1
|
Richards BA, Goncalves AG, Sullivan MO, Chen W. Engineering protein nanoparticles for drug delivery. Curr Opin Biotechnol 2024; 86:103070. [PMID: 38354452 DOI: 10.1016/j.copbio.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Protein nanoparticles offer a highly tunable platform for engineering multifunctional drug delivery vehicles that can improve drug efficacy and reduce off-target effects. While many protein nanoparticles have demonstrated the ability to tolerate genetic and posttranslational modifications for drug delivery applications, this review will focus on three protein nanoparticles of increasing size. Each protein nanoparticle possesses distinct properties such as highly tunable stability, capacity for splitting or fusing subunits for modular surface decoration, and well-characterized conformational changes with impressive capacity for large protein cargos. While many of the genetic and posttranslational modifications leverage these protein nanoparticle's properties, the shared techniques highlight engineering approaches that have been generalized across many protein nanoparticle platforms.
Collapse
Affiliation(s)
- Blake A Richards
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Antonio G Goncalves
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
2
|
Sullivan MO, Chen W. Engineering Hepatitis B Virus (HBV) Protein Particles for Therapeutic Delivery. Methods Mol Biol 2024; 2720:115-126. [PMID: 37775661 DOI: 10.1007/978-1-0716-3469-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Nature provides an abundance of proteins whose structures and reactivity have been perfected through evolution to perform specific tasks necessary for biological function. The structural and functional properties of many natural proteins are quite valuable for the construction and customization of drug delivery vehicles. Self-assembling protein nanoparticle platforms are particularly useful scaffolds, as their multi-subunit designs allow the attachment of a high density of modifying molecules such as cell-binding ligands that provide avidity for targeting and facilitate encapsulation of large quantities of therapeutic payload. We explored SpyCatcher/SpyTag conjugation as a system to modify hepatitis B virus (HBV)-like particles (HBV VLPs). Using this simple decoration strategy, we demonstrated efficient and cell-selective killing of inflammatory breast cancer cells via delivery of yeast cytosine deaminase suicide enzymes combined with 5-fluoro-cytosine prodrugs.
Collapse
Affiliation(s)
- Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
4
|
Rotavirus spike protein ΔVP8* as a novel carrier protein for conjugate vaccine platform with demonstrated antigenic potential for use as bivalent vaccine. Sci Rep 2021; 11:22037. [PMID: 34764353 PMCID: PMC8586335 DOI: 10.1038/s41598-021-01549-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Conjugate vaccine platform is a promising strategy to overcome the poor immunogenicity of bacterial polysaccharide antigens in infants and children. A carrier protein in conjugate vaccines works not only as an immune stimulator to polysaccharide, but also as an immunogen; with the latter generally not considered as a measured outcome in real world. Here, we probed the potential of a conjugate vaccine platform to induce enhanced immunogenicity of a truncated rotavirus spike protein ΔVP8*. ΔVP8* was covalently conjugated to Vi capsular polysaccharide (Vi) of Salmonella Typhi to develop a bivalent vaccine, termed Vi-ΔVP8*. Our results demonstrated that the Vi-ΔVP8* vaccine can induce specific immune responses against both antigens in immunized mice. The conjugate vaccine elicits high antibody titers and functional antibodies against S. Typhi and Rotavirus (RV) when compared to immunization with a single antigen. Together, these results indicate that Vi-ΔVP8* is a potent and immunogenic vaccine candidate, thus strengthening the potential of conjugate vaccine platform with enhanced immune responses to carrier protein, including ΔVP8*.
Collapse
|
5
|
Hillebrandt N, Vormittag P, Dietrich A, Wegner CH, Hubbuch J. Process development for cross-flow diafiltration-based VLP disassembly: A novel high-throughput screening approach. Biotechnol Bioeng 2021; 118:3926-3940. [PMID: 34170511 DOI: 10.1002/bit.27868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are particulate structures, which are applied as vaccines or delivery vehicles. VLPs assemble from subunits, named capsomeres, composed of recombinantly expressed viral structural proteins. During downstream processing, in vivo-assembled VLPs are typically dis- and reassembled to remove encapsulated impurities and to improve particle morphology. Disassembly is achieved in a high-pH solution and by the addition of a denaturant or reducing agent. The optimal disassembly conditions depend on the VLP amino acid sequence and structure, thus requiring material-consuming disassembly experiments. To this end, we developed a low-volume and high-resolution disassembly screening that provides time-resolved insight into the VLP disassembly progress. In this study, two variants of C-terminally truncated hepatitis B core antigen were investigated showing different disassembly behaviors. For both VLPs, the best capsomere yield was achieved at moderately high urea concentration and pH. Nonetheless, their disassembly behaviors differed particularly with respect to disassembly rate and aggregation. Based on the high-throughput screening results, a diafiltration-based disassembly process step was developed. Compared with mixing-based disassembly, it resulted in higher yields of up to 0.84 and allowed for integrated purification. This process step was embedded in a filtration-based process sequence of disassembly, capsomere separation, and reassembly, considerably reducing high-molecular-weight species.
Collapse
Affiliation(s)
- Nils Hillebrandt
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Annabelle Dietrich
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Christina H Wegner
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| |
Collapse
|
6
|
Hepatitis B Virus Core Protein Domains Essential for Viral Capsid Assembly in a Cellular Context. J Mol Biol 2020; 432:3802-3819. [PMID: 32371046 DOI: 10.1016/j.jmb.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains: the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation.
Collapse
|
7
|
Federizon J, Lin YP, Lovell JF. Antigen Engineering Approaches for Lyme Disease Vaccines. Bioconjug Chem 2019; 30:1259-1272. [PMID: 30987418 DOI: 10.1021/acs.bioconjchem.9b00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increasing rates of Lyme disease necessitate preventive measures such as immunization to mitigate the risk of contracting the disease. At present, there is no human Lyme disease vaccine available on the market. Since the withdrawal of the first and only licensed Lyme disease vaccine based on lipidated recombinant OspA, vaccine and antigen research has aimed to overcome its risks and shortcomings. Replacement of the putative cross-reactive T-cell epitope in OspA via mutation or chimerism addresses the potential risk of autoimmunity. Multivalent approaches in Lyme disease vaccines have been pursued to address sequence heterogeneity of Lyme borreliae antigens and to induce a repertoire of functional antibodies necessary for efficient heterologous protection. This Review summarizes recent antigen engineering strategies that have paved the way for the development of next generation vaccines against Lyme disease, some of which have reached clinical testing. Bioconjugation methods that incorporate antigens to self-assembling nanoparticles for immune response potentiation are also discussed.
Collapse
Affiliation(s)
- Jasmin Federizon
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health , Albany , New York 12208 , United States.,Department of Biomedical Sciences , State University of New York at Albany , Albany , New York 12222 , United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
8
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
9
|
Abstract
The highly immunogenic icosahedral capsid of hepatitis B virus (HBV) can be exploited as a nanoparticulate display platform for heterologous molecules. Its constituent core protein (HBc) of only ~180 amino acids spontaneously forms capsid-like particles (CLPs) even in E. coli. The immunodominant c/e1 epitope in the center of the HBc primary sequence comprises a solvent-exposed loop that tolerates insertions of flexible peptide sequences yet also of selected whole proteins as long as their 3D structures fit into the two acceptor sites. This constraint is largely overcome in the SplitCore system, where the sequences flanking the loop are expressed as two separate but self-complementing entities, with the foreign sequence fixed to the carrier at one end only. Both the contiguous and the split type of CLP strongly enhance immunogenicity of the displayed sequence but also nonvaccine applications can easily be envisaged. After a brief survey of the basic features of the two HBc carrier forms, we provide conceptual guidelines concerning which foreign proteins are likely to be presentable, or not, on either carrier type. We describe generally applicable protocols for CLP expression in E. coli, cell lysis and CLP enrichment by sucrose gradient velocity sedimentation, plus a simple but meaningful gel electrophoretic assay to assess proper particle formation.
Collapse
|
10
|
Schumacher J, Bacic T, Staritzbichler R, Daneschdar M, Klamp T, Arnold P, Jägle S, Türeci Ö, Markl J, Sahin U. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J Nanobiotechnology 2018; 16:39. [PMID: 29653575 PMCID: PMC5897928 DOI: 10.1186/s12951-018-0363-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. RESULTS The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. CONCLUSIONS These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.
Collapse
Affiliation(s)
- Jens Schumacher
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tijana Bacic
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - René Staritzbichler
- TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Matin Daneschdar
- Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thorsten Klamp
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Arnold
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.,Anatomical Institute, Otto-Hahn Platz 8, 24118, Kiel, Germany
| | - Sabrina Jägle
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Özlem Türeci
- Ganymed Pharmaceuticals AG, An der Goldgrube 12, 55131, Mainz, Germany
| | - Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany. .,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany. .,TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany.
| |
Collapse
|
11
|
Marcinkiewicz AL, Lieknina I, Kotelovica S, Yang X, Kraiczy P, Pal U, Lin YP, Tars K. Eliminating Factor H-Binding Activity of Borrelia burgdorferi CspZ Combined with Virus-Like Particle Conjugation Enhances Its Efficacy as a Lyme Disease Vaccine. Front Immunol 2018; 9:181. [PMID: 29472926 PMCID: PMC5809437 DOI: 10.3389/fimmu.2018.00181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, the most common tick-borne disease in the US and Europe. No potent human vaccine is currently available. The innate immune complement system is vital to host defense against pathogens, as complement activation on the surface of spirochetes results in bacterial killing. Complement system is inhibited by the complement regulator factor H (FH). To escape killing, B. burgdorferi produces an outer surface protein CspZ that binds FH to inhibit complement activation on the cell surface. Immunization with CspZ alone does not protect mice from infection, which we speculate is because FH-binding cloaks potentially protective epitopes. We modified CspZ by conjugating to virus-like particles (VLP-CspZ) and eliminating FH binding (modified VLP-CspZ) to increase immunogenicity. We observed greater bactericidal antibody titers in mice vaccinated with modified VLP-CspZ: A serum dilution of 1:395 (modified VLP-CspZ) vs 1:143 (VLP-CspZ) yielded 50% borreliacidal activity. Immunizing mice with modified VLP-CspZ cleared spirochete infection, as did passive transfer of elicited antibodies. This work developed a novel Lyme disease vaccine candidate by conjugating CspZ to VLP and eliminating FH-binding ability. Such a strategy of conjugating an antigen to a VLP and eliminating binding to the target ligand can serve as a general model for developing vaccines against other bacterial infectious agents.
Collapse
Affiliation(s)
- Ashley L. Marcinkiewicz
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Xiuli Yang
- Department of Veterinary Medicine, Virginia–Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia–Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Science, State University of New York at Albany, Albany, NY, United States
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
12
|
Akhras S, Toda M, Boller K, Himmelsbach K, Elgner F, Biehl M, Scheurer S, Gratz M, Vieths S, Hildt E. Cell-permeable capsids as universal antigen carrier for the induction of an antigen-specific CD8 + T-cell response. Sci Rep 2017; 7:9630. [PMID: 28851900 PMCID: PMC5575276 DOI: 10.1038/s41598-017-08787-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/13/2017] [Indexed: 01/21/2023] Open
Abstract
Vaccine platforms that can be flexibly loaded with antigens can contribute to decrease response time to emerging infections. For many pathogens and chronic infections, induction of a robust cytotoxic T lymphocytes-mediated response is desirable to control infection. Antigen delivery into the cytoplasm of antigen presenting cells favors induction of cytotoxic T cells. By fusion of the cell-permeable translocation motif (TLM)-peptide to the capsid-forming core protein of hepatitis B virus, and by insertion of the strep-tag in the spike tip (a domain that protrudes from the surface of the capsid), cell-permeable carrier capsids were generated that can be flexibly loaded with various antigens. Loading with antigens was demonstrated by electron microscopy, density gradient centrifugation and surface plasmon resonance spectroscopy. Confocal immunofluorescence microscopy showed that cell-permeable carrier capsids mediate transfer of cargo antigen into the cytoplasm. Using cell-permeable carrier capsids loaded with ovalbumin as model antigen, activation of antigen presenting cells and ovalbumin-specific CD8+ T-cells, which correlates with enhanced specific killing activity, was found. This demonstrates the capacity of TLM-carrier-capsids to serve as universal antigen carrier to deliver antigens into the cytoplasm of antigen presenting cells, which leads to enhanced MHC class I-mediated presentation and induction of antigen-specific cytotoxic T lymphocytes response.
Collapse
Affiliation(s)
- Sami Akhras
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Masako Toda
- Department of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Klaus Boller
- Department of Immunology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | | | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Marlene Biehl
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Stephan Scheurer
- Department of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Meike Gratz
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Stefan Vieths
- Department of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany. .,German Center for Infection Research (DZIF), 38124, Braunschweig, Germany.
| |
Collapse
|
13
|
Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol 2017; 183:99-108. [PMID: 28780375 DOI: 10.1016/j.clim.2017.08.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/11/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
The development of virus-like particle (VLP) technology has had an enormous impact on modern vaccinology. In order to optimize the efficacy and safety of VLP-based vaccines, adjuvants are included in most vaccine formulations. To date, most licensed VLP-based vaccines utilize the classic aluminum adjuvant compositions. Certain challenging pathogens and weak immune responder subjects may require further optimization of the adjuvant formulation to maximize the magnitude and duration of the protective immunity. Indeed, novel classes of adjuvants such as liposomes, agonists of pathogen recognition receptors, polymeric particles, emulsions, cytokines and bacterial toxins, can be used to further improve the immunostimulatory activity of a VLP-based vaccine. This review describes the current advances in adjuvant technology for VLP-based vaccines directed at viral diseases, and discusses the basic principles for designing adjuvant formulations for enhancing the vaccine immunogenicity.
Collapse
Affiliation(s)
- Velasco Cimica
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jose M Galarza
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| |
Collapse
|
14
|
Osajima T, Hoshino T. Roles of the respective loops at complementarity determining region on the antigen-antibody recognition. Comput Biol Chem 2016; 64:368-383. [DOI: 10.1016/j.compbiolchem.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023]
|
15
|
Qiao L, Zhang Y, Chai F, Tan Y, Huo C, Pan Z. Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection. Antiviral Res 2016; 131:131-40. [PMID: 27154395 DOI: 10.1016/j.antiviral.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
To investigate the feasibility and efficacy of a virus-like particle (VLP) vaccine composed of the conserved antigenic epitopes of respiratory syncytial virus (RSV), the chimeric RSV VLPs HBcΔ-tG and HBcΔ-tG/M282-90 were generated based on the truncated hepatitis B virus core protein (HBcΔ). HBcΔ-tG consisted of HBcΔ, the conserved region (aa 144-204) of the RSV G protein. HBcΔ-tG was combined with a single peptide (aa 82-90) of the M2 protein to generate HBcΔ-tG/M282-90. Immunization of mice with the HBcΔ-tG or HBcΔ-tG/M282-90 VLPs elicited RSV-specific IgG and neutralizing antibody production and conferred protection against RSV infection. Compared with HBcΔ-tG, HBcΔ-tG/M282-90 induced decreased Th2 cytokine production (IL-4 and IL-5), increased Th1 cytokine response (IFN-γ, TNF-α, and IL-2), and increased ratios of IgG2a/IgG1 antibodies, thereby relieving pulmonary pathology upon subsequent RSV infection. Our results demonstrated that chimeric HBcΔ-tG/M282-90 VLPs represented an effective RSV subunit vaccine candidate.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Chai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yiluo Tan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chunling Huo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Kolb P, Wallich R, Nassal M. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential. PLoS One 2015; 10:e0136180. [PMID: 26352137 PMCID: PMC4564143 DOI: 10.1371/journal.pone.0136180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023] Open
Abstract
Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.
Collapse
Affiliation(s)
- Philipp Kolb
- University Hospital Freiburg, Internal Medicine 2 / Molecular Biology, Hugstetter Str. 55, D-79106, Freiburg, Germany
- University of Freiburg, Biological Faculty, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Reinhard Wallich
- University Hospital Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, D-69120, Heidelberg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2 / Molecular Biology, Hugstetter Str. 55, D-79106, Freiburg, Germany
- * E-mail:
| |
Collapse
|
17
|
Computational and statistical study on the molecular interaction between antigen and antibody. J Mol Graph Model 2014; 53:128-139. [DOI: 10.1016/j.jmgm.2014.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/04/2023]
|
18
|
Lange M, Fiedler M, Bankwitz D, Osburn W, Viazov S, Brovko O, Zekri AR, Khudyakov Y, Nassal M, Pumpens P, Pietschmann T, Timm J, Roggendorf M, Walker A. Hepatitis C virus hypervariable region 1 variants presented on hepatitis B virus capsid-like particles induce cross-neutralizing antibodies. PLoS One 2014; 9:e102235. [PMID: 25014219 PMCID: PMC4094522 DOI: 10.1371/journal.pone.0102235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/16/2014] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) infection is still a serious global health burden. Despite improved therapeutic options, a preventative vaccine would be desirable especially in undeveloped countries. Traditionally, highly conserved epitopes are targets for antibody-based prophylactic vaccines. In HCV-infected patients, however, neutralizing antibodies are primarily directed against hypervariable region I (HVRI) in the envelope protein E2. HVRI is the most variable region of HCV, and this heterogeneity contributes to viral persistence and has thus far prevented the development of an effective HVRI-based vaccine. The primary goal of an antibody-based HCV vaccine should therefore be the induction of cross-reactive HVRI antibodies. In this study we approached this problem by presenting selected cross-reactive HVRI variants in a highly symmetric repeated array on capsid-like particles (CLPs). SplitCore CLPs, a novel particulate antigen presentation system derived from the HBV core protein, were used to deliberately manipulate the orientation of HVRI and therefore enable the presentation of conserved parts of HVRI. These HVRI-CLPs induced high titers of cross-reactive antibodies, including neutralizing antibodies. The combination of only four HVRI CLPs was sufficient to induce antibodies cross-reactive with 81 of 326 (24.8%) naturally occurring HVRI peptides. Most importantly, HVRI CLPs with AS03 as an adjuvant induced antibodies with a 10-fold increase in neutralizing capability. These antibodies were able to neutralize infectious HCVcc isolates and 4 of 19 (21%) patient-derived HCVpp isolates. Taken together, these results demonstrate that the induction of at least partially cross-neutralizing antibodies is possible. This approach might be useful for the development of a prophylactic HCV vaccine and should also be adaptable to other highly variable viruses.
Collapse
Affiliation(s)
- Milena Lange
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Fiedler
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - William Osburn
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sergei Viazov
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olena Brovko
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Yury Khudyakov
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael Nassal
- Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Paul Pumpens
- Department of Recombinant biotechnology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Jörg Timm
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Walker
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6:24-33. [PMID: 24662314 PMCID: PMC4072748 DOI: 10.1016/j.coviro.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023]
Abstract
Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
20
|
Roose K, De Baets S, Schepens B, Saelens X. Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Rev Vaccines 2013; 12:183-98. [PMID: 23414409 DOI: 10.1586/erv.12.150] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the first effort to recombinantly express the hepatitis B core protein (HBc) in bacteria, the remarkable virion-like structure has fuelled interest in unraveling the structural and antigenic properties of this protein. Initial studies proved HBc virus-like particles to possess strong immunogenic properties, which can be conveyed to linked antigens. More than 35 years later, numerous studies have been performed using HBc as a carrier protein for antigens derived from over a dozen different pathogens and diseases. In this review, the authors highlight the intriguing features of HBc as carrier and antigen, illustrated by some examples and experimental results that underscore the value of HBc as an antigen-presenting platform. Two of these HBc fusions, targeting influenza A and malaria, have even progressed into clinical testing. In the future, the HBc-based virus-like particles platform will probably continue to be used for the display of poorly immunogenic antigens, mainly because virus-like particle formation by HBc capsomers is compatible with nearly any available recombinant gene expression system.
Collapse
Affiliation(s)
- Kenny Roose
- Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Wang L, Huang P, Fang H, Xia M, Zhong W, McNeal M, Jiang X, Tan M. Polyvalent complexes for vaccine development. Biomaterials 2013; 34:4480-92. [PMID: 23498893 PMCID: PMC3635153 DOI: 10.1016/j.biomaterials.2013.02.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 02/07/2023]
Abstract
Homotypic interaction is a common phenomenon of many proteins, through which they form dimers. We developed a simple approach to turn small dimeric proteins into large polyvalent complexes for increased immunogenicity and functionality. This was achieved via a fusion of two or more dimeric proteins together to induce polyvalent complex formation through intermolecular dimerizations. Two types of polyvalent complexes, linear and network, assembled spontaneously when a dimeric glutathione S-transferase (GST) was fused with one or two protruding (P) domains of norovirus (NoV). Additionally, a monomeric antigen, the peptide epitope M2e of the influenza virus (IV) or the VP8* antigen of rotavirus (RV), can be inserted to the polyvalent complexes. Mouse immunization demonstrated that the polyvalent complexes induced significantly higher antibody and CD4(+) T cell responses to the complex components than those induced by the free epitope and antigens. Further evaluations indicated that the polyvalent complex vaccines exhibited significantly higher neutralization activity against NoV and RV and stronger protection against IV challenges in a mouse model than those of the monomeric or dimeric vaccines. The binding of NoV P proteins to their HBGA ligands was also significantly increased through the polyvalent complex formation. Therefore, our polyvalent complex system provides a new strategy for novel vaccine development and may find various applications throughout biomedicine.
Collapse
Affiliation(s)
- Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Hao Fang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Corresponding author. Mailing address: Division of Infectious Diseases Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue, Cincinnati, OH 45229-3039 Phone: 513-636-0119. Fax: 513-636-7655
| |
Collapse
|
22
|
Lyme disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Arora U, Tyagi P, Swaminathan S, Khanna N. Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice. Vaccine 2012; 31:873-8. [PMID: 23261049 DOI: 10.1016/j.vaccine.2012.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/22/2012] [Accepted: 12/05/2012] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Currently, dengue represents one of the most significant arboviral disease worldwide, for which a vaccine is not yet available. Persistent challenges in live viral dengue vaccines have sparked a keen interest in exploring non-replicating dengue vaccines. We have examined the feasibility of using the methylotrophic yeast Pichia pastoris to develop a chimeric vaccine candidate displaying the dengue virus type-2 (DENV-2) envelope domain III (EDIII), implicated in host receptor binding and in the induction of virus-neutralizing antibodies, on the surface of non-infectious virus-like particles (VLP)-based on the Hepatitis B virus core antigen (HBcAg). METHODS We designed a fusion antigen by inserting DENV-2 EDIII into c/e1 loop of HBcAg. A codon-optimized gene encoding this fusion antigen was integrated into the genome of P. pastoris, under the control of the Alcohol Oxidase 1 promoter. The antigen was expressed by methanol induction and purified to near homogeneity by Ni(2+) affinity chromatography. The purified antigen was characterized physically and functionally to evaluate its ability to assemble into VLPs, and elicit DENV-2-specific antibodies in mice. RESULTS This fusion antigen was expressed successfully to high yields and purified to near homogeneity. Electron microscopy and competitive ELISA analyses showed that it formed VLPs in which the EDIII moiety was accessible to different EDIII-specific antibodies. These VLPs were immunogenic in mice, stimulating the production of antibodies that could specifically recognize DENV-2 and neutralize its infectivity. However, virus-neutralizing antibody titers were modest. CONCLUSIONS Our data show: (i) insertion of EDIII into the c/e1 loop of HBcAg does not compromise particle assembly; and (ii) the chimeric VLPs elicit a specific humoral response against DENV-2. The strategy of displaying dengue virus EDIII using a VLP platform will need further optimization before it may be developed into a viable alternative option.
Collapse
Affiliation(s)
- Upasana Arora
- Recombinant Gene Products Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
25
|
Tan M, Jiang X. Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond) 2012; 7:889-97. [PMID: 22734641 DOI: 10.2217/nnm.12.62] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Noroviruses (NoVs) are important pathogens causing epidemic acute gastroenteritis that affects millions of people worldwide. The protruding (P) domain of the NoV capsid protein, the surface antigen of NoV, forms a 24-mer subviral particle called the P particle that is an excellent candidate vaccine against NoVs. The P particles are easily produced in Escherichia coli, highly stable and highly immunogenic. Each P domain has three surface loops that can be used for foreign antigen presentation, making the P particles a useful platform for vaccine development against other infectious diseases. This article summarizes the discovery, structure, development and applications of the P particles as a vaccine against NoVs, as well as a vaccine platform against rotavirus, influenza virus and possibly other pathogens in the future.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
26
|
Arora U, Tyagi P, Swaminathan S, Khanna N. Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J Nanobiotechnology 2012; 10:30. [PMID: 22794664 PMCID: PMC3411447 DOI: 10.1186/1477-3155-10-30] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/13/2012] [Indexed: 01/06/2023] Open
Abstract
Background Dengue is a global public health problem for which no drug or vaccine is available. Currently, there is increasing interest in developing non-replicating dengue vaccines based on a discrete antigenic domain of the major structural protein of dengue viruses (DENVs), known as envelope domain III (EDIII). The use of bio-nanoparticles consisting of recombinant viral structural polypeptides, better known as virus-like particles (VLPs), has emerged as a potential platform technology for vaccine development. This work explores the feasibility of developing nanoparticles based on E. coli-expressed recombinant Hepatitis B virus core antigen (HBcAg) designed to display EDIII moiety of DENV on the surface. Findings We designed a synthetic gene construct encoding HBcAg containing an EDIII insert in its c/e1 loop. The fusion antigen HBcAg-EDIII-2 was expressed in E. coli, purified to near homogeneity using Ni+2 affinity chromatography and demonstrated to assemble into discrete 35–40 nm VLPs by electron microscopy. Competitive ELISA analyses showed that the EDIII-2 moieties of the VLPs are accessible to anti-EDIII-2-specific monoclonal and polyclonal antibodies, suggesting that they are surface-displayed. The VLPs were highly immunogenic eliciting high titer anti-EDIII-2 antibodies that were able to recognize, bind and neutralize infectious DENV based on ELISA, immunofluorescence and virus-neutralization assays. Conclusion This work demonstrates that HBcAg-derived nanoparticles can serve as a useful platform for the display of DENV EDIII. The EDIII-displaying nanoparticles may have potential applications in diagnostics/vaccines for dengue.
Collapse
Affiliation(s)
- Upasana Arora
- Recombinant Gene Products Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
27
|
Roseman AM, Borschukova O, Berriman JA, Wynne SA, Pumpens P, Crowther RA. Structures of hepatitis B virus cores presenting a model epitope and their complexes with antibodies. J Mol Biol 2012; 423:63-78. [PMID: 22750730 PMCID: PMC3465560 DOI: 10.1016/j.jmb.2012.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/16/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The core shell of hepatitis B virus is a potent immune stimulator, giving a strong neutralizing immune response to foreign epitopes inserted at the immunodominant region, located at the tips of spikes on the exterior of the shell. Here, we analyze structures of core shells with a model epitope inserted at two alternative positions in the immunodominant region. Recombinantly expressed core protein assembles into T = 3 and T = 4 icosahedral shells, and atomic coordinates are available for the T = 4 shell. Since the modified protein assembles predominantly into T = 3 shells, a quasi-atomic model of the native T = 3 shell was made. The spikes in this T = 3 structure resemble those in T = 4 shells crystallized from expressed protein. However, the spikes in the modified shells exhibit an altered conformation, similar to the DNA containing shells in virions. Both constructs allow full access of antibodies to the foreign epitope, DPAFR from the preS1 region of hepatitis B virus surface antigen. However, one induces a 10-fold weaker immune response when injected into mice. In this construct, the epitope is less constrained by the flanking linker regions and is positioned so that the symmetry of the shell causes pairs of epitopes to come close enough to interfere with one another. In the other construct, the epitope mimics the native epitope conformation and position. The interaction of native core shells with an antibody specific to the immunodominant epitope is compared to the constructs with an antibody against the foreign epitope. Our findings have implications for the design of vaccines based on virus-like particles.
Collapse
Affiliation(s)
- A M Roseman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Wang YS, Ouyang W, Liu XJ, He KW, Yu SQ, Zhang HB, Fan HJ, Lu CP. Virus-like particles of hepatitis B virus core protein containing five mimotopes of infectious bursal disease virus (IBDV) protect chickens against IBDV. Vaccine 2012; 30:2125-30. [PMID: 22285269 DOI: 10.1016/j.vaccine.2012.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 02/04/2023]
Abstract
Current infectious bursal disease virus (IBDV) vaccines suffer from maternal antibody interference and mimotope vaccines might be an alternative. Previously we demonstrated an IBDV VP2 five-mimotope polypeptide, 5EPIS, elicited protective immunity in chickens. In the current study, the 5epis gene was inserted into a plasmid carrying human hepatitis B virus core protein (HBc) gene at its major immunodominant region site. The recombinant gene was efficiently expressed in Escherichia coli to produce chimeric protein HBc-5EPIS which self-assembles to virus-like particles (VLP). Two-week old specific-pathogen-free chickens were immunized intramuscularly with HBc-5EPIS VLP or 5EPIS polypeptide without adjuvant (50 μg/injection) on day 0, 7, 14 and 21. Anti-5EPIS antibody was first detected on day 7 and day 21 in HBc-5EPIS and 5EPIS groups, respectively; on day 28, anti-5EPIS titers reached 12,800 or 1600 by ELISA, and 3200 or 800 by virus neutralization assay in HBc-5EPIS and 5EPIS groups, respectively. No anti-5EPIS antibody was detected in the buffer control group throughout the experiment. Challenge on day 28 with a virulent IBDV strain (GX8/99) resulted in 100%, 40.0% and 26.7% survival for chickens immunized with HBc-5EPIS, 5EPIS and buffer, respectively. These data suggest epitope presentation on chimeric VLP is a promising approach for improving mimotope vaccines for IBDV.
Collapse
Affiliation(s)
- Yong-shan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
SplitCore: an exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Sci Rep 2011; 1:5. [PMID: 22355524 PMCID: PMC3216493 DOI: 10.1038/srep00005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 01/15/2023] Open
Abstract
Nanoparticles displaying native proteins are attractive for many applications, including vaccinology. Virus-based nanoparticles are easily tailored by genetic means, commonly by inserting heterologous sequences into surface-exposed loops. The strategy works well with short peptides but is incompatible with the structures of most native proteins, except those with closely juxtaposed termini. Here we overcome this constraint by splitting the capsid protein of hepatitis B virus, one of the most advanced and most immunogenic display platforms, inside the insertion loop (SplitCore). The split parts, coreN and coreC, efficiently form capsid-like particles (CLPs) in E. coli and so do numerous fusions to coreN and/or coreC of differently structured proteins, including human disease related antigens of >300 amino acids in length. These CLPs induced high-titer antibodies, including neutralizing ones, in mice. The concept was easily expanded to triple-layer CLPs carrying reporter plus targeting domains, and should be applicable to protein-based nanoparticle design in general.
Collapse
|
30
|
Tan M, Xia M, Huang P, Wang L, Zhong W, McNeal M, Wei C, Jiang X. Norovirus P Particle as a Platform for Antigen Presentation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.provac.2011.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Norovirus P particle, a novel platform for vaccine development and antibody production. J Virol 2010; 85:753-64. [PMID: 21068235 DOI: 10.1128/jvi.01835-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The norovirus P particle is an octahedral nanoparticle formed by 24 copies of the protrusion (P) domain of the norovirus capsid protein. This P particle is easily produced in Escherichia coli, extremely stable, and highly immunogenic. There are three surface loops per P domain, making a total of 72 loops per particle, and these are potential sites for foreign antigen presentation for immune enhancement. To prove this concept, a small peptide (His tag, 7 amino acids [aa]) and a large antigen (rotavirus VP8, 159 aa) were inserted into one of the loops. Neither insertion affects P particle formation, while both antigens were presented well on the P particle surface. The immune-enhancement effect of the P particle was demonstrated by significantly increased antibody titers induced by the P particle-presented antigens compared to the titers induced by free antigens. In addition, the measured neutralization antibody titers and levels of protection against rotavirus shedding in mice immunized with the VP8 chimeric P particles were significantly higher than those of mice immunized with the free VP8 antigen. Sera from P particle-VP8 chimera-vaccinated animals also blocked norovirus virus-like particle (VLP) binding to the histo-blood group antigen (HBGA) receptors. From these data, the P particle appears to be an excellent vaccine platform for antigen presentation. The readily available three surface loops and the great capacity for foreign antigen insertion make this platform attractive for wide application in vaccine development and antibody production. The P particle-VP8 chimeras may serve as a dual vaccine against both rotavirus and norovirus.
Collapse
|
32
|
Roblek M, Schüchner S, Huber V, Ollram K, Vlcek-Vesely S, Foisner R, Wehnert M, Ogris E. Monoclonal antibodies specific for disease-associated point-mutants: lamin A/C R453W and R482W. PLoS One 2010; 5:e10604. [PMID: 20498701 PMCID: PMC2869350 DOI: 10.1371/journal.pone.0010604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/11/2010] [Indexed: 12/27/2022] Open
Abstract
Background Disease-linked missense mutations can alter a protein's function with fatal consequences for the affected individual. How a single amino acid substitution in a protein affects its properties, is difficult to study in the context of the cellular proteome, because mutant proteins can often not be traced in cells due to the lack of mutation-specific detection tools. Antibodies, however, with their exquisite epitope specificity permit the detection of single amino acid substitutions but are not available for the vast majority of disease-causing mutant proteins. One of the most frequently missense-mutated human genes is the LMNA gene coding for A-type lamins. Mutations in LMNA cause phenotypically heterogenous, mostly autosomal-dominant inherited diseases, termed laminopathies. The molecular mechanisms underlying the phenotypic heterogeneity of laminopathies, however, are not well understood. Hence, the goal of this study was the development of monoclonal antibodies specific for disease-linked point-mutant A-type lamins. Methodology/Principal Findings Using two different approaches of antigen presentation, namely KLH-coupled peptides and the display of a complete protein domain fused to the Hepatitis B virus capsid protein, we developed monoclonal antibodies against two disease-associated lamin A/C mutants. Both antibodies display exquisite specificity for the respective mutant proteins. We show that with the help of these novel antibodies it is now possible for the first time to study specifically the properties of the mutant proteins in primary patient cells in the background of wild-type protein. Conclusions We report here the development of two point-mutant specific antibodies against A-type lamins. While synthetic peptides may be the prime choice of antigen, our results show that a given target sequence may have to be presented in alternative ways to ensure the induction of a mutant-specific immune response. Point-mutant specific antibodies will represent valuable tools for basic and clinical research on a number of hereditary as well as acquired diseases caused by dominant missense mutations.
Collapse
Affiliation(s)
- Marko Roblek
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Whitacre DC, Lee BO, Milich DR. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev Vaccines 2010; 8:1565-73. [PMID: 19863249 DOI: 10.1586/erv.09.121] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The first virus-like particle to be tested for use as a vaccine carrier was based on the hepatitis B virus nucleocapsid protein. This viral subunit, while not infectious on its own, is a 36-nm particle that is highly immunogenic during a natural infection. The self-assembly and high degree of immunogenicity is maintained when expressed as a recombinant protein and, moreover, can confer a high degree of immunogenicity on foreign antigens linked to the particle, either chemically or genetically. This review describes the current state of the hepadnaviral core protein as a vaccine carrier.
Collapse
Affiliation(s)
- David C Whitacre
- Vaccine Research Institute of San Diego, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
34
|
Wang XJ, Gu K, Xiong QY, Shen L, Cao RY, Li MH, Li TM, Wu J, Liu JJ. A novel virus-like particle based on hepatitis B core antigen and substrate-binding domain of bacterial molecular chaperone DnaK. Vaccine 2009; 27:7377-84. [PMID: 19778518 DOI: 10.1016/j.vaccine.2009.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/31/2009] [Accepted: 09/06/2009] [Indexed: 11/16/2022]
Abstract
Hepatitis B virus core (HBc) protein has been proved to be an attractive carrier for foreign epitopes, and can display green fluorescent protein (GFP) on its surface. The structure of substrate-binding domain of DnaK [DnaK (394-504 aa), DnaK SBD] is similar to GFP, we therefore reasoned that DnaK SBD might also be tolerated. Electron microscopic observations suggested that the chimeric proteins containing the truncated HBc (HBcDelta) and DnaK SBD could self-assemble into virus-like particle (VLP). Then the accessibility of DnaK SBD and the adjuvanticity of VLP HBcDelta-SBD were demonstrated by two recombinant peptide vaccines against gonadotropin-releasing hormone (GnRH), GhM and GhMNR. The latter carries in addition the peptide motif NRLLLTG which is known to bind to DnaK and DnaK SBD. The combination of VLP HBcDelta-SBD and GhMNR elicited stronger humoral responses and caused further testicular atrophy than the combinations of VLP HBcDelta and GhMNR or VLP HBcDelta-SBD and GhM in Balb/c mice. These findings indicate VLP HBcDelta-SBD might serve as an excellent carrier for GhMNR and some other peptide vaccines.
Collapse
Affiliation(s)
- Xue Jun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Walker A, Skamel C, Vorreiter J, Nassal M. Internal core protein cleavage leaves the hepatitis B virus capsid intact and enhances its capacity for surface display of heterologous whole chain proteins. J Biol Chem 2008; 283:33508-15. [PMID: 18826949 DOI: 10.1074/jbc.m805211200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Virus capsids find increasing use as nanoparticulate platforms for the surface display of heterologous ligands, including as multivalent vaccine carriers. Presentation on the icosahedral hepatitis B virus capsid (HBcAg) is known to strongly enhance immunogenicity of foreign sequences, most efficiently if they are inserted into the dominant c/e1 B cell epitope, a surface-exposed loop in the center of the constituent core protein primary sequence. Even some complete proteins were successfully inserted but others, e.g. the outer surface protein A (OspA) of the Lyme disease agent Borrelia burgdorferi, impaired formation of capsid-like particles (CLPs). This difference can be rationalized by the requirement for the termini of the insert to fit into the predetermined geometry of the two acceptor sites in the carrier. We reasoned that cleavage of one of the two bonds connecting insert and carrier should relieve these constraints, provided the cleaved protein fragments remain competent to support the particle structure. Indeed, HBcAg CLPs containing a recognition site for tobacco etch virus (TEV) protease in the c/e1 loop remained intact after cleavage, as did CLPs carrying a 65-residue peptide insertion. Most importantly, in situ cleavage of a core-OspA fusion protein by coexpressed TEV protease strongly enhanced CLP formation compared with the uncleaved protein. These data attest to the high structural stability of the HBcAg CLP and they significantly widen its applicability as a carrier for heterologous proteins. This approach should be adaptable to any protein-based particle with surface-exposed yet sequence-internal loops.
Collapse
Affiliation(s)
- Andreas Walker
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|
36
|
The Important and Diverse Roles of Antibodies in the Host Response to Borrelia Infections. Curr Top Microbiol Immunol 2008; 319:63-103. [DOI: 10.1007/978-3-540-73900-5_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Steere AC. Lyme disease vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Nassal M, Skamel C, Vogel M, Kratz PA, Stehle T, Wallich R, Simon MM. Development of hepatitis B virus capsids into a whole-chain protein antigen display platform: new particulate Lyme disease vaccines. Int J Med Microbiol 2007; 298:135-42. [PMID: 17888729 DOI: 10.1016/j.ijmm.2007.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The immunogenicity of peptides and small protein fragments can be considerably enhanced by their presentation on particulate carriers such as capsid-like particles (CLPs) from hepatitis B virus (HBV). HBV CLPs are icosahedral nanoparticles formed by 90 or 120 core protein dimers. Insertions into the immunodominant c/e1 B cell epitope, a surface-exposed loop on the HBV capsid protein, are especially immunogenic. Here we investigated whether the HBV core protein can be exploited as a vaccine carrier for whole-chain protein antigens, using two clinically relevant proteins derived from a bacterial human pathogen, the Lyme disease agent Borrelia burgdorferi. For this purpose we analyzed CLP formation by core fusions with the entire 255-amino-acid ectodomain of outer surface lipoprotein A (OspA), and with two distinct, 189 amino acid long variants of the dimeric OspC (OspC(a), OspC(b)) of B. burgdorferi. OspA appropriately inserted into the HBV core protein yielded a multimerization-competent fusion protein, termed coreOspA. Although only partially assembling into regular CLPs, coreOspA induced antibodies to OspA, including the Ig isotype profile and specificity for the protective epitope "LA-2", with an efficiency similar to that of recombinant lipidated OspA, the first generation vaccine against Lyme disease. Moreover, coreOspA actively and passively protected mice against subsequent challenge with B. burgdorferi. Fusions with the two OspC variants were found to efficiently form regular CLPs, most probably by OspC dimerization across different core protein dimers. In mice, both coreOspC preparations induced high-titered antibody responses to the homologous but also to the heterologous OspC variant, which conferred protection against challenge with B. burgdorferi. The data demonstrate the principal applicability of HBV CLPs to act as potent immunomodulator even for structurally complex full-length polypeptide chains, and thus open new avenues for novel vaccine designs.
Collapse
Affiliation(s)
- Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Nassal M, Leifer I, Wingert I, Dallmeier K, Prinz S, Vorreiter J. A structural model for duck hepatitis B virus core protein derived by extensive mutagenesis. J Virol 2007; 81:13218-29. [PMID: 17881438 PMCID: PMC2169103 DOI: 10.1128/jvi.00846-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Duck hepatitis B virus (DHBV) shares many fundamental features with human HBV. However, the DHBV core protein (DHBc), forming the nucleocapsid shell, is much larger than that of HBV (HBc) and, in contrast to HBc, there is little direct information on its structure. Here we applied an efficient expression system for recombinant DHBc particles to the biochemical analysis of a large panel of mutant DHBc proteins. By combining these data with primary sequence alignments, secondary structure prediction, and three-dimensional modeling, we propose a model for the fold of DHBc. Its major features are a HBc-like two-domain structure with an assembly domain comprising the first about 185 amino acids and a C-terminal nucleic acid binding domain (CTD), connected by a morphogenic linker region that is longer than in HBc and extends into the CTD. The assembly domain shares with HBc a framework of four major alpha-helices but is decorated at its tip with an extra element that contains at least one helix and that is made up only in part by the previously predicted insertion sequence. All subelements are interconnected, such that structural changes at one site are transmitted to others, resulting in an unexpected variability of particle morphologies. Key features of the model are independently supported by the accompanying epitope mapping study. These data should be valuable for functional studies on the impact of core protein structure on virus replication, and some of the mutant proteins may be particularly suitable for higher-resolution structural investigations.
Collapse
Affiliation(s)
- Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The hepatitis B virus (HBV) particle consists of an envelope containing three related surface proteins and probably lipid and an icosahedral nucleocapsid of approximately 30 nm diameter enclosing the viral DNA genome and DNA polymerase. The capsid is formed in the cytosol of the infected cell during packaging of an RNA pregenome replication complex by multiple copies of a 21-kDa C protein. The capsid gains the ability to bud during synthesis of the viral DNA genome by reverse transcription of the pregenome in the lumen of the particle. The three envelope proteins S, M, and L shape a complex transmembrane fold at the endoplasmic reticulum, and form disulfide-linked homo- and heterodimers. The transmembrane topology of a fraction of the large envelope protein L changes post-translationally, therefore, the N terminal domain of L (preS) finally appears on both sides of the membrane. During budding at an intracellular membrane, a short linear domain in the cytosolic preS region interacts with binding sites on the capsid surface. The virions are subsequently secreted into the blood. In addition, the surface proteins can bud in the absence of capsids and form subviral lipoprotein particles of 20 nm diameter which are also secreted.
Collapse
Affiliation(s)
- Volker Bruss
- Department of Virology, University of Göttingen, Kreuzbergring 57, Göttingen 37075, Germany.
| |
Collapse
|
41
|
Abstract
Vaccination is one of the most efficient ways to eradicate some infectious diseases in humans and animals. The material traditionally used as vaccines is attenuated or inactivated pathogens. This approach is sometimes limited by the fact that the material for vaccination is not efficient, not available, or generating deleterious side effects. A possible theoretical alternative is the use of recombinant proteins from the pathogens. This implies that the proteins having the capacity to vaccinate have been identified and that they can be produced in sufficient quantity at a low cost. Genetically modified organisms harboring pathogen genes can fulfil these conditions. Microorganisms, animal cells as well as transgenic plants and animals can be the source of recombinant vaccines. Each of these systems that are all getting improved has advantages and limits. Adjuvants must generally be added to the recombinant proteins to enhance their vaccinating capacity. This implies that the proteins used to vaccinate have been purified to avoid any immunization against the contaminants. The efficiency of a recombinant vaccine is poorly predictable. Multiple proteins and various modes of administration must therefore be empirically evaluated on a case-by-case basis. The structure of the recombinant proteins, the composition of the adjuvants and the mode of administration of the vaccines have a strong and not fully predictable impact on the immune response as well as the protection level against pathogens. Recombinant proteins can theoretically also be used as carriers for epitopes from other pathogens. The increasing knowledge of pathogen genomes and the availability of efficient systems to prepare large amounts of recombinant proteins greatly facilitate the potential use of recombinant proteins as vaccines. The present review is a critical analysis of the state of the art in this field.
Collapse
Affiliation(s)
- Eric Soler
- Cell Biology Department, Erasmus MC, dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | |
Collapse
|
42
|
Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54. [PMID: 17123658 PMCID: PMC1847402 DOI: 10.1016/j.addr.2006.09.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/17/2023]
Abstract
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mikhail G. Kolonin
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jeffrey J. Molldrem
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Renata Pasqualini
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wadih Arap
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
43
|
Smith ML, Lindbo JA, Dillard-Telm S, Brosio PM, Lasnik AB, McCormick AA, Nguyen LV, Palmer KE. Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology 2006; 348:475-88. [PMID: 16466765 DOI: 10.1016/j.virol.2005.12.039] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/18/2005] [Accepted: 12/19/2005] [Indexed: 12/11/2022]
Abstract
Display of peptides or proteins in an ordered, repetitive array, such as on the surface of a virus-like particle, is known to induce an enhanced immune response relative to vaccination with the "free" protein antigen. The coat protein of Tobacco mosaic virus (TMV) can accommodate short peptide insertions into the primary sequence, but the display of larger protein moieties as genetic fusions to the capsid protein has not been possible. We employed a randomized library approach to introduce a reactive lysine at the externally located amino terminus of the coat protein, which facilitated biotinylation of the capsid. To characterize display of heterologous proteins on the virion surface, we bound a model antigen (green fluorescent protein (GFP)-streptavidin (SA), expressed and purified from plants) to the biotinylated TMV particles, creating a GFP-SA decorated virus particle. A GFP-SA tetramer loading of 26% was obtained, corresponding to approximately 2200 GFP moieties displayed per intact virion. We evaluated the immunogenicity of GFP decorated virions in both mice and guinea pigs and found augmented humoral IgG titers in both species, relative to unbound GFP-SA tetramer. Next, we fused an N-terminal fragment of the Canine oral papillomavirus L2 protein to streptavidin. With TMV display, the L2 protein fragment was significantly more immunogenic than uncoupled antigen when tested in mice. By demonstrating the presentation of whole proteins, this study expands the utility of TMV as a vaccine scaffold beyond that which is possible by genetic manipulation.
Collapse
Affiliation(s)
- Mark L Smith
- Large Scale Biology Corporation, Vacaville, CA 95688, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Skamel C, Ploss M, Böttcher B, Stehle T, Wallich R, Simon MM, Nassal M. Hepatitis B virus capsid-like particles can display the complete, dimeric outer surface protein C and stimulate production of protective antibody responses against Borrelia burgdorferi infection. J Biol Chem 2006; 281:17474-17481. [PMID: 16621801 DOI: 10.1074/jbc.m513571200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus capsid-like particles (CLPs), icosahedral assemblies formed by 90 or 120 core protein dimers, hold promise as immune-enhancing vaccine carriers for heterologous antigens. Insertions into the immunodominant c/e1 B cell epitope, a surface-exposed loop, are especially immunogenic. However, display of whole proteins, desirable to induce multispecific and possibly neutralizing antibody responses, can be restrained by an unsuitable structure of the foreign protein and by its propensity to undergo homomeric interactions. Here we analyzed CLP formation by core fusions with two distinct variants of the dimeric outer surface lipoprotein C (OspC) of the Lyme disease agent Borrelia burgdorferi. Although the topology of the termini in the OspC dimer does not match that of the insertion sites in the carrier dimer, both fusions, coreOspCa and coreOspCb, efficiently formed stable CLPs. Electron cryomicroscopy clearly revealed the surface disposition of the OspC domains, possibly with OspC dimerization occurring across different core protein dimers. In mice, both CLP preparations induced high-titered antibody responses against the homologous OspC variant, but with substantial cross-reactivity against the other variant. Importantly, both conferred protection to mice challenged with B. burgdorferi. These data show the principal applicability of hepatitis B virus CLPs for the display of dimeric proteins, demonstrate the presence in OspC of hitherto uncharacterized epitopes, and suggest that OspC, despite its genetic variability, may be a valid vaccine candidate.
Collapse
Affiliation(s)
- Claudia Skamel
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, D-79106 Freiburg, Germany
| | - Martin Ploss
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Bettina Böttcher
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Thomas Stehle
- Max Planck Institute of Immunobiology, D-79108 Freiburg, Germany
| | - Reinhard Wallich
- University Hospital Heidelberg, Institute of Immunology, D-61920 Heidelberg, Germany
| | - Markus M Simon
- Max Planck Institute of Immunobiology, D-79108 Freiburg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, D-79106 Freiburg, Germany.
| |
Collapse
|
45
|
Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM, Warzecha H. Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat Biotechnol 2006; 24:76-7. [PMID: 16327810 DOI: 10.1038/nbt1170] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/20/2005] [Indexed: 12/19/2022]
Abstract
Little is known about the potential of plastids to accomplish post-translational modifications of foreign proteins. In the present study we generated transplastomic tobacco plants that accumulate the outer surface lipoprotein A (OspA)-the basic constituent of the first generation monovalent human vaccine against Lyme disease. The recombinant OspA exhibits a lipid modification typical for bacteria and induced protective antibodies in mice, demonstrating that functionally active bacterial lipoproteins can be processed in plants.
Collapse
Affiliation(s)
- Karin Glenz
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians Universität Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Böttcher B, Vogel M, Ploss M, Nassal M. High plasticity of the hepatitis B virus capsid revealed by conformational stress. J Mol Biol 2005; 356:812-22. [PMID: 16378623 DOI: 10.1016/j.jmb.2005.11.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) replicates through reverse transcription inside its icosahedral nucleocapsid. The internal genome status is signaled to the capsid surface, predicting regulated conformational changes in the capsid structure. To probe their nature and extent, we imposed local conformational stress on the outer surface of HBV capsid-like particles, and monitored its consequences by electron cryomicroscopy and image reconstruction. The capsid structure had an enormous flexibility and robustness as a whole, as well as within the subunits, whose spikes were able to rotate by as much as 40 degrees against the distal interdimer contact sites. The likely hinge for the swiveling movement was the conserved Gly111 residue at the inner surface of the capsid. The stress imposed from the outside also affected the internal capsid organization, implying a specific route for the flow of conformational information between capsid interior and exterior as required for signaling of the genome status.
Collapse
Affiliation(s)
- Bettina Böttcher
- European Molecular Biology Laboratory, Meyerhofstr. 1, D-69117 Heidelberg, and University Hospital Freiburg Internal Medicine II/Molecular Biology, Germany.
| | | | | | | |
Collapse
|
47
|
Vogel M, Diez M, Eisfeld J, Nassal M. In vitro assembly of mosaic hepatitis B virus capsid-like particles (CLPs): Rescue into CLPs of assembly-deficient core protein fusions and FRET-suited CLPs. FEBS Lett 2005; 579:5211-6. [PMID: 16162343 DOI: 10.1016/j.febslet.2005.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Hepatitis B virus core protein self-assembles into icosahedral, highly immunogenic capsid-like particles (CLPs) that can serve as molecular platforms for heterologous proteins. Insertion into the centrally located c/e1 epitope leads to surface display, fusion to the C terminus to internal disposition of the foreign domains. However, symmetry-defined space restrictions on the surface and particularly inside the CLPs limit the size of usable heterologous fusion partners. Further, CLPs carrying differing foreign domains are desirable for applications such as multivalent vaccines, and for structure probing by distance sensitive interactions like fluorescence resonance energy transfer (FRET). Here, we report an in vitro co-assembly system for such mosaic-CLPs allowing successful CLP formation with a per se assembly-deficient fusion protein, and of CLPs from two different fluoroprotein-carrying fusions that exert FRET in an assembly-status dependent way.
Collapse
Affiliation(s)
- Maren Vogel
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|