revealed increase in cellular number. Elevated expression of CD69, CD44 and Ki67 on CD8+ T cells revealed their state of activation and proliferation by NLGP. Depletion of CD8+ T cells in mice at the time of NLGP treatment resulted in partial termination of tumor regression. An expansion of CXCR3+ and CCR5+ T cells was observed in the TDLN and tumor, along with their corresponding ligands. NLGP treatment enhances type 1 polarized T-bet expressing T cells with downregulation of GATA3. Treg cell population was almost unchanged. However, T∶Treg ratios significantly increased with NLGP. Enhanced secretion/expression of IFNγ was noted after NLGP therapy. In vitro culture of T cells with IL-2 and sarcoma antigen resulted in significant enhancement in cytotoxic efficacy. Consistently higher expression of CD107a was also observed in CD8+ T cells from tumors. Reinoculation of sarcoma cells in tumor regressed NLGP-treated mice maintained tumor free status in majority. This is correlated with the increment of CD44hiCD62Lhi central memory T cells. Collectively, these findings support a paradigm in which NLGP dynamically orchestrates the activation, expansion, and recruitment of CD8+ T cells into established tumors to operate significant tumor cell lysis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Azadirachta/chemistry
- Azadirachta/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Female
- Glycoproteins/immunology
- Glycoproteins/pharmacology
- Immunohistochemistry
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice
- Plant Leaves/chemistry
- Plant Leaves/immunology
- Plant Proteins/immunology
- Plant Proteins/pharmacology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Experimental/drug therapy
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/pathology
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Survival Analysis
- Time Factors
- Tumor Burden/drug effects
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Kuntal Kanti Goswami
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Koustav Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
- * E-mail:
| |
Collapse
|
19
|
Apte SH, Groves PL, Skwarczynski M, Fujita Y, Chang C, Toth I, Doolan DL. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model. PLoS One 2012; 7:e40928. [PMID: 22936972 PMCID: PMC3427299 DOI: 10.1371/journal.pone.0040928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/15/2012] [Indexed: 11/29/2022] Open
Abstract
Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4+ and/or CD8+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.
Collapse
Affiliation(s)
- Simon H. Apte
- Infectious Diseases Programme, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Penny L. Groves
- Infectious Diseases Programme, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yoshio Fujita
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Chenghung Chang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- School of Pharmacy, University of Queensland, St Lucia, Queensland, Australia
| | - Denise L. Doolan
- Infectious Diseases Programme, Queensland Institute of Medical Research, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
20
|
Ahmad SF, Khan B, Bani S, Kaul A, Sultan P, Ali SA, Satti NK, Bakheet SA, Attia SM, Zoheir KMA, Abd-Allah ARA. Immunosuppressive effects of Euphorbia hirta in experimental animals. Inflammopharmacology 2012; 21:161-8. [DOI: 10.1007/s10787-012-0144-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 06/05/2012] [Indexed: 11/29/2022]
|
21
|
Xu M, Kallinteris NL, von Hofe E. CD4+ T-cell activation for immunotherapy of malignancies using Ii-Key/MHC class II epitope hybrid vaccines. Vaccine 2012; 30:2805-10. [DOI: 10.1016/j.vaccine.2012.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 01/20/2023]
|
22
|
Cayabyab MJ, Kashino SS, Campos-Neto A. Robust immune response elicited by a novel and unique Mycobacterium tuberculosis protein using an optimized DNA/protein heterologous prime/boost protocol. Immunology 2012; 135:216-25. [PMID: 22043824 DOI: 10.1111/j.1365-2567.2011.03525.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An efficacious tuberculosis (TB) vaccine will probably need to induce both CD4 and CD8 T-cell responses specific to a protective Mycobacterium tuberculosis antigen(s). To achieve this broad cellular immune response we tested a heterologous DNA/protein combination vaccine strategy. We used a purified recombinant protein preparation of a unique M. tuberculosis antigen (rMT1721) found in the urine of TB patients, an optimized plasmid DNA expressing this protein (DNA-MT1721), and a Toll-like receptor 4 agonist adjuvant. We found that priming mice with DNA-MT1721 and subsequently boosting with rMT1721 elicited high titres of specific IgG1 and IgG2a antibodies as well as high magnitude and polyfunctional CD4(+) T-cell responses. However, no detectable CD8(+) T-cell response was observed using this regimen of immunization. In contrast, both CD4(+) and CD8(+) T-cell responses were detected after a prime/boost vaccination regimen using rMT1721 as the priming antigen and DNA-MT1721 as the boosting immunogen. These findings support the exploration of heterologous DNA/protein immunization strategies in vaccine development against TB and possibly other infectious diseases.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Global Infectious Disease Research Center, The Forsyth Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
23
|
Single chain MHC I trimer-based DNA vaccines for protection against Listeria monocytogenes infection. Vaccine 2012; 30:2178-86. [PMID: 22285270 DOI: 10.1016/j.vaccine.2012.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
To circumvent limitations of poor antigen presentation and immunogenicity of DNA vaccines that target induction of CD8(+) T cell immunity, we have generated single chain MHC I trimers (MHC I SCTs) composed of a single polypeptide chain with a linear composition of antigenic peptide, β2-microglobulin, and heavy chain of a MHC class I molecule connected by flexible linkers. Because of its pre-assembled nature, the SCT presents enhanced expression and presentation of the antigenic peptide/MHC complexes at the cell surface. Furthermore, DNA vaccination with a plasmid DNA encoding an SCT incorporating an immunodominant viral epitope elicited protective CD8(+) T cell responses against lethal virus infection. To extend these findings, here we tested the efficacy of SCT DNA vaccines against bacterial infections. In a mouse infection model of Listeria monocytogenes, the SCT DNA vaccine encoding H-2K(d) and the immunodominant peptide LLO 91-99 generated functional primary and memory peptide-specific CD8(+) T cells that confer partial protection against L. monocytogenes infection. DNA immunization of K(d)/LLO(91-99) SCTs generated functional memory CD8(+) T cells independently of CD4(+) T cells, although the expression of cognate or non-cognate CD4(+) helper T cell epitopes further enhanced the protective efficacy of SCTs. Our study further demonstrates that the SCT serves as a potent platform for DNA vaccines against various infectious diseases.
Collapse
|
24
|
Meunier S, Rapetti L, Beziaud L, Pontoux C, Legrand A, Tanchot C. Synergistic CD40 signaling on APCs and CD8 T cells drives efficient CD8 response and memory differentiation. J Leukoc Biol 2012; 91:859-69. [PMID: 22241832 DOI: 10.1189/jlb.0611292] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of CD4 help during CD8 response and memory differentiation has been clearly demonstrated in different experimental models. However, the exact mechanisms of CD4 help remain largely unknown and preclude replacement therapy to develop. Interestingly, studies have shown that administration of an agonist aCD40ab can substitute CD4 help in vitro and in vivo, whereas the targets of this antibody remain elusive. In this study, we address the exact role of CD40 expression on APCs and CD8 T cells using aCD40ab treatment in mice. We demonstrate that aCD40 antibodies have synergetic effects on APCs and CD8 T cells. Full efficiency of aCD40 treatment requires CD40 expression on both populations: if one of these cell populations is CD40-deficient, the CD8 T cell response is impaired. Most importantly, direct CD40 signaling on APCs and CD8 T cells affects CD8 T cell differentiation differently. In our model, CD40 expression on APCs plays an important but dispensable role on CD8 T cell expansion and effector functions during the early phase of the immune response. Conversely, CD40 on CD8 T cells is crucial and nonredundant for their progressive differentiation into memory cells. Altogether, these results highlight that CD40-CD40L-dependent and independent effects of CD4 help to drive a complete CD8 T cell differentiation.
Collapse
Affiliation(s)
- Sylvain Meunier
- Institut National de la Santé et de la Recherche Médicale, INSERM U1020, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Activation of CD8+ cytotoxic T cells has long been regarded as a major antitumor mechanism of the immune system. Emerging evidence suggests that CD4+ T cells are required for the generation and maintenance of effective CD8+ cytotoxic and memory T cells, a phenomenon known as CD4+ T-cell help. CD4+ T-cell help facilitates the optimal expansion, trafficking, and effector function of CD8+ T cells, thereby enhancing tumor destruction. In addition, a specialized subset of CD4+ T cells, CD4+CD25+ regulatory T cells (TRegs), effectively hampers anti-tumor immune responses, which has been proposed to be one of the major tumor immune evasion mechanisms. Here, we review recent advances in deciphering how anti-tumor immune responses are orchestrated by CD4+ T cells. We will also discuss the immunotherapeutic potential of CD4+ T-cell manipulation in anti-tumor immune response.
Collapse
Affiliation(s)
- Yo-Ping Lai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 122, Taiwan
| | - Shu-Ching Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
26
|
Xiao H, Peng Y, Hong Y, Liu Y, Guo ZS, Bartlett DL, Fu N, He Y. Lentivector prime and vaccinia virus vector boost generate high-quality CD8 memory T cells and prevent autochthonous mouse melanoma. THE JOURNAL OF IMMUNOLOGY 2011; 187:1788-96. [PMID: 21746967 DOI: 10.4049/jimmunol.1101138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cancer vaccines, to date, fail to control established tumors. However, their application in preventing tumors is another question that is understudied. In the current study, we investigated the CD8 memory T cell responses of lentivector (lv) immunization and its potential to prevent melanoma using both transplantable B16 tumor and autochthonous melanoma models. We found that lv-expressing xenogenic human gp100 could induce potent CD8 responses that cross-react with mouse gp100. Importantly, the lv-primed CD8 response consisted of a high number of memory precursors and could be further increased by recombinant vaccinia virus vector (vv) boost, resulting in enhanced CD8 memory response. These long-lasting CD8 memory T cells played a critical role in immune surveillance and could rapidly respond and expand after sensing B16 tumor cells to prevent tumor establishment. Although CD8 response plays a dominant role after lv immunization, both CD4 and CD8 T cells are responsible for the immune prevention. In addition, we surprisingly found that CD4 help was not only critical for generating primary CD8 responses, but also important for secondary CD8 responses of vv boost. CD4 depletion prior to lv prime or prior to vv boost substantially reduced the magnitude of secondary CD8 effector and memory responses, and severely compromised the effect of cancer immune prevention. More importantly, the CD8 memory response from lv-vv prime-boost immunization could effectively prevent autochthonous melanoma in tumor-prone transgenic mice, providing a strong evidence that lv-vv prime-boost strategy is an effective approach for cancer immune prevention.
Collapse
Affiliation(s)
- Haiyan Xiao
- Immunology/Immunotherapy Program, Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gaddis DE, Michalek SM, Katz J. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. THE JOURNAL OF IMMUNOLOGY 2011; 186:5772-83. [PMID: 21498664 DOI: 10.4049/jimmunol.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
28
|
Baxevanis CN, Voutsas IF, Gritzapis AD, Perez SA, Papamichail M. HER-2/neu as a target for cancer vaccines. Immunotherapy 2010; 2:213-26. [PMID: 20635929 DOI: 10.2217/imt.09.89] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel modality toward the treatment of HER-2/neu-positive malignancies, mostly including breast and, more recently prostate carcinomas, has been the use of vaccines targeting HER-2/neu extracellular and intracellular domains. HER-2/neu-specific vaccines have been demonstrated to generate durable T-cell anti-HER-2/neu immunity when tested in Phase I and II clinical trials with no significant toxicity or autoimmunity directed against normal tissues. Targeting of HER-2/neu in active immunotherapy may involve peptide and DNA vaccines. Moreover, active anti-HER-2/neu immunization could facilitate the ex vivo expansion of HER-2/neu-specific T cells for use in adoptive immunotherapy for the treatment of established metastatic disease. In addition, early data from trials examining the potential use of HER-2/neu-based vaccines in the adjuvant setting to prevent the relapse of breast cancer in high-risk patients have shown promising results. Future approaches include multiepitope preventive vaccines and combinatorial treatments for generating the most efficient protective anti-tumor immunity.
Collapse
|
29
|
Qiu Y, Liu Y, Qi Z, Wang W, Kou Z, Zhang Q, Liu G, Liu T, Yang Y, Yang X, Xin Y, Li C, Cui B, Huang S, Liu H, Zeng L, Wang Z, Yang R, Wang H, Wang X. Comparison of Immunological Responses of Plague Vaccines F1 + rV270 and EV76 in Chinese-Origin Rhesus Macaque, Macaca mulatta. Scand J Immunol 2010; 72:425-33. [DOI: 10.1111/j.1365-3083.2010.02456.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Renaudet O, Dasgupta G, Bettahi I, Shi A, Nesburn AB, Dumy P, BenMohamed L. Linear and branched glyco-lipopeptide vaccines follow distinct cross-presentation pathways and generate different magnitudes of antitumor immunity. PLoS One 2010; 5:e11216. [PMID: 20574522 PMCID: PMC2888579 DOI: 10.1371/journal.pone.0011216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 05/26/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined. METHODS/PRINCIPAL FINDINGS We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005). SIGNIFICANCE These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers.
Collapse
Affiliation(s)
- Olivier Renaudet
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ilham Bettahi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alda Shi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Pascal Dumy
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California Irvine Medical Center, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Irvine, California, United States of America
| |
Collapse
|
31
|
Durrant LG, Pudney V, Spendlove I, Metheringham RL. Vaccines as early therapeutic interventions for cancer therapy: neutralising the immunosuppressive tumour environment and increasing T cell avidity may lead to improved responses. Expert Opin Biol Ther 2010; 10:735-48. [DOI: 10.1517/14712591003769790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Mishra T, Bhatia A. Augmentation of expression of immunocytes' functions by seed extract of Ziziphus mauritiana (Lamk.). JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:341-345. [PMID: 19887103 DOI: 10.1016/j.jep.2009.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 10/15/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY The present study was carried out to evaluate the immunomodulatory potential of Ziziphus mauritiana (Lamk.) seed extract to ascertain the folkloric claim as immunomodulator. MATERIALS AND METHODS The aqueous-ethanolic seed extract (100-400 mg kg(-1)) of Z. mauritiana was investigated for immunomodulatory potential in mice. The extract was standardized with HPLC using betulinic acid as a marker. Functions of various immunocytes in the form of humoral (development of anti-SRBC (sheep red blood cells) antibody titers) and cell-mediated immune response (delayed type hypersensitivity, nitroblue tetrazolium reduction, inducible nitric oxide synthase activity and bactericidal activity) was studied in SRBC immunized mice. The cytokine, IFN-gamma (interferon-gamma) and IL-4 (interleukin-4) secretion was also measured quantitatively by ELISA as the expression of functions of Th-1 and Th-2 respectively. Levamisole (2.5 mg kg(-1)) was used as standard drug. RESULTS The seed extract demonstrated significant (P<0.05-0.001) up-regulation of cell-mediated, humoral immune response and Th-1 mediated cytokine IFN-gamma and decline in Th-2 mediated cytokine IL-4. At higher dose of extract the results were comparable to that of the levamisole. CONCLUSION The immunostimulatory potential of this seed extract is likely to be mediated through its effect on macrophage function and Th-1 mediated immunity confirming the folkloric use of this plant.
Collapse
Affiliation(s)
- Tulika Mishra
- Immunology and Immunotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | | |
Collapse
|
33
|
Qi Z, Zhou L, Zhang Q, Ren L, Dai R, Wu B, Wang T, Zhu Z, Yang Y, Cui B, Wang Z, Wang H, Qiu Y, Guo Z, Yang R, Wang X. Comparison of mouse, guinea pig and rabbit models for evaluation of plague subunit vaccine F1+rV270. Vaccine 2010; 28:1655-60. [DOI: 10.1016/j.vaccine.2009.02.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 11/15/2022]
|
34
|
Wang Z, Zhou L, Qi Z, Zhang Q, Dai R, Yang Y, Cui B, Wang H, Yang R, Wang X. Long-term observation of subunit vaccine F1-rV270 against Yersinia pestis in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:199-201. [PMID: 19940042 PMCID: PMC2812077 DOI: 10.1128/cvi.00305-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/14/2009] [Accepted: 11/12/2009] [Indexed: 11/20/2022]
Abstract
Long-term protection and antibody response for the subunit vaccine F1-rV270 were determined by using the mouse model. Antibodies to F1 and rV270 were still detectable over a period of 518 days. The complete protection against lethal challenge of Yersinia pestis could be achieved up to day 518 after primary immunization.
Collapse
Affiliation(s)
- Zuyun Wang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Zhou
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qingwen Zhang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruixia Dai
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yonghai Yang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Baizhong Cui
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hu Wang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoyi Wang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province, Xining 811602, China, Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
35
|
Yan W, Jain A, O'Carra R, Woodward JG, Li W, Li G, Nath A, Mumper RJ. Lipid Nanoparticles with Accessible Nickel as a Vaccine Delivery System for Single and Multiple His-tagged HIV Antigens. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2009; 2009:1-11. [PMID: 21966230 PMCID: PMC3182147 DOI: 10.2147/hiv.s5729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid-based nanoparticles (NPs) with a small amount of surface-chelated nickel (Ni-NPs) were developed to easily formulate the human immunodeficiency virus (HIV) his-tagged Tat (his-Tat) protein, as well as to formulate and co-deliver two HIV antigens (his-p24 and his-Nef) on one particle. Female BALB/c mice were immunized by subcutaneous injection with his-Tat/Ni-NP formulation (1.5 μg his-Tat/mouse) and control formulations on day 0 and 14. The day 28 anti-Tat specific immunoglobulin G titer with his-Tat/Ni-NPs was significantly greater than that with Alum/his-Tat. Furthermore, splenocytes from his-Tat/Ni-NP-immunized mice secreted significantly higher IFN-γ than those from mice immunized with Alum/his-Tat. Although Ni-NPs did not show better adjuvant activity than Tat-coated anionic NPs made with sodium dodecyl sulfate (SDS/NPs), they were less toxic than SDS/NPs. The initial results indicated that co-immunization of mice using his-p24/his-Nef/Ni-NP induced greater antibody response compared to using Alum/his-p24/his-Nef. Co-delivery of two antigens using Ni-NPs also increased the immunogenicity of individual antigens compared to delivery of a single antigen by Ni-NPs. In conclusion, Ni-NPs are an efficient delivery system for HIV vaccines including both single antigen delivery and multiple antigen co-delivery.
Collapse
Affiliation(s)
- Weili Yan
- Division of Molecular Pharmaceutics and the Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Our understanding of the importance of CD4+ T cells in orchestrating immune responses has grown dramatically over the past decade. This lymphocyte family consists of diverse subsets ranging from interferon-gamma (IFN-gamma)-producing T-helper 1 (Th1) cells to transforming growth factor-beta (TGF-beta)-secreting T-regulatory cells, which have opposite roles in modulating immune responses to pathogens, tumor cells, and self-antigens. This review briefly addresses the various T-cell subsets within the CD4+ T-cell family and discusses recent research efforts aimed at elucidating the nature of the 'T-cell help' that has been shown to be essential for optimal immune function. Particular attention is paid to the role of Th cells in tumor immunotherapy. We review some of our own work in the field describing how CD4+ Th cells can enhance anti-tumor cytotoxic T-lymphocyte (CTL) responses by enhancing clonal expansion at the tumor site, preventing activation-induced cell death and functioning as antigen-presenting cells for CTLs to preferentially generate immune memory cells. These unconventional roles for Th lymphocytes, which require direct cell-to-cell communication with CTLs, are clear examples of how versatile these immunoregulatory cells are.
Collapse
Affiliation(s)
- Richard Kennedy
- Mayo Vaccine Research Group, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
37
|
Bettahi I, Dasgupta G, Renaudet O, Chentoufi AA, Zhang X, Carpenter D, Yoon S, Dumy P, BenMohamed L. Antitumor activity of a self-adjuvanting glyco-lipopeptide vaccine bearing B cell, CD4+ and CD8+ T cell epitopes. Cancer Immunol Immunother 2009; 58:187-200. [PMID: 18584174 PMCID: PMC11030914 DOI: 10.1007/s00262-008-0537-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/14/2008] [Indexed: 11/28/2022]
Abstract
Molecularly defined synthetic vaccines capable of inducing both antibodies and cellular anti-tumor immune responses, in a manner compatible with human delivery, are limited. Few molecules achieve this target without utilizing external immuno-adjuvants. In this study, we explored a self-adjuvanting glyco-lipopeptide (GLP) as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. A prototype B and T cell epitope-based GLP molecule was constructed by synthesizing a chimeric peptide made of a CD8(+) T cell epitope, from ovalbumin (OVA(257-264)) and an universal CD4(+) T helper (Th) epitope (PADRE). The resulting CTL-Th peptide backbones was coupled to a carbohydrate B cell epitope based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules at C-terminal. The N terminus of the resulting glycopeptides (GP) was then linked to a palmitic acid moiety (PAM), obviating the need for potentially toxic external immuno-adjuvants. The final prototype OVA-GLP molecule, delivered in adjuvant-free PBS, in mice induced: (1) robust RAFT-specific IgG/IgM that recognized tumor cell lines; (2) local and systemic OVA(257-264)-specific IFN-gamma producing CD8(+) T cells; (3) PADRE-specific CD4(+) T cells; (4) OVA-GLP vaccination elicited a reduction of tumor size in mice inoculated with syngeneic murine MO5 carcinoma cells and a protection from lethal carcinoma cell challenge; (5) finally, OVA-GLP immunization significantly inhibited the growth of pre-established MO5 tumors. Our results suggest self-adjuvanting glyco-lipopeptide molecules as a platform for B Cell, CD4(+), and CD8(+) T cell epitopes-based immunotherapeutic cancer vaccines.
Collapse
Affiliation(s)
- Ilham Bettahi
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, College of Medicine, Bldg. 55, Room 202, Irvine, Orange, CA 92868 USA
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, College of Medicine, Bldg. 55, Room 202, Irvine, Orange, CA 92868 USA
| | - Olivier Renaudet
- Département de Chimie Moléculaire, UMR-CNRS 5250, ICMG FR 2607, Universite Joseph Fourier, 38041 Grenoble Cedex 9, France
| | - Aziz Alami Chentoufi
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, College of Medicine, Bldg. 55, Room 202, Irvine, Orange, CA 92868 USA
| | - Xiuli Zhang
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, College of Medicine, Bldg. 55, Room 202, Irvine, Orange, CA 92868 USA
| | - Dale Carpenter
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, College of Medicine, Bldg. 55, Room 202, Irvine, Orange, CA 92868 USA
| | - Susan Yoon
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, College of Medicine, Bldg. 55, Room 202, Irvine, Orange, CA 92868 USA
| | - Pascal Dumy
- Département de Chimie Moléculaire, UMR-CNRS 5250, ICMG FR 2607, Universite Joseph Fourier, 38041 Grenoble Cedex 9, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, College of Medicine, Bldg. 55, Room 202, Irvine, Orange, CA 92868 USA
- Center for Immunology, University of California Irvine, Irvine, CA 92697-1450 USA
| |
Collapse
|
38
|
de Goër de Herve MG, Cariou A, Simonetta F, Taoufik Y. Heterospecific CD4 help to rescue CD8 T cell killers. THE JOURNAL OF IMMUNOLOGY 2009; 181:5974-80. [PMID: 18941186 DOI: 10.4049/jimmunol.181.9.5974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Help from CD4 T cells may be required for optimal generation and maintenance of memory CD8 T cells and also for optimal Ag reactivation. We examined whether the helper cell and the CD8 killer cell need to have the same Ag specificity for help to be effective during interactions of memory T cells with mature APC. This is important because virus and tumor Ag-specific CD4 T cell responses are selectively impaired in several chronic viral infections and malignancies. We performed studies in vitro and in vivo and found that functional memory CD4 T cells generated from a distinct antigenic source (heterospecific helpers) could provide direct and effective help to memory CD8 T cells. Functional heterospecific memory CD4 T cells could also rescue secondary CD8 T cell responses in an experimental tumor model in which homospecific CD4 help was impaired. This could provide a rationale for immunotherapy strategies designed to bypass impaired homospecific help.
Collapse
|
39
|
Bandera A, Trabattoni D, Pacei M, Fasano F, Suardi E, Cesari M, Marchetti G, Pogliani EM, Franzetti F, Clerici M, Gori A. Fully immunocompetent CD8+ T lymphocytes are present in autologous haematopoietic stem cell transplantation recipients despite an ineffectual T-helper response. PLoS One 2008; 3:e3616. [PMID: 18974880 PMCID: PMC2570790 DOI: 10.1371/journal.pone.0003616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/09/2008] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Reduced CD4 T lymphocytes counts can be observed in HIV infection and in patients undergoing autologous haematopoietic stem cell transplantation (ASCT). Nevertheless, whereas opportunistic infections (OI) are frequent in HIV-infected individuals with low cell counts, OI are uncommon in ASCT patients. METHODOLOGY/PRINCIPAL FINDINGS To verify whether this observation could be secondary to intrinsic HIV-correlated T cell defects, we performed in-depth immunologic analyses in 10 patients with comparable CD4 counts in whom lymphopenia was secondary either to HIV-infection or ASCT-associated immunosuppressive therapy and compared them to age-matched healthy subjects. Results showed the presence of profound alterations in CD4+ T lymphocytes in both groups of patients with respect to healthy controls. Thus, a low percentage of CCR7+ CD4+ T cells and a compensative expansion of CD45RA-CCR7- CD4+ T cells, a reduced IL-2/IFN-gamma cytokine production and impaired recall antigens-specific proliferative responses were detected both in ASCT and HIV patients. In stark contrast, profound differences were detected in CD8+ T-cells between the two groups of patients. Thus, mature CD8+ T cell prevailed in ASCT patients in whom significantly lower CD45RA-CCR7- cells, higher CD45RA+CCR7- CD8+ cells, and an expansion of CCR7+CD8+ cells was detected; this resulted in higher IFN-gamma +/TNFalpha production and granzyme CD8+ expression. The presence of strong CD8 T cells mediated immune responses justifies the more favorable clinical outcome of ASCT compared to HIV patients. CONCLUSION/SIGNIFICANCE These results indicate that CD8 T cells maturation and functions can be observed even in the face of a profound impairment of CD4+ T lymphocytes in ASCT but not in HIV patients. Primary HIV-associated CD8 defects or an imprinting by an intact CD4 T cell system in ASCT could justify these results.
Collapse
Affiliation(s)
- Alessandra Bandera
- Division of Infectious Diseases, Department of Internal Medicine, "San Gerardo" Hospital, University of Milan-Bicocca, Monza, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yan W, Huang L. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int J Pharm 2008; 368:56-62. [PMID: 18992312 DOI: 10.1016/j.ijpharm.2008.09.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
Recently, we have developed a simple and potent therapeutic cancer vaccine consisting of a cationic lipid and a peptide antigen. In this report, we expanded the utility of this formulation to protein based vaccines. First, we formulated the human papillomavirus (HPV) 16 E7 protein (E7) in different doses of DOTAP liposome. The results showed that these formulations failed to regress an established tumor. However, when sodium chloride (30 mM) was added to the DOTAP (100 nmol)/E7 (20 microg) formulation, anti-tumor activity was generated in the immunized mice. Correlatively, 30 mM NaCl in the DOTAP/E7 protein formulation increased the particle size from approximately 350 to 550 nm, decreased the protein loading capacity (from 95 to 90%), and finally increased the zeta potential (from 29 to 38 mV). Next, a model protein antigen ovalbumin (OVA) was formulated in different doses of DOTAP liposomes. Similarly, the results showed that 20 microg OVA formulated in 200 nmol DOTAP with 30 mM NaCl had the best OVA-specific antibody response, including both IgG(1) and IgG(2a), suggesting both Th1 and Th2 immune responses were generated by this formulation. In conclusion, we have expanded the application of cationic DOTAP liposome formulation to protein based vaccines and also identified that small amounts of salt could change the physicochemical properties of the vaccine formulation and enhance the activity of the DOTAP/protein based vaccine. The enhancement of immune responses by salt is possibly due to its interference of the electrostatic interaction between the cationic lipid and the protein antigen to facilitate the antigen release from the carrier and at the same time activate the antigen presenting cells.
Collapse
Affiliation(s)
- Weili Yan
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 2316 Kerr Hall, CB# 7360, Chapel Hill, NC 27599-7360, USA
| | | |
Collapse
|
41
|
Rapetti L, Meunier S, Pontoux C, Tanchot C. CD4 Help Regulates Expression of Crucial Genes Involved in CD8 T Cell Memory and Sensitivity to Regulatory Elements. THE JOURNAL OF IMMUNOLOGY 2008; 181:299-308. [DOI: 10.4049/jimmunol.181.1.299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Hernandez MGH, Shen L, Rock KL. CD40 on APCs Is Needed for Optimal Programming, Maintenance, and Recall of CD8+T Cell Memory Even in the Absence of CD4+T Cell Help. THE JOURNAL OF IMMUNOLOGY 2008; 180:4382-90. [DOI: 10.4049/jimmunol.180.7.4382] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Khajuria A, Gupta A, Suden P, Singh S, Malik F, Singh J, Gupta BD, Suri KA, Srinivas VK, Ella K, Qazi GN. Immunomodulatory activity of biopolymeric fraction BOS 2000 fromBoswellia serrata. Phytother Res 2008; 22:340-8. [DOI: 10.1002/ptr.2320] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Zhai Y, Wang Y, Wu Z, Kupiec-Weglinski JW. Defective alloreactive CD8 T cell function and memory response in allograft recipients in the absence of CD4 help. THE JOURNAL OF IMMUNOLOGY 2007; 179:4529-34. [PMID: 17878349 DOI: 10.4049/jimmunol.179.7.4529] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that alloreactive CD8 T cell activation may proceed via CD4-dependent and CD4-independent pathways, and that CD8 T cell activation in Ag-primed animals is independent of CD154 costimulation. In this report, we further analyzed the activation and function of alloreactive CD8 CTL effectors in CD4 knockout (KO) skin/cardiac allograft recipients. FACS analysis showed that alloreactive CD8 T cells were activated at a significantly reduced level in CD4 KO mice. Importantly, these helpless CD8 T cells failed to develop CD154 blockade resistance following reactivation by the same alloantigen, indicative of defective memory formation. Only transient CD4 help was required, as short-term CD4 blockade at the time of first skin graft challenge only delayed alloreactive CD8 activation, without affecting the CD8 T cell memory response to a second skin graft. Moreover, postoperative CD4 blockade had no effect on alloreactive CD8 activation. Alloreactive CD8 cells generated in the absence of CD4 help exhibited decreased effector responses. Interestingly, intragraft induction of T cell-targeted chemokines early after transplant was also dependent on CD4 help, as the induction kinetics of CXCL9 and CCL5 in CD4 KO recipients was significantly delayed, coupled with similarly delayed infiltration by CD3/CD8 cells. Remarkably, helpless CD8 cells ultimately entering the graft still displayed significantly diminished T cell effector molecules (IFN-gamma, granzyme B). Thus, CD4 help is critical for alloreactive CD8 activation, function, and memory formation.
Collapse
Affiliation(s)
- Yuan Zhai
- Division of Liver and Pancreas Transplantation, Department of Surgery, Dumont-University of California Los Angeles Transplant Center, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
45
|
Liu H, Wu BH, Rowse GJ, Emtage PCR. Induction of CD4-independent E7-specific CD8+ memory response by heat shock fusion protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1013-23. [PMID: 17596433 PMCID: PMC2044492 DOI: 10.1128/cvi.00029-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/28/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
Infection with human papillomavirus type 16 (HPV16) is strongly associated with a number of disease states, of which cervical and anal cancers represent the most drastic endpoints. Induction of T-cell-mediated immunity, particularly cytotoxic T lymphocytes (CTL), is important in eradication of HPV-induced lesions. Studies have shown that heat shock protein fusion proteins are capable of inducing potent antigen-specific CTL activity in experimental animal models. In addition, E7-expressing tumors in C57BL/6 mice can be eradicated by treatment with HspE7, an Hsp fusion protein composed of Mycobacterium bovis BCG Hsp65 linked to E7 protein of HPV16. More importantly, HspE7 has also displayed significant clinical benefit in phase II clinical trials for the immunotherapy of HPV-related diseases. To delineate the mechanisms underlying the therapeutic effects of HspE7, we investigated the capability of HspE7 to induce antigen-specific protective immunity. Here, we demonstrate that HspE7 primes potent E7-specific CD8(+) T cells with cytolytic and cytokine secretion activities. These CD8(+) T cells can differentiate into memory T cells with effector functions in the absence of CD4(+) T-cell help. The HspE7-induced memory CD8(+) T cells persist for at least 17 weeks and confer protection against E7-positive murine tumor cell challenge. These results indicate that HspE7 is a promising immunotherapeutic agent for treating HPV-related disease. Moreover, the ability of HspE7 to induce memory CD8(+) T cells in the absence of CD4(+) help indicates that HspE7 fusion protein may have activity in individuals with compromised CD4(+) functions, such as those with invasive cancer and/or human immunodeficiency virus infection.
Collapse
Affiliation(s)
- Hongwei Liu
- Nventa Biopharmaceuticals Corporation, Victoria, BC, Canada V8Z 4B9
| | | | | | | |
Collapse
|
46
|
Dobaño C, Rogers WO, Gowda K, Doolan DL. Targeting antigen to MHC Class I and Class II antigen presentation pathways for malaria DNA vaccines. Immunol Lett 2007; 111:92-102. [PMID: 17604849 DOI: 10.1016/j.imlet.2007.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/04/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
An effective malaria vaccine which protects against all stages of Plasmodium infection may need to elicit robust CD8(+) and CD4(+) T cell and antibody responses. To achieve this, we have investigated strategies designed to improve the immunogenicity of DNA vaccines encoding the Plasmodium yoelii pre-erythrocytic stage antigens PyCSP and PyHEP17, by targeting the encoded proteins to the MHC Classes I and II processing and presentation pathways. For enhancement of CD8(+) T cell responses, we targeted the antigens for degradation by the ubiquitin (Ub)/proteosome pathway following the N-terminal rule. We constructed plasmids containing PyCSP or PyHEP17 genes fused to the Ub gene: plasmids where the N-terminal antigen residues were mutated from the stabilizing amino acid methionine to destabilizing arginine, plasmids where the C-terminal residues of Ub were mutated from glycine to alanine, and plasmids in which the potential hydrophobic leader sequences of the antigens were deleted. For enhancement of CD4(+) T cell and antibody responses, we targeted the antigens for degradation by the endosomal/lysosomal pathway by linking the antigen to the lysosome-associated membrane protein (LAMP). We found that immunization with DNA vaccine encoding PyHEP17 fused to Ub and bearing arginine induced higher IFN-gamma, cytotoxic and proliferative T cell responses than unmodified vaccines. However, no effect was seen for PyCSP using the same targeting strategies. Regarding Class II antigen targeting, fusion to LAMP did not enhance antibody responses to either PyHEP17 or PyCSP, and resulted in a marginal increase in lymphoproliferative CD4(+) T cell responses. Our data highlight the antigen dependence of immune enhancement strategies that target antigen to the MHC Class I and II pathways for vaccine development.
Collapse
Affiliation(s)
- Carlota Dobaño
- Malaria Program, Naval Medical Research Center, Silver Spring, MD 20910-7500, United States.
| | | | | | | |
Collapse
|
47
|
Warger T, Schild H, Rechtsteiner G. Initiation of adaptive immune responses by transcutaneous immunization. Immunol Lett 2007; 109:13-20. [PMID: 17320194 DOI: 10.1016/j.imlet.2007.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 01/20/2007] [Indexed: 10/23/2022]
Abstract
The development of new, effective, easy-to-use and lower-cost vaccination approaches for the combat against malignant and infectious diseases is a pre-eminent need: cancer is a leading cause of morbidity in the Western World; there are numerous pathogenic diseases for which we still have no protective or therapeutic cure; and the financial limitations of developing countries to fight these diseases. In this mini-review we focus on transcutaneous immunization (TCI), a relatively new route for antigen delivery. TCI protocols appear to be particularly promising by gaining access to skin resident APC, which are highly efficient for the initiation of humoral and/or cellular immune responses. Consisting of an adjuvant as a stimulus in combination with an antigen which defines the target, TCI offers a most attractive immunization strategy to mount highly specific full-blown adaptive immune responses. As a topically applicable cell-free adjuvant/antigen mixture, TCI might be suitable to improve patient compliance, as well as feasible economically for the use in Third World countries. In addition, this non-invasive procedure might increase the safety of vaccinations by eliminating the risk of infections related to the recycling and improper disposal of needles. The dissection of antigen and adjuvant is important because it allows "free" combinations in contrast to classical immunizations which are based on application of the pathogen of interest. The most relevant ways and means to find new, effective pathogenic target antigens are "reverse vaccinology" and the direct peptide-epitope identification from MHC molecules with mass-spectrometry. Due to these efficient approaches the variety of antigenic epitopes for potential protective/therapeutic use is perpetually expanding. The most studied adjuvants in TCI approaches are cholera toxin (CT) and its less toxic relative, the heat-labile enterotoxin (LT). Both CT and LT can serve as antigen as well. In contrast to these large proteins, which can only penetrate "pre-treated" skin barrier, the immune response modifier, TLR7 agonist R-837 (Imiquimod) is a small compound adjuvant that easily passages non-disrupted epidermis. It remains currently elusive which cells of the complex-structured "skin-associated lymphoid tissue" (SALT) respond to the adjuvant and which APC carries the antigen to the draining lymphnodes for subsequent initiation of adaptive immune responses.
Collapse
Affiliation(s)
- Tobias Warger
- Institute for Immunology, Johannes Gutenberg-University, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | |
Collapse
|
48
|
Rocha B, Tanchot C. The Tower of Babel of CD8+ T-cell memory: known facts, deserted roads, muddy waters, and possible dead ends. Immunol Rev 2006; 211:182-96. [PMID: 16824127 DOI: 10.1111/j.0105-2896.2006.00378.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adequate antigen stimulation can lead to permanent modifications of primed cells and to the generation of memory T cells that have astonishingly improved capacities to deal with antigen. The overall properties of memory T cells (increased survival, precocious and increased division capacities, and improved effector functions) can be used to identify this unique cell type. However, each immune response may lead to the generation of multiple primed types that do not necessarily possess all these characteristics. It is not known whether these different cell types are just side products of the immune reaction or whether they are involved in disease control. Control of different infections may involve different challenges and lead to the generation of different types of immune reactions. Our major challenge is to unravel this complexity, but we must overcome our handicapped experimental tests and our imperfect a priori definitions.
Collapse
Affiliation(s)
- Benedita Rocha
- INSERM U591, Institut Necker, Faculty of Medecine René Descartes Paris V, Paris, France.
| | | |
Collapse
|
49
|
Dullaers M, Van Meirvenne S, Heirman C, Straetman L, Bonehill A, Aerts JL, Thielemans K, Breckpot K. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 2006; 13:630-40. [PMID: 16355115 DOI: 10.1038/sj.gt.3302697] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ex vivo lentivirally transduced dendritic cells (DC) have been described to induce CD8+ and CD4+ T-cell responses against various tumor-associated antigens (TAAs) in vitro and in vivo. We report here that direct administration of ovalbumin (OVA) encoding lentiviral vectors caused in vivo transduction of cells that were found in draining lymph nodes (LNs) and induced potent anti-OVA cytotoxic T cells similar to those elicited by ex vivo transduced DC. The cytotoxic T-lymphocyte (CTL) response following direct injection of lentiviral vectors was highly effective in eliminating target cells in vivo up to 30 days after immunization and was efficiently recalled after a boost immunization. Injection of lentiviral vectors furthermore activated OVA-specific CD4+ T cells and this CD4 help was shown to be necessary for an adequate primary and memory CTL response. When tested in therapeutic tumor experiments with OVA+ melanoma cells, direct administration of lentiviral vectors slowed down tumor growth to a comparable extent with the highest dose of ex vivo transduced DC. Taken together, these data indicate that direct in vivo administration of lentiviral vectors encoding TAAs has strong potential for anticancer vaccination.
Collapse
Affiliation(s)
- M Dullaers
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bani S, Gautam M, Sheikh FA, Khan B, Satti NK, Suri KA, Qazi GN, Patwardhan B. Selective Th1 up-regulating activity of Withania somnifera aqueous extract in an experimental system using flow cytometry. JOURNAL OF ETHNOPHARMACOLOGY 2006; 107:107-15. [PMID: 16603328 DOI: 10.1016/j.jep.2006.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 02/04/2006] [Accepted: 02/23/2006] [Indexed: 05/07/2023]
Abstract
Withania somnifera (Ashwagandha) is reported to be immunoprotective and immunoadjuvant. We studied its roots aqueous extract on T helper (Th) immunity using flow cytometry. This extract was standardized with six withanolides as marker compounds using HPLC. Once daily dose ranging from 25 to 400 mg/kg/p.o. was used to study effect on Th1: IFN-gamma, IL-2 and Th2: IL-4 cytokine modulation. We also studied effect on CD4 and CD8 in normal and immunesuppressed mice. The results indicate that extract at 100 mg/kg resulted significant selective up-regulation of Th1 response. Treatment with extract showed significant increase in CD4 and CD8 counts as compared to control and cyclopsorin A, with a faster recovery of CD4+ T cells in immunesuppressed animals. Under immunesuppressed conditions, potentiation of cellular and humoral immune responses of extract was comparable to levamisole. This study indicates the selective Th1 up-regulating effect of extract and suggests its use for selective Th1/Th2 modulation.
Collapse
Affiliation(s)
- Sarang Bani
- Department of Pharmacology, Regional Research Laboratory, Jammu Tawi, India.
| | | | | | | | | | | | | | | |
Collapse
|