1
|
Kamath HS, Shukla R, Shah U, Patel S, Das S, Chordia A, Satish P, Ghosh D. Role of Gut Microbiota in Predisposition to Colon Cancer: A Narrative Review. Indian J Microbiol 2024; 64:1-13. [PMID: 39282181 PMCID: PMC11399513 DOI: 10.1007/s12088-024-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
Globally, colorectal cancer (CRC) is a leading cause of cancer-related mortality. Dietary habits, inflammation, hereditary characteristics, and gut microbiota are some of its causes. The gut microbiota, a diverse population of bacteria living in the digestive system, has an impact on a variety of parameters, including inflammation, DNA damage, and immune response. The gut microbiome has a significant role in colon cancer susceptibility. Many studies have highlighted dysbiosis, an imbalance in the gut microbiota's makeup, as a major factor in colon cancer susceptibility. Dysbiosis has the potential to produce toxic metabolites and pro-inflammatory substances, which can hasten the growth of tumours. The ability of the gut microbiota to affect the host's immune system can also influence whether cancer develops or not. By better comprehending these complex interactions between colon cancer predisposition and gut flora, new preventive and therapeutic techniques might be developed. Targeting the gut microbiome with dietary modifications, probiotics, or faecal microbiota transplantation may offer cutting-edge approaches to reducing the risk of colon cancer and improving patient outcomes. The complex connection between the makeup of the gut microbiota and the emergence of colorectal cancer is explored in this narrative review.
Collapse
Affiliation(s)
- Hattiangadi Shruthi Kamath
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Rushikesh Shukla
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Urmil Shah
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Siddhi Patel
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Soumyajit Das
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Ayush Chordia
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Poorvikha Satish
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Dibyankita Ghosh
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| |
Collapse
|
2
|
Zhang L, Yu L. The role of the microscopic world: Exploring the role and potential of intratumoral microbiota in cancer immunotherapy. Medicine (Baltimore) 2024; 103:e38078. [PMID: 38758914 PMCID: PMC11098217 DOI: 10.1097/md.0000000000038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
Microorganisms, including bacteria, viruses, and fungi, coexist in the human body, forming a symbiotic microbiota that plays a vital role in human health and disease. Intratumoral microbial components have been discovered in various tumor tissues and are closely linked to the occurrence, progression, and treatment results of cancer. The intratumoral microbiota can enhance antitumor immunity through mechanisms such as activating the stimulator of interferon genes signaling pathway, stimulating T and NK cells, promoting the formation of TLS, and facilitating antigen presentation. Conversely, the intratumoral microbiota might suppress antitumor immune responses by increasing reactive oxygen species levels, creating an anti-inflammatory environment, inducing T cell inactivation, and enhancing immune suppression, thereby promoting cancer progression. The impact of intratumoral microbiota on antitumor immunity varies based on microbial composition, interactions with cancer cells, and the cancer's current state. A deep understanding of the complex interactions between intratumoral microbiota and antitumor immunity holds the potential to bring new therapeutic strategies and targets to cancer immunotherapy.
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| | - Liang Yu
- Department of Cardiac Surgery, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| |
Collapse
|
3
|
Lee J, Menon N, Lim CT. Dissecting Gut-Microbial Community Interactions using a Gut Microbiome-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302113. [PMID: 38414327 PMCID: PMC11132043 DOI: 10.1002/advs.202302113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Indexed: 02/29/2024]
Abstract
While the human gut microbiota has a significant impact on gut health and disease, understanding of the roles of gut microbes, interactions, and collective impact of gut microbes on various aspects of human gut health is limited by the lack of suitable in vitro model system that can accurately replicate gut-like environment and enable the close visualization on causal and mechanistic relationships between microbial constitutents and the gut. , In this study, we present a scalable Gut Microbiome-on-a-Chip (GMoC) with great imaging capability and scalability, providing a physiologically relevant dynamic gut-microbes interfaces. This chip features a reproducible 3D stratified gut epithelium derived from Caco-2 cells (µGut), mimicking key intestinal architecture, functions, and cellular complexity, providing a physiolocially relevant gut environment for microbes residing in the gut. Incorporating tumorigenic bacteria, enterotoxigenic Bacteroides fragilis (ETBF), into the GMoC enable the observation of pathogenic behaviors of ETBF, leading to µGut disruption and pro-tumorigenic signaling activations. Pre-treating the µGut with a beneficial gut microbe Lactobacillus spp., effectively prevent ETBF-mediated gut pathogenesis, preserving the healthy state of the µGut through competition-mediated colonization resistance. The GMoC holds potential as a valuable tool for exploring unknown roles of gut microbes in microbe-induced pathogenesis and microbe-based therapeutic development.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
| | - Nishanth Menon
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| |
Collapse
|
4
|
Abstract
Colorectal cancer (CRC) is a substantial source of global morbidity and mortality in dire need of improved prevention and treatment strategies. As our understanding of CRC grows, it is becoming increasingly evident that the gut microbiota, consisting of trillions of microorganisms in direct interface with the colon, plays a substantial role in CRC development and progression. Understanding the roles that individual microorganisms and complex microbial communities play in CRC pathogenesis, along with their attendant mechanisms, will help yield novel preventive and therapeutic interventions for CRC. In this Review, we discuss recent evidence concerning global perturbations of the gut microbiota in CRC, associations of specific microorganisms with CRC, the underlying mechanisms by which microorganisms potentially drive CRC development and the roles of complex microbial communities in CRC pathogenesis. While our understanding of the relationship between the microbiota and CRC has improved in recent years, our findings highlight substantial gaps in current research that need to be filled before this knowledge can be used to the benefit of patients.
Collapse
Affiliation(s)
- Maxwell T White
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Rayan M, Sayed TS, Hussein OJ, Therachiyil L, Maayah ZH, Maccalli C, Uddin S, Prehn JHM, Korashy HM. Unlocking the secrets: exploring the influence of the aryl hydrocarbon receptor and microbiome on cancer development. Cell Mol Biol Lett 2024; 29:33. [PMID: 38448800 PMCID: PMC10918910 DOI: 10.1186/s11658-024-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Xuan M, Gu X, Liu Y, Yang L, Li Y, Huang D, Li J, Xue C. Intratumoral microorganisms in tumors of the digestive system. Cell Commun Signal 2024; 22:69. [PMID: 38273292 PMCID: PMC10811838 DOI: 10.1186/s12964-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingru Liu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Li Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yi Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Xu N, Zhang W, Huo J, Tao R, Jin T, Zhang Y, Wang Y, Zhu L, Li J, Yao Q, Ge L. Characterization of changes in the intestinal microbiome following combination therapy with zinc preparation and conventional treatment for children with rotavirus enteritis. Front Cell Infect Microbiol 2023; 13:1153701. [PMID: 37842003 PMCID: PMC10570505 DOI: 10.3389/fcimb.2023.1153701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Background Rotavirus (RV) is one of the most common pathogens causing diarrhea in infants and young children worldwide. Routinely, antiviral therapy, intestinal mucosa protection, and fluid supplementation are used in clinic, however this is not efficacious in some severe cases. Zinc supplementation has previously been shown to improve resolution of symptoms from infectious diarrhea. Methods In this study differences in response rate, duration of hyperthermia, vomiting, and diarrhea, and the persistence time of cough and lung rales in groups were compared. 16SrDNA gene sequencing technology was used to analyze and compare changes in the intestinal microflora of children with RV enteritis who received the conventional treatment with or without the zinc preparation. In addition, the correlations between the differential bacterial species and the related inflammatory factors were determined. Results Conventional therapy combined with the zinc preparation significantly shortened the duration of hyperthermia, vomiting, and diarrhea compared with the conventional treatment alone. In addition, the time to symptom relief showed that the absorption time of cough and lung rales was significantly shorter in the combination treatment group than that in the conventional treatment group in the children with pneumonia. Further, compared with the conventional treatment, the combined treatment significantly increased the diversity and abundances of florae as compared with the conventional treatment. This combination therapy containing zinc preparation markedly increased the abundances of Faecalibacterium, Bacteroidales, Ruminoccoccoccus, and Lachnospiraceae at the genus level. The LEfSe analysis suggested that Clostridiumbolteae were most significantly altered after the combination therapy. In addition, a correlation analysis revealed significantly negative correlations between the inflammatory factors especially IL-6, TNF-a, CRP and some intestinal florae such as Bacteroides, Faecalibacterium, Blautia, Parabacteroides, Subdoligranulum, and Flavonifractor. Conclusion Compared with the conventional therapy alone, the combined therapy with the zinc preparation significantly improves symptoms caused by RV. The combination therapy containing the zinc preparation significantly increases the diversity and abundances of some beneficial groups of bacteria. Further, The presence of these groups was further negatively correlated with relevant inflammatory factors. More importantly, this combination therapy containing the zinc preparation provides a reference for the clinical management of children with RV enteritis.
Collapse
Affiliation(s)
- Ning Xu
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wen Zhang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingjing Huo
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Rui Tao
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Taicheng Jin
- Department of Government, Hamilton College, Clinton, UT, United States
| | - Yuanmou Zhang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yanjiao Wang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lei Zhu
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - JiaJia Li
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qi Yao
- Department of Pharmacy, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Li Ge
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther 2023; 8:35. [PMID: 36646684 PMCID: PMC9842669 DOI: 10.1038/s41392-022-01304-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
Microorganisms, including bacteria, viruses, fungi, and other eukaryotes, play critical roles in human health. An altered microbiome can be associated with complex diseases. Intratumoral microbial components are found in multiple tumor tissues and are closely correlated with cancer initiation and development and therapy efficacy. The intratumoral microbiota may contribute to promotion of the initiation and progression of cancers by DNA mutations, activating carcinogenic pathways, promoting chronic inflammation, complement system, and initiating metastasis. Moreover, the intratumoral microbiota may not only enhance antitumor immunity via mechanisms including STING signaling activation, T and NK cell activation, TLS production, and intratumoral microbiota-derived antigen presenting, but also decrease antitumor immune responses and promote cancer progression through pathways including upregulation of ROS, promoting an anti-inflammatory environment, T cell inactivation, and immunosuppression. The effect of intratumoral microbiota on antitumor immunity is dependent on microbiota composition, crosstalk between microbiota and the cancer, and status of cancers. The intratumoral microbiota may regulate cancer cell physiology and the immune response by different signaling pathways, including ROS, β-catenin, TLR, ERK, NF-κB, and STING, among others. These viewpoints may help identify the microbiota as diagnosis or prognosis evaluation of cancers, and as new therapeutic strategy and potential therapeutic targets for cancer therapy.
Collapse
|
9
|
Kashyap S, Pal S, Chandan G, Saini V, Chakrabarti S, Saini NK, Mittal A, Thakur VK, Saini AK, Saini RV. Understanding the cross-talk between human microbiota and gastrointestinal cancer for developing potential diagnostic and prognostic biomarkers. Semin Cancer Biol 2022; 86:643-651. [PMID: 33971261 DOI: 10.1016/j.semcancer.2021.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
The interaction between gut microbes and gastrointestinal (GI) tract carcinogenesis has always attracted researchers' attention to identify therapeutic targets or potential prognostic biomarkers. Various studies have suggested that the microbiota do show inflammation and immune dysregulation, which led to carcinogenesis in GI tract. In this review, we have focused on the role of microbes present in the gut, intestine, or faeces in GI tract cancers, including esophageal cancer, gastric cancer, and colorectal cancer. Herein, we have discussed the importance of the microbes and their metabolites, which could serve as diagnostic biomarkers for cancer detection, especially in the early stage, and prognostic markers. To maximize the effect of the treatment strategies, an accurate evaluation of the prognosis is imperative for clinicians. There is a vast difference in the microbiota profiles within a population and across the populations depending upon age, diet, lifestyle, genetic makeup, use of antibiotics, and environmental factors. Therefore, the diagnostic efficiency of the microbial markers needs to be further validated. A deeper understanding of the GI cancer and the host microbiota is needed to acquire pivotal information about disease status.
Collapse
Affiliation(s)
- Sheetal Kashyap
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Soumya Pal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Gourav Chandan
- Central Research Cell, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Vipin Saini
- Maharishi Markandeshwar University, Solan, 173229, Himachal Pradesh, India
| | - Sasanka Chakrabarti
- Central Research Cell, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Neeraj K Saini
- Department of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Mittal
- Central Research Cell, MM Institute of Medical Sciences & Research, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Haryana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
10
|
Scott N, Whittle E, Jeraldo P, Chia N. A systemic review of the role of enterotoxic Bacteroides fragilis in colorectal cancer. Neoplasia 2022; 29:100797. [PMID: 35461079 PMCID: PMC9046963 DOI: 10.1016/j.neo.2022.100797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) has received significant attention for a possible association with, or causal role in, colorectal cancer (CRC). The goal of this review was to assess the status of the published evidence supporting (i) the association between ETBF and CRC and (ii) the causal role of ETBF in CRC. PubMed and Scopus searches were performed in August 2021 to identify human, animal, and cell studies pertaining to the role of ETBF in CRC. Inclusion criteria included the use of cell lines, mice, exposure to BFT or ETBF, and detection of bft. Review studies were excluded, and studies were limited to the English language. Quality of study design and risk of bias analysis was performed on the cell, animal, and human studies using ToxRTools, SYRCLE, and NOS, respectively. Ninety-five eligible studies were identified, this included 22 human studies, 24 animal studies, 43 cell studies, and 6 studies that included both cells and mice studies. We found that a large majority of studies supported an association or causal role of ETBF in CRC, as well as high levels of study bias was detected in the in vitro and in vivo studies. The high-level heterogeneity in study design and reporting made it difficult to synthesize these findings into a unified conclusion, suggesting that the need for future studies that include improved mechanistic models, longitudinal in vitro and in vivo evidence, and appropriate control of confounding factors will be required to confirm whether ETBF has a direct role in CRC etiopathogenesis.
Collapse
Affiliation(s)
- Nancy Scott
- Bioinformatics and Computational Biology, University of Minnesota, 111 South Broadway, Rochester, MN 55904, USA
| | - Emma Whittle
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Patricio Jeraldo
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Bacteroides fragilis Toxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 by the E-Cadherin/β-Catenin/NF-κB Dependent Pathway. Biomedicines 2022; 10:biomedicines10040827. [PMID: 35453577 PMCID: PMC9032310 DOI: 10.3390/biomedicines10040827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) has emerged as a gut microbiome pathogen that can promote colitis associated cancer in humans. ETBF secretes the metalloprotease, B. fragilis toxin (BFT), which can induce ectodomain cleavage of E-cadherin and IL-8 secretion through the β-catenin, NF-κB, and MAPK pathways in intestinal epithelial cells. However, it is still unclear whether E-cadherin cleavage is required for BFT induced IL-8 secretion and the relative contribution of these signaling pathways to IL-8 secretion. Using siRNA knockdown and CRISPR knockout studies, we found that E-cadherin cleavage is required for BFT mediated IL-8 secretion. In addition, genetic ablation of β-catenin indicates that β-catenin is required for the BFT induced increase in transcriptional activity of NF-κB, p65 nuclear localization and early IL-8 secretion. These results suggest that BFT induced β-catenin signaling is upstream of NF-κB activation. However, despite β-catenin gene disruption, BFT still activated the MAPK pathway, suggesting that the BFT induced activation of the MAPK signaling pathway is independent from the E-cadherin/β-catenin/NF-κB pathway. These findings show that E-cadherin and β-catenin play a critical role in acute inflammation following ETBF infection through the inflammatory response to BFT in intestinal epithelial cells.
Collapse
|
12
|
Liu J, Feng X, Li B, Sun Y, Jin T, Feng M, Ni Y, Liu M. Lactobacillus rhamnosus GR-1 Alleviates Escherichia coli-Induced Inflammation via NF-κB and MAPKs Signaling in Bovine Endometrial Epithelial Cells. Front Cell Infect Microbiol 2022; 12:809674. [PMID: 35310848 PMCID: PMC8924357 DOI: 10.3389/fcimb.2022.809674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli counts as a major endometritis-causing pathogen among dairy cows, which lowered the economic benefits of dairy farming seriously. Probiotic consumption has been reported to impart beneficial effects on immunomodulation. However, the inflammatory regulation mechanism of probiotics on endometritis in dairy cows remains unexplored. The current work aimed to clarify the mechanism whereby Lactobacillus rhamnosus GR-1 (L. rhamnosus GR-1) resists bovine endometrial epithelial cells (BEECs) inflammatory injury induced by E. coli. The model of cellular inflammatory injury was established in the BEECs, which comes from the uterus of healthy dairy cows using E. coli. The outcome of L. rhamnosus GR-1 addition on inflammation was evaluated in BEECs with E. coli-induced endometritis. The underlying mechanisms of anti-inflammation by L. rhamnosus GR-1 were further explored in E. coli-stimulated BEECs. In accordance with the obtained results, the use L. rhamnosus GR-1 alone could not cause the change of inflammatory factors, while L. rhamnosus GR-1 could significantly alleviate the expression of E. coli-induced inflammatory factors. Based on further study, L. rhamnosus GR-1 significantly hindered the TLR4 and MyD88 expression stimulated by E. coli. Moreover, we observed that in BEECs, L. rhamnosus GR-1 could inhibit the E. coli-elicited expressions of pathway proteins that are associated with NF-κB and MAPKs. Briefly, L. rhamnosus GR-1 can effectively protect against E. coli-induced inflammatory response that may be closely related to the inhibition of TLR4 and MyD88 stimulating NF-κB and MAPKs.
Collapse
|
13
|
Jeon JI, Lee KH, Kim JM. Bacteroides fragilis Enterotoxin Upregulates Matrix Metalloproteinase-7 Expression through MAPK and AP-1 Activation in Intestinal Epithelial Cells, Leading to Syndecan-2 Release. Int J Mol Sci 2021; 22:ijms222111817. [PMID: 34769248 PMCID: PMC8583974 DOI: 10.3390/ijms222111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Bacteroides fragilis enterotoxin (BFT) produced by enterotoxigenic B. fragilis (ETBF) causes colonic inflammation. BFT initially contacts intestinal epithelial cells (IECs) and affects the intestinal barrier. Although molecular components of the gut epithelial barrier such as metalloproteinase-7 (MMP-7) and syndecan-2 are known to be associated with inflammation, little has been reported about MMP-7 expression and syndecan-2 shedding in response to ETBF infection. This study explores the role of BFT in MMP-7 induction and syndecan-2 release in IECs. Stimulating IECs with BFT led to the induction of MMP-7 and the activation of transcription factors such as NF-κB and AP-1. MMP-7 upregulation was not affected by NF-κB, but it was related to AP-1 activation. In BFT-exposed IECs, syndecan-2 release was observed in a time- and concentration-dependent manner. MMP-7 suppression was associated with a reduction in syndecan-2 release. In addition, suppression of ERK, one of the mitogen-activated protein kinases (MAPKs), inhibited AP-1 activity and MMP-7 expression. Furthermore, the suppression of AP-1 and ERK activity was related to the attenuation of syndecan-2 release. These results suggest that a signaling cascade comprising ERK and AP-1 activation in IECs is involved in MMP-7 upregulation and syndecan-2 release during exposure to BFT.
Collapse
Affiliation(s)
| | - Keun Hwa Lee
- Correspondence: (K.H.L.); (J.M.K.); Tel.: +82-2-2220-0642 (K.H.L.); +82-2-2220-0645 (J.M.K.); Fax: +82-2-2282-0645 (K.H.L.); +82-2-2282-0645 (J.M.K.)
| | - Jung Mogg Kim
- Correspondence: (K.H.L.); (J.M.K.); Tel.: +82-2-2220-0642 (K.H.L.); +82-2-2220-0645 (J.M.K.); Fax: +82-2-2282-0645 (K.H.L.); +82-2-2282-0645 (J.M.K.)
| |
Collapse
|
14
|
Abu-Ghazaleh N, Chua WJ, Gopalan V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol 2021; 36:75-88. [PMID: 32198788 DOI: 10.1111/jgh.15042] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
The human colon harbors a high number of microorganisms that were reported to play a crucial role in colorectal carcinogenesis. In the recent decade, molecular detection and metabolomic techniques have expanded our knowledge on the role of specific microbial species in promoting tumorigenesis. In this study, we reviewed the association between microbial dysbiosis and colorectal carcinoma (CRC). Various microbial species and their association with colorectal tumorigenesis and red/processed meat consumption have been reviewed. The literature demonstrated a significant abundance of Fusobacterium nucleatum, Streptococcus bovis/gallolyticus, Escherichia coli, and Bacteroides fragilis in patients with adenoma or adenocarcinoma compared to healthy individuals. The mechanisms in which each organism was postulated to promote colon carcinogenesis were collated and summarized in this review. These include the microorganisms' ability to adhere to colon cells; modulate the inhibition of tumor suppressor genes, the activations of oncogenes, and genotoxicity; and activate downstream targets responsible for angiogenesis. The role of these microorganisms in conjugation with meat components including N-nitroso compounds, heterocyclic amines, and heme was also evident in multiple studies. The outcome of this review supports the role of red meat consumption in modulating CRC progression and the possibility of gut microbiome influencing the relationship between CRC and diet. The study also demonstrates that microbiota analysis could potentially complement existing screening methods when detecting colonic lesions.
Collapse
Affiliation(s)
- Nadine Abu-Ghazaleh
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Weng Joe Chua
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| |
Collapse
|
15
|
Abstract
The functional diversity of the mammalian intestinal microbiome far exceeds that of the host organism, and microbial genes contribute substantially to the well-being of the host. However, beneficial gut organisms can also be pathogenic when present in the gut or other locations in the body. Among dominant beneficial bacteria are several species of Bacteroides, which metabolize polysaccharides and oligosaccharides, providing nutrition and vitamins to the host and other intestinal microbial residents. These topics and the specific organismal and molecular interactions that are known to be responsible for the beneficial and detrimental effects of Bacteroides species in humans comprise the focus of this review. The complexity of these interactions will be revealed.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara,Okara, PunjabPakistan
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
| |
Collapse
|
16
|
Dietary Salt Administration Decreases Enterotoxigenic Bacteroides fragilis (ETBF)-Promoted Tumorigenesis via Inhibition of Colonic Inflammation. Int J Mol Sci 2020; 21:ijms21218034. [PMID: 33126615 PMCID: PMC7663446 DOI: 10.3390/ijms21218034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Consumption of a Western-type diet has been linked to gut-microbiota-mediated colon inflammation that constitutes a risk factor for colorectal cancer. A high salt diet (HSD) exacerbates IL-17A-induced inflammation in inflammatory bowel disease and other autoimmune diseases. Enterotoxigenic Bacteroides fragilis (ETBF) is a gut commensal bacterium and reported to be a potent initiator of colitis via secretion of the Bacteroides fragilis toxin (BFT). BFT induces ectodomain cleavage of E-cadherin in colonic epithelial cells, consequently leading to cell rounding, epithelial barrier disruption, and the secretion of IL-8, which promotes tumorigenesis in mice via IL-17A-mediated inflammation. A HSD is characteristic of the Western-type diet and can exhibit inflammatory effects. However, a HSD induces effects in ETBF-induced colitis and tumorigenesis remain unknown. In this study, we investigated HSD effects in ETBF-colonized mice with azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced tumorigenesis as well as ETBF colitis mice. Unexpectedly, ETBF-infected mice fed a HSD exhibited decreased weight loss and splenomegaly and reduction of colon inflammation. The HSD significantly decreased the expression of IL-17A and inducible nitric oxide synthase (iNOS) in the colonic tissues of ETBF-infected mice. In addition, serum levels of IL-17A and nitric oxide (NO) were also diminished. However, HT29/C1 colonic epithelial cells treated with sodium chloride showed no changes in BFT-induced cellular rounding and IL-8 expression. Furthermore, HSD did not affect ETBF colonization in mice. In conclusion, HSD decreased ETBF-induced tumorigenesis through suppression of IL-17A and iNOS expression in the colon. HSD also inhibited colonic polyp numbers in the ETBF-infected AOM/DSS mice. Taken together, these findings suggest that a HSD consumption inhibited ETBF-promoted colon carcinogenesis in mice, indicating that a HSD could have beneficial effects under certain conditions.
Collapse
|
17
|
Bacteroides fragilis Enterotoxin Induces Sulfiredoxin-1 Expression in Intestinal Epithelial Cell Lines Through a Mitogen-Activated Protein Kinases- and Nrf2-Dependent Pathway, Leading to the Suppression of Apoptosis. Int J Mol Sci 2020; 21:ijms21155383. [PMID: 32751114 PMCID: PMC7432937 DOI: 10.3390/ijms21155383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis is a causative agent of colitis and secrets enterotoxin (BFT), leading to the disease. Sulfiredoxin (Srx)-1 serves to protect from oxidative damages. Although BFT can generate reactive oxygen species in intestinal epithelial cells (IECs), no Srx-1 expression has been reported in ETBF infection. In this study, we explored the effects of ETBF-produced BFT on Srx-1 induction in IECs. Treatment of IECs with BFT resulted in increased expression of Srx-1 in a time-dependent manner. BFT treatment also activated transcriptional signals including Nrf2, AP-1 and NF-κB, and the Srx-1 induction was dependent on the activation of Nrf2 signals. Nrf2 activation was assessed using immunoblot and Nrf2-DNA binding activity and the specificity was confirmed by supershift and competition assays. Suppression of NF-κB or AP-1 signals did not affect the upregulation of Srx-1 expression. Nrf2-dependent Srx-1 expression was associated with the activation of p38 mitogen-activated protein kinases (MAPKs) in IECs. Furthermore, suppression of Srx-1 significantly enhanced apoptosis while overexpression of Srx-1 significantly attenuated apoptosis during exposure to BFT. These results imply that a signaling cascade involving p38 and Nrf2 is essential for Srx-1 upregulation in IECs stimulated with BFT. Following this upregulation, Srx-1 may control the apoptosis in BFT-exposed IECs.
Collapse
|
18
|
Xu S, Yin W, Zhang Y, Lv Q, Yang Y, He J. Foes or Friends? Bacteria Enriched in the Tumor Microenvironment of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12020372. [PMID: 32041122 PMCID: PMC7072156 DOI: 10.3390/cancers12020372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer and the third cause of cancer death in the world, while intestinal microbiota is a community of microbes living in human intestine that can potentially impact human health in many ways. Accumulating evidence suggests that intestinal microbiota, especially that from the intestinal bacteria, play a key role in the CRC development; therefore, identification of bacteria involved in CRC development can provide new targets for the CRC diagnosis, prevention, and treatment. Over the past decade, there have been considerable advances in applying 16S rDNA sequencing data to verify associated intestinal bacteria in CRC patients; however, due to variations of individual and environment factors, these results seem to be inconsistent. In this review, we scrutinized the previous 16S rDNA sequencing data of intestinal bacteria from CRC patients, and identified twelve genera that are specifically enriched in the tumor microenvironment. We have focused on their relationship with the CRC development, and shown that some bacteria could promote CRC development, acting as foes, while others could inhibit CRC development, serving as friends, for human health. Finally, we highlighted their potential applications for the CRC diagnosis, prevention, and treatment.
Collapse
|
19
|
Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol 2019; 432:765-785. [PMID: 31857085 DOI: 10.1016/j.jmb.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
The human gut is colonized by hundreds of trillions of microorganisms whose acquisition begins during early infancy. Species from the Bacteroides genus are ubiquitous commensals, comprising about thirty percent of the human gut microbiota. Bacteroides fragilis is one of the least abundant Bacteroides species, yet is the most common anaerobe isolated from extraintestinal infections in humans. A subset of B. fragilis strains carry a genetic element that encodes a metalloprotease enterotoxin named Bacteroides fragilis toxin, or BFT. Toxin-bearing strains, or Enterotoxigenic B. fragilis (ETBF) cause acute and chronic intestinal disease in children and adults. Despite this association with disease, around twenty percent of the human population appear to be asymptomatic carriers of ETBF. BFT damages the colonic epithelial barrier by inducing cleavage of the zonula adherens protein E-cadherin and initiating a cell signaling response characterized by inflammation and c-Myc-dependent pro-oncogenic hyperproliferation. As a consequence, mice harboring genetic mutations that predispose to colonic inflammation or tumor formation are uniquely susceptible to toxin-mediated injury. The recent observation of ETBF-bearing biofilms in colon biopsies from humans with colon cancer susceptibility loci strongly suggests that ETBF is a driver of colorectal cancer. This article will address ETBF biology from a host-pathobiont perspective, including clinical data, analysis of molecular mechanisms of disease, and the complex ecological context of the human gut.
Collapse
Affiliation(s)
- Ezequiel Valguarnera
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave. Box 8208, St. Louis, MO 63110.
| |
Collapse
|
20
|
Intestinal Epithelial Cells Exposed to Bacteroides fragilis Enterotoxin Regulate NF-κB Activation and Inflammatory Responses through β-Catenin Expression. Infect Immun 2019; 87:IAI.00312-19. [PMID: 31451622 DOI: 10.1128/iai.00312-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
The Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), interacts with intestinal epithelial cells and can provoke signals that induce mucosal inflammation. Although β-catenin signaling is reported to be associated with inflammatory responses and BFT is known to cleave E-cadherin linked with β-catenin, little is known about the β-catenin-mediated regulation of inflammation in ETBF infection. This study was conducted to investigate the role of β-catenin as a cellular signaling intermediate in the induction of proinflammatory responses to stimulation of intestinal epithelial cells with BFT. Expression of β-catenin in intestinal epithelial cells was reduced relatively early after stimulation with BFT and then recovered to normal levels relatively late after stimulation. In contrast, phosphorylation of β-catenin in BFT-exposed cells occurred at high levels early in stimulation and decreased as time passed. Concurrently, late after stimulation the nuclear levels of β-catenin were relatively higher than those early after stimulation. Suppression of β-catenin resulted in increased NF-κB activity and interleukin-8 (IL-8) expression in BFT-stimulated cells. However, suppression or enhancement of β-catenin expression neither altered the phosphorylated IκB kinase α/β complex nor activated activator protein 1 signals. Furthermore, inhibition of glycogen synthase kinase 3β was associated with increased β-catenin expression and attenuated NF-κB activity and IL-8 expression in BFT-exposed cells. These findings suggest the negative regulation of NF-κB-mediated inflammatory responses by β-catenin in intestinal epithelial cells stimulated with BFT, resulting in attenuation of acute inflammation in ETBF infection.
Collapse
|
21
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
22
|
Li W, Wang X, Zhi W, Zhang H, He Z, Wang Y, Liu F, Niu X, Zhang X. The gastroprotective effect of nobiletin against ethanol-induced acute gastric lesions in mice: impact on oxidative stress and inflammation. Immunopharmacol Immunotoxicol 2017; 39:354-363. [PMID: 28948855 DOI: 10.1080/08923973.2017.1379088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Gastric ulcer is a common gastrointestinal disorder with increasing incidence and prevalence attributed to loss of balance between aggressive and protective factors. Nobiletin (NOB), a major component of polymethoxyflavones in citrus fruits, has a broad spectrum of health beneficial properties including anti-inflammatory and anti-tumor activities. Although NOB was originally shown to possess anti-inflammatory activity, its effects on gastric ulcer were rarely explored previously. OBJECTIVE The aim of the present study was to investigate the anti-ulcerogenic activity of NOB on ethanol-induced gastric ulcer in mice and to elucidate the underlying mechanisms. METHODS Seventy-two male Kunming mice administered with absolute ethanol (0.2 ml/animal) were pretreated with NOB (5, 10 or 20 mg/kg), cimetidine (100 mg/kg), or vehicles by intragastric administration in different experimental groups for three days, and animals were euthanized 3 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. RESULTS The results showed that ethanol induced gastric injury, increased malondialdehyde (MDA) levels, decreased glutathione (GSH) content, superoxide dismutase (SOD) activity, and prostaglandin E2 (PGE2) levels, increased pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression MAPK signaling pathway. Pretreatment with NOB significantly attenuated the gastric lesions as compared to the ethanol group. CONCLUSIONS These findings suggest that the gastroprotective activity is attribute to the improvement of antioxidant activities, the stimulation of PGE2, and the reduction of pro-inflammatory cytokines through the MAPK pathway.
Collapse
Affiliation(s)
- Weifeng Li
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Xiumei Wang
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Wenbing Zhi
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Hailin Zhang
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Zehong He
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Yu Wang
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Fang Liu
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Xiaofeng Niu
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| | - Xuemei Zhang
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , PR China
| |
Collapse
|
23
|
Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway. Infect Immun 2017; 85:IAI.00420-17. [PMID: 28694294 DOI: 10.1128/iai.00420-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy.
Collapse
|
24
|
Casterline BW, Hecht AL, Choi VM, Bubeck Wardenburg J. The Bacteroides fragilis pathogenicity island links virulence and strain competition. Gut Microbes 2017; 8. [PMID: 28632016 PMCID: PMC5570422 DOI: 10.1080/19490976.2017.1290758] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mature microbiome is a stable ecosystem that resists perturbation despite constant host exposure to exogenous microbes. However, the microbial mechanisms determining microbiome development and composition are poorly understood. We recently demonstrated that a non-toxigenic B. fragilis (NTBF) strain restricts enteric colonization by an enterotoxigenic (ETBF) strain dependent on a type VI secretion system (T6SS). We show here that a second enterotoxigenic strain is competent to colonize, dependent on the Bacteroides fragilis pathogenicity island (BFPAI). Additional data showing complex environmental regulation of the Bacteroides fragilis toxin (BFT) suggest that virulence factors may be adapted to modify the colonic niche to provide a strain-specific colonization advantage. We conclude that more complex models of host-microbe-microbiome interactions are needed to investigate this hypothesis.
Collapse
Affiliation(s)
- Benjamin W. Casterline
- Department of Microbiology, University of Chicago, Chicago, IL, USA,Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Aaron L. Hecht
- Department of Microbiology, University of Chicago, Chicago, IL, USA,Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Vivian M. Choi
- Department of Microbiology, University of Chicago, Chicago, IL, USA,Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, IL, USA,Department of Pediatrics, University of Chicago, Chicago, IL, USA,CONTACT Juliane Bubeck Wardenburg Department of Pediatrics, Washington University, 4938 Parkview Place Rm 6107, St. Louis, MO 63110
| |
Collapse
|
25
|
Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel JP. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017; 15:109-128. [DOI: 10.1038/nrmicro.2016.171] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Bacteroides fragilis Enterotoxin Upregulates Heme Oxygenase-1 in Intestinal Epithelial Cells via a Mitogen-Activated Protein Kinase- and NF-κB-Dependent Pathway, Leading to Modulation of Apoptosis. Infect Immun 2016; 84:2541-54. [PMID: 27324483 DOI: 10.1128/iai.00191-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
The Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), interacts with intestinal epithelial cells and can provoke signals that induce mucosal inflammation. Although expression of heme oxygenase-1 (HO-1) is associated with regulation of inflammatory responses, little is known about HO-1 induction in ETBF infection. This study was conducted to investigate the effect of BFT on HO-1 expression in intestinal epithelial cells. Stimulation of intestinal epithelial cells with BFT resulted in upregulated expression of HO-1. BFT activated transcription factors such as NF-κB, AP-1, and Nrf2 in intestinal epithelial cells. Upregulation of HO-1 in intestinal epithelial cells was dependent on activated IκB kinase (IKK)-NF-κB signals. However, suppression of Nrf2 or AP-1 signals in intestinal epithelial cells did not result in significant attenuation of BFT-induced HO-1 expression. HO-1 induction via IKK-NF-κB in intestinal epithelial cells was regulated by p38 mitogen-activated protein kinases (MAPKs). Furthermore, suppression of HO-1 activity led to increased apoptosis in BFT-stimulated epithelial cells. These results suggest that a signaling pathway involving p38 MAPK-IKK-NF-κB in intestinal epithelial cells is required for HO-1 induction during exposure to BFT. Following this induction, increased HO-1 expression may regulate the apoptotic process in responses to BFT stimulation.
Collapse
|
27
|
Sadar SS, Vyawahare NS, Bodhankar SL. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats. EXCLI JOURNAL 2016; 15:482-499. [PMID: 27822176 PMCID: PMC5083962 DOI: 10.17179/excli2016-393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis.Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune inflammatory response. It releases interferon-γ (IFN-γ), which in turn induces macrophages (MAC) to produce TNF-α and other pro-inflammatory cytokines (e.g., IL-1β, IL-6). This inflammatory influx resulted in induction of ulcerative colitis (UC). Administration of FA may inhibit this IFN-γ induced inflammatory cascade via a decrease in the release of pro-inflammatory cytokines to ameliorate TNBS-induced colitis.
Collapse
Affiliation(s)
- Smeeta S Sadar
- Padmashree Dr. D. Y. Patil College of Pharmacy, Akurdi, Pune Maharashtra, 411044, India
| | - Niraj S Vyawahare
- Padmashree Dr. D. Y. Patil College of Pharmacy, Akurdi, Pune Maharashtra, 411044, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, 411038, India
| |
Collapse
|
28
|
Crude Preparations of Helicobacter pylori Outer Membrane Vesicles Induce Upregulation of Heme Oxygenase-1 via Activating Akt-Nrf2 and mTOR-IκB Kinase-NF-κB Pathways in Dendritic Cells. Infect Immun 2016; 84:2162-2174. [PMID: 27185786 PMCID: PMC4962631 DOI: 10.1128/iai.00190-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori sheds outer membrane vesicles (OMVs) that contain many surface elements of bacteria. Dendritic cells (DCs) play a major role in directing the nature of adaptive immune responses against H. pylori, and heme oxygenase-1 (HO-1) has been implicated in regulating function of DCs. In addition, HO-1 is important for adaptive immunity and the stress response. Although H. pylori-derived OMVs may contribute to the pathogenesis of H. pylori infection, responses of DCs to OMVs have not been elucidated. In the present study, we investigated the role of H. pylori-derived crude OMVs in modulating the expression of HO-1 in DCs. Exposure of DCs to crude H. pylori OMVs upregulated HO-1 expression. Crude OMVs obtained from a cagA-negative isogenic mutant strain induced less HO-1 expression than OMVs obtained from a wild-type strain. Crude H. pylori OMVs activated signals of transcription factors such as NF-κB, AP-1, and Nrf2. Suppression of NF-κB or Nrf2 resulted in significant attenuation of crude OMV-induced HO-1 expression. Crude OMVs increased the phosphorylation of Akt and downstream target molecules of mammalian target of rapamycin (mTOR), such as S6 kinase 1 (S6K1). Suppression of Akt resulted in inhibition of crude OMV-induced Nrf2-dependent HO-1 expression. Furthermore, suppression of mTOR was associated with inhibition of IκB kinase (IKK), NF-κB, and HO-1 expression in crude OMV-exposed DCs. These results suggest that H. pylori-derived OMVs regulate HO-1 expression through two different pathways in DCs, Akt-Nrf2 and mTOR–IKK–NF-κB signaling. Following this induction, increased HO-1 expression in DCs may modulate inflammatory responses in H. pylori infection.
Collapse
|
29
|
Snezhkina AV, Krasnov GS, Lipatova AV, Sadritdinova AF, Kardymon OL, Fedorova MS, Melnikova NV, Stepanov OA, Zaretsky AR, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2353560. [PMID: 27433286 PMCID: PMC4940579 DOI: 10.1155/2016/2353560] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.
Collapse
Affiliation(s)
- Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow 119121, Russia
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Olga L. Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Oleg A. Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrew R. Zaretsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Andrey D. Kaprin
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Boris Y. Alekseev
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- National Medical Research Center of Radiology, Ministry of Healthcare of the Russian Federation, Moscow 125284, Russia
| |
Collapse
|
30
|
Sánchez-Fidalgo S, Villegas I, Aparicio-Soto M, Cárdeno A, Rosillo MÁ, González-Benjumea A, Marset A, López Ó, Maya I, Fernández-Bolaños JG, Alarcón de la Lastra C. Effects of dietary virgin olive oil polyphenols: hydroxytyrosyl acetate and 3, 4-dihydroxyphenylglycol on DSS-induced acute colitis in mice. J Nutr Biochem 2015; 26:513-20. [PMID: 25736481 DOI: 10.1016/j.jnutbio.2014.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Abstract
Hydroxytyrosol, a polyphenolic compound from extra virgin olive oil (EVOO) has exhibited an improvement in a model of DSS-induced colitis. However, other phenolic compounds present such as hydroxytyrosyl acetate (HTy-Ac) and 3,4-dihydroxyphenylglycol (DHPG) need to be explored to complete the understanding of the overall effects of EVOO on inflammatory colon mucosa. This study was designed to evaluate the effect of both HTy-Ac and DHPG dietary supplementation in the inflammatory response associated to colitis model. Six-week-old mice were randomized in four dietary groups: sham and control groups received standard diet, and other two groups were fed with HTy-Ac and DHPG, respectively, at 0.1%. After 30 days, all groups except sham received 3% DSS in drinking water for 5 days followed by a regime of 5 days of water. Acute inflammation was evaluated by Disease Activity Index (DAI), histology and myeloperoxidase (MPO) activity. Colonic expression of iNOS, COX-2, MAPKs, NF-kB and FOXP3 were determined by western blotting. Only HTy-Ac-supplemented group showed a significant DAI reduction as well as an improvement of histological damage and MPO. COX-2 and iNOS protein expression were also significantly reduced. In addition, this dietary group down-regulated JNK phosphorylation and prevented the DSS-induced nuclear translocation level of p65. However, no significant differences were observed in the FOXP3 expression. These results demonstrated, for the first time, that HTy-Ac exerts an antiinflammatory effect on acute ulcerative colitis. We concluded that HTy-Ac supplement might provide a basis for developing a new dietary strategy for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville
| | | | - Ana Cárdeno
- Department of Pharmacology, Faculty of Pharmacy, University of Seville
| | | | | | - Azucena Marset
- Department of Organic Chemistry, Faculty of Pharmacy, University of Seville
| | - Óscar López
- Department of Organic Chemistry, Faculty of Pharmacy, University of Seville
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Pharmacy, University of Seville
| | | | | |
Collapse
|
31
|
Guo CC, Deng Y, Ye H, Zhu YZ, Zheng XB. Role of MAPK signaling pathways in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:229-235. [DOI: 10.11569/wcjd.v23.i2.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of highly conserved serine protein kinases which are distributed in the cytoplasm. MAPK signal transduction pathways play a major role in inflammatory reactions and have a close relation with inflammatory bowel disease (IBD). They could be involved in the regulation of inflammatory mediators as well as IBD-associated genes. This paper reviews the role of MAPK signaling pathways in the pathogenesis of IBD, aiming at providing a new method for the treatment of IBD.
Collapse
|
32
|
Sánchez-Fidalgo S, Villegas I, Rosillo MÁ, Aparicio-Soto M, de la Lastra CA. Dietary squalene supplementation improves DSS-induced acute colitis by downregulating p38 MAPK and NFkB signaling pathways. Mol Nutr Food Res 2014; 59:284-92. [PMID: 25387687 DOI: 10.1002/mnfr.201400518] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 12/20/2022]
Abstract
SCOPE Squalene is a polyunsaturated triterpene, which has exhibited anticancer and antioxidant activities among others. We investigated dietary squalene supplementation effect on an acute colitis model induced by dextran sulfate sodium (DSS) in C57BL/6 mice. METHODS AND RESULTS Mice were fed from weaning with squalene at 0.02% and 0.1%. After 4 weeks, mice were exposed to 3% DSS for 5 days developing acute colitis. After DSS removal (5 days), colons were histological and biochemically processed. Our results showed that dietary squalene treatment exerts anti-inflammatory action in DSS-induced acute colitis. Western blot revealed that squalene downregulated COX-2 (where COX is cyclooxygenase) and inducible nitric oxide synthase system by inhibition of mitogen-activated protein kinase p38 and the nuclear factor-kappa B signaling pathways, preventing an increase in the cytokines levels. Under our experimental conditions, STAT3 and FOXP3 (where FOXP3 is forkhead box P3) were not modified and the transcriptional regulation of antioxidant and/or detoxifying enzymes, Nrf2 (where Nrf2 is nuclear factor (erythroid-derived 2)-like 2), was reduced in DSS-induced colitis. However, any change could be observed after squalene supplementation. CONCLUSION Squalene was able to improve the oxidative events and returned proinflammatory proteins expression to basal levels probably through p38 mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. However, supplementary studies are needed in order to provide a basis for developing a new dietary supplementation strategy.
Collapse
|
33
|
Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014; 124:4166-72. [PMID: 25105360 DOI: 10.1172/jci72334] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human body comprises fewer host cells than bacterial cells, most of which are obligate anaerobes residing in the gut. The symbiont Bacteroides fragilis constitutes a relatively small proportion (up to 1%-2%) of cultured fecal bacteria, but colonizes most humans. There are 2 classes of B. fragilis distinguished by their ability to secrete a zinc-dependent metalloprotease toxin, B. fragilis toxin (BFT). Strains that do not secrete BFT are nontoxigenic B. fragilis (NTBF), and those that do are called enterotoxigenic B. fragilis (ETBF). ETBF can induce clinical pathology, including inflammatory diarrhea, although asymptomatic colonization may be common. Intestinal inflammation is mediated by BFT, as yet the only known virulence factor of ETBF. Recent experimental evidence demonstrating that ETBF-driven colitis promotes colon tumorigenesis has generated interest in the potential contribution of ETBF to human colon carcinogenesis. Critical questions about the epidemiology of chronic, subclinical human colonization with ETBF and its impact on the biology of the colon need to be addressed.
Collapse
|
34
|
Lee HJ, Shin YK, Park HT. Mitogen Activated Protein Kinase Family Proteins and c-jun Signaling in Injury-induced Schwann Cell Plasticity. Exp Neurobiol 2014; 23:130-7. [PMID: 24963277 PMCID: PMC4065826 DOI: 10.5607/en.2014.23.2.130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) in the peripheral nerves myelinate axons during postnatal development to allow saltatory conduction of nerve impulses. Well-organized structures of myelin sheathes are maintained throughout life unless nerves are insulted. After peripheral nerve injury, unidentified signals from injured nerves drive SC dedifferentiation into an immature state. Dedifferentiated SCs participate in axonal regeneration by producing neurotrophic factors and removing degenerating nerve debris. In this review, we focus on the role of mitogen activated protein kinase family proteins (MAP kinases) in SC dedifferentiation. In addition, we will highlight neuregulin 1 and the transcription factor c-jun as upstream and downstream signals for MAP kinases in SC responses to nerve injury.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Department of Pharmacology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Yoon Kyung Shin
- Department of Physiology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Hwan Tae Park
- Department of Physiology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| |
Collapse
|
35
|
Ko SH, Jeon JI, Kim H, Kim YJ, Youn J, Kim JM. Mitogen-activated protein kinase/IκB kinase/NF-κB-dependent and AP-1-independent CX3CL1 expression in intestinal epithelial cells stimulated with Clostridium difficile toxin A. J Mol Med (Berl) 2013; 92:411-27. [PMID: 24362517 DOI: 10.1007/s00109-013-1117-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Clostridium difficile toxin A causes acute colitis associated with inflammatory cell infiltration and increased production of proinflammatory mediators. Although CX3CL1 (fractalkine) plays a role in chemoattracting monocytes/macrophages, NK cells, and T cells, little information is available on the regulated expression of CX3CL1 in response to toxin A stimulation. In this study, we investigated the role of C. difficile toxin A on CX3CL1 induction in intestinal epithelial cells. Stimulation of murine intestinal epithelial cells with toxin A resulted in the upregulation of CX3CL1. Expression of CX3CL1 was dependent on nuclear factor-kappaB (NF-κB) and IκB kinase (IKK) activation, while the suppression of activator protein-1 (AP-1) did not affect toxin A-induced CX3CL1 expression. Suppression of p38 mitogen-activated protein kinase (MAPK) significantly inhibited IKK-NF-κB signaling leading to CX3CL1 induction in C. difficile toxin A-stimulated cells. CX3CL1 was mainly secreted from the basolateral surfaces in toxin A-treated cells. Furthermore, inhibition of p38 activity attenuated the toxin A-induced upregulation of CX3CL1 in the mouse ileum in vivo. These results suggest that a pathway, including p38 MAPK, IKK, and NF-κB activation, is required for CX3CL1 induction in intestinal epithelial cells exposed to C. difficile toxin A and may regulate the development of intestinal inflammation induced by infection with toxigenic C. difficile. KEY MESSAGE C. difficile toxin A causes colitis with inflammatory cell infiltration. CX3CL1 plays a role in chemoattracting immune cells. MAPK-NF-κB signaling is required for CX3CL1 induction in toxin A-exposed cells. CX3CL1 is mainly secreted from the basolateral surfaces. CX3CL1 may contribute to the regulation of toxigenic C. difficile infection.
Collapse
Affiliation(s)
- Su Hyuk Ko
- Department of Microbiology and Department of Biomedical Science, Hanyang University College of Medicine and Graduate School of Biomedical Science and Engineering, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Samuelson DR, Konkel ME. Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni. Cell Commun Signal 2013; 11:82. [PMID: 24188565 PMCID: PMC3832248 DOI: 10.1186/1478-811x-11-82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease. RESULTS This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay. CONCLUSION We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time that cortactin and N-WASP have been shown to be involved in C. jejuni invasion of host cells. These data also provide a mechanistic basis for the requirement of Erk 1/2 in C. jejuni-mediated cytoskeletal rearrangement.
Collapse
Affiliation(s)
| | - Michael E Konkel
- School of Molecular Biosciences, Washington State University, College of Veterinary Medicine, Life Sciences Bldg, Room 302c, Pullman, Washington 99164-7520, USA.
| |
Collapse
|
37
|
Hwang S, Gwon SY, Kim MS, Lee S, Rhee KJ. Bacteroides fragilis Toxin Induces IL-8 Secretion in HT29/C1 Cells through Disruption of E-cadherin Junctions. Immune Netw 2013; 13:213-7. [PMID: 24198747 PMCID: PMC3817303 DOI: 10.4110/in.2013.13.5.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is a human gut commensal bacteria that causes inflammatory diarrhea and colitis. ETBF also promotes colorectal tumorigenesis in the Min mouse model. The key virulence factor is a secreted metalloprotease called B. fragilis toxin (BFT). BFT induces E-cadherin cleavage, cell rounding, activation of the β-catenin pathway and secretion of IL-8 in colonic epithelial cells. However, the precise mechanism by which these processes occur and how these processes are interrelated is still unclear. E-cadherin form homophilic interactions which tethers adjacent cells. Loss of E-cadherin results in detachment of adjacent cells. Prior studies have suggested that BFT induces IL-8 expression by inducing E-cadherin cleavage; cells that do not express E-cadherin do not secrete IL-8 in response to BFT. In the current study, we found that HT29/C1cells treated with dilute trypsin solution induced E-cadherin degradation and IL-8 secretion, consistent with the hypothesis that E-cadherin cleavage causes IL-8 secretion. However, physical damage to the cell monolayer did not induce IL-8 secretion. We also show that EDTA-mediated disruption of E-cadherin interactions without E-cadherin degradation was sufficient to induce IL-8 secretion. Finally, we determined that HT29/C1 cells treated with LiCl (β-catenin activator) induced IL-8 secretion in a dose-dependent and time-dependent manner. Taken together, our results suggest that BFT induced IL-8 secretion may occur by the following process: E-cadherin cleavage, disruption of cellular interactions, activation of the β-catenin pathway and IL-8 expression. However, we further propose that E-cadherin cleavage per se may not be required for BFT induced IL-8 secretion.
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju 220-710, Korea
| | | | | | | | | |
Collapse
|
38
|
Bacteroides fragilis enterotoxin upregulates lipocalin-2 expression in intestinal epithelial cells. J Transl Med 2013; 93:384-96. [PMID: 23381626 DOI: 10.1038/labinvest.2013.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) produces an ≈ 20 kDa B. fragilis enterotoxin (BFT), which plays an essential role in mucosal inflammation. Lipocalin (Lcn)-2, a siderophore-binding antimicrobial protein, is critical for control of bacterial infection; however, expression of Lcn-2 in BFT-exposed intestinal epithelial cells has not been elucidated. In the present study, stimulation of human intestinal epithelial cells with BFT resulted in the upregulation of Lcn-2 expression that was a relatively late response of intestinal epithelial cells compared with human β-defensin (hBD)-2 expression. The upregulation of Lcn-2 was dependent on AP-1 but not on NF-κB signaling. Lcn-2 induction via AP-1 was regulated by mitogen-activated protein kinases (MAPKs) including ERK and p38. Lcn-2 was secreted from the apical and basolateral surfaces in BFT-treated cells. These results suggest that a signaling pathway involving MAPKs and AP-1 is required for Lcn-2 induction in intestinal epithelial cells exposed to BFT, after which the secreted Lcn-2 may facilitate antimicrobial activity within ETBF-infected mucosa.
Collapse
|
39
|
Sánchez-Fidalgo S, Cárdeno A, Sánchez-Hidalgo M, Aparicio-Soto M, Villegas I, Rosillo M, de la Lastra CA. Dietary unsaponifiable fraction from extra virgin olive oil supplementation attenuates acute ulcerative colitis in mice. Eur J Pharm Sci 2013; 48:572-81. [DOI: 10.1016/j.ejps.2012.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 02/07/2023]
|
40
|
Kim JM, Kim SH, Ko SH, Jung J, Chun J, Kim N, Jung HC, Kim JS. The guggulsterone derivative GG-52 inhibits NF-κB signaling in gastric epithelial cells and ameliorates ethanol-induced gastric mucosal lesions in mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G193-202. [PMID: 23125156 DOI: 10.1152/ajpgi.00103.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric mucosal inflammation can develop after challenge with noxious stimuli such as alcohol. Specially, alcohol stimulates the release of inflammatory cytokines but does not increase gastric acid secretion, leading to gastric mucosal damage. The plant sterol guggulsterone and its novel derivative GG-52 have been reported to inhibit nuclear factor-κB (NF-κB) signaling in intestinal epithelial cells and experimental colitis. In the present study, we investigated the anti-inflammatory effects of GG-52 on gastric epithelial cells and on ethanol-induced gastric mucosal inflammation in mice. GG-52 inhibited the expression of interleukin-8 (IL-8) in gastric epithelial AGS and MKN-45 cell lines stimulated with tumor necrosis factor (TNF)-α in a dose-dependent manner. Pretreatment with GG-52 suppressed TNF-α-induced activation of IκB kinase (IKK) and NF-κB signaling in MKN-45 cells. In contrast, the inactive analog GG-46 did not produce significant changes in IL-8 expression or NF-κB activation. In a model of ethanol-induced murine gastritis, administration of GG-52 significantly reduced the severity of gastritis, as assessed by macroscopic and histological evaluation of gastric mucosal damage. In addition, the ethanol-induced upregulation of chemokine KC, a mouse homolog of IL-8, and phosphorylated p65 NF-κB signals were significantly inhibited in murine gastric mucosa pretreated with GG-52. These results indicate that GG-52 suppresses NF-κB activation in gastric epithelial cells and ameliorates ethanol-induced gastric mucosal lesions in mice, suggesting that GG-52 may be a potential gastroprotective agent.
Collapse
Affiliation(s)
- Jung Mogg Kim
- Department of Microbiology and Department of Biomedical Science, Hanyang University College of Medicine and Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jung J, Ko SH, Yoo DY, Lee JY, Kim YJ, Choi SM, Kang KK, Yoon HJ, Kim H, Youn J, Kim JM. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells. Immunology 2012; 137:98-113. [PMID: 22862554 DOI: 10.1111/j.1365-2567.2012.03618.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules.
Collapse
Affiliation(s)
- Jireh Jung
- Departments of Microbiology and Biomedical Science, Hanyang University College of Medicine and Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rosillo MA, Sánchez-Hidalgo M, Cárdeno A, Aparicio-Soto M, Sánchez-Fidalgo S, Villegas I, de la Lastra CA. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res 2012; 66:235-42. [PMID: 22677088 DOI: 10.1016/j.phrs.2012.05.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022]
Abstract
Dietary polyphenols present in Punica granatum (pomegranate), such as ellagitannins and ellagic acid (EA) have shown to exert anti-inflammatory and antioxidant properties. This study was designed to evaluate the effects of a dietary EA-enriched pomegranate extract (PE) in a murine chronic model of Cronh's disease (CD). Colonic injury was induced by intracolonic instillation of trinitrobenzensulfonic acid (TNBS). Rats were fed with different diets during 30 days before TNBS instillation and 2 weeks before killing: (i) standard, (ii) PE 250 mg/kg/day, (iii) PE 500 mg/kg/day, (iv) EA 10 mg/kg/day and (v) EA 10 mg/kg/day enriched-PE 250 mg/kg/day. Inflammation response was assessed by histology and MPO activity and TNF-α production. Besides, colonic expressions of iNOS, COX-2, p38, JNK, pERK1/2 MAPKs, IKBα and nuclear p65 NF-κB were studied by western blotting. MPO activity and the TNF-α levels were significantly reduced in dietary fed rats when compared with TNBS group. Similarly, PE and an EA-enriched PE diets drastically decreased COX-2 and iNOS overexpression, reduced MAPKs phosporylation and prevented the nuclear NF-κB translocation. Dietary supplementation of EA contributes in the beneficial effect of PE in this experimental colitis model and may be a novel therapeutic strategy to manage inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Maria Angeles Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville. Profesor García González Street 2, 41012 Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
KIM YOUNGIL, PARK SEUNGWON, YOON YEOKWANG, LEE KYUNGWOOK, LEE JANGHOON, WOO HONGJUNG, KIM YOUNGCHUL. Orostachys japonicus inhibits the expression of MMP-2 and MMP-9 mRNA and modulates the expression of iNOS and COX-2 genes in human PMA-differentiated THP-1 cells via inhibition of NF-κB and MAPK activation. Mol Med Rep 2012; 12:657-62. [DOI: 10.3892/mmr.2015.3460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/19/2015] [Indexed: 11/06/2022] Open
|
44
|
Ko SH, Yoo DY, Kim YJ, Choi SM, Kang KK, Kim H, Kim N, Kim JS, Kim JM. A mechanism for the action of the compound DA-6034 on NF-κB pathway activation in Helicobacter pylori-infected gastric epithelial cells. Scand J Immunol 2011; 74:253-263. [PMID: 21623862 DOI: 10.1111/j.1365-3083.2011.02577.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DA-6034 is a synthetic derivative of eupatilin, a flavonoid with anti-inflammatory effects. The aim of this study was to investigate the effects of DA-6034 on the interactions between IκB kinase (IKK) and heat shock protein 90 (Hsp90), and activation of the nuclear factor-kappaB (NF-κB) signalling pathway in human gastric epithelial cells infected with Helicobacter pylori. MKN-45 gastric epithelial cell line was treated with DA-6034 and H. pylori. DA-6034 significantly inhibited NF-κB activation and upregulated the expressions of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 in MKN-45 cells infected with H. pylori. However, DA-6034 did not influence activator protein-1 DNA binding activity in H. pylori-infected gastric epithelial cells. Pretreatment with DA-6034 attenuated the H. pylori-induced increase in IKK activity, and Hsp90 was associated with IKK-α and IKK-γ in MKN-45 cells. Treatment with DA-6034 dissociated the Hsp90 and IKK-γ complex in H. pylori-infected cells, leading to the inhibition of IL-8 expression. These results suggest that the eupatilin derivative 7-carboxymethyloxy-3',4',5-trimethoxy flavone has anti-inflammatory activity in gastric epithelial cells infected with H. pylori through the promotion of the dissociation of the IKK-γ-Hsp90 complex and suppression of NF-κB signalling.
Collapse
Affiliation(s)
- S H Ko
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - D Y Yoo
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Y-J Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - S M Choi
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - K K Kang
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - H Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - N Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - J S Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - J M Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, KoreaDepartment of Biotechnology, Joongbu University, Choongnam, KoreaResearch Laboratory, Dong-A Pharmaceutical Company, Kyunggi-do, KoreaDepartment of Food and Nutrition, Yonsei University, Seoul, KoreaDepartment of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Goodwin AC, Shields CED, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, Casero RA. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A 2011; 108:15354-9. [PMID: 21876161 PMCID: PMC3174648 DOI: 10.1073/pnas.1010203108] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is estimated that the etiology of 20-30% of epithelial cancers is directly associated with inflammation, although the direct molecular events linking inflammation and carcinogenesis are poorly defined. In the context of gastrointestinal disease, the bacterium enterotoxigenic Bacteroides fragilis (ETBF) is a significant source of chronic inflammation and has been implicated as a risk factor for colorectal cancer. Spermine oxidase (SMO) is a polyamine catabolic enzyme that is highly inducible by inflammatory stimuli resulting in increased reactive oxygen species (ROS) and DNA damage. We now demonstrate that purified B. fragilis toxin (BFT) up-regulates SMO in HT29/c1 and T84 colonic epithelial cells, resulting in SMO-dependent generation of ROS and induction of γ-H2A.x, a marker of DNA damage. Further, ETBF-induced colitis in C57BL/6 mice is associated with increased SMO expression and treatment of mice with an inhibitor of polyamine catabolism, N(1),N(4)-bis(2,3-butandienyl)-1,4-butanediamine (MDL 72527), significantly reduces ETBF-induced chronic inflammation and proliferation. Most importantly, in the multiple intestinal neoplasia (Min) mouse model, treatment with MDL 72527 reduces ETBF-induced colon tumorigenesis by 69% (P < 0.001). The results of these studies indicate that SMO is a source of bacteria-induced ROS directly associated with tumorigenesis and could serve as a unique target for chemoprevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shervin Rabizadeh
- Pediatrics and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21231; and
| | - Patrick M. Woster
- Department of Pharmaceutical and Biomedical Sciences, Medical Univeristy of South Carolina, Charleston, SC 29425
| | | | | |
Collapse
|
46
|
Sánchez-Fidalgo S, Sánchez de Ibargüen L, Cárdeno A, Alarcón de la Lastra C. Influence of extra virgin olive oil diet enriched with hydroxytyrosol in a chronic DSS colitis model. Eur J Nutr 2011; 51:497-506. [PMID: 21874330 DOI: 10.1007/s00394-011-0235-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/27/2011] [Indexed: 01/17/2023]
Abstract
PURPOSE Recent epidemiological studies have shown that habitual consumption of extra virgin olive oil (EVOO), the characteristic culinary fat of the Mediterranean area, is effective in the prevention of diverse types of digestive disorders such as inflammatory bowel disease. Many of these benefits are, in addition to its high proportion of oleic acid, due to the high content of phenolic compounds. METHODS Six-week-old mice were randomized into three dietary groups: standard, EVOO and hydroxytyrosol-enriched EVOO. After 30 days, mice that were exposed to 3% DSS for 5 days developed acute colitis that progressed to severe chronic inflammation during a regime of 21 days of water. RESULTS Diets enriched with EVOO significantly attenuated the clinical and histological signs of damage, improving results from disease activity index and reducing about 50% the mortality caused by DSS. Moreover, hydroxytyrosol supplement showed better results. Cytokines study showed that TNF-α was maintained near to sham control and IL-10 levels were significantly improved in EVOO and EVOO plus hydroxytyrosol diet-DSS groups. In the same way, COX-2 and iNOS were downregulated, and the activation of p38 MAPK was reduced. We also observed a higher significant reduction in iNOS in hydroxytyrosol-enriched EVOO compared with EVOO alone. CONCLUSIONS EVOO diets exerted a noteworthy beneficial effect in chronic DSS-induced colitis by cytokine modulation and COX-2 and iNOS reduction via downregulation of p38 MAPK. In addition to the beneficial effect by EVOO, supplementation of the diet with hydroxytyrosol may improve chronic colitis through iNOS downregulation plus its antioxidant capacity.
Collapse
|
47
|
Koh SJ, Kim JM, Kim IK, Kim N, Jung HC, Song IS, Kim JS. Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am J Physiol Gastrointest Liver Physiol 2011; 301:G9-19. [PMID: 21436313 DOI: 10.1152/ajpgi.00267.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although fluoxetine, a selective serotonin reuptake inhibitor, is known to demonstrate anti-inflammatory activity, little information is available on the effect of fluoxetine regarding intestinal inflammation. This study investigates the role of fluoxetine in the attenuation of acute murine colitis by suppression of the NF-κB pathway in intestinal epithelial cells (IEC). Fluoxetine significantly inhibited activated NF-κB signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 colon epithelial cells stimulated with tumor necrosis factor-α (TNF-α). Pretreatment with fluoxetine attenuated the increased IκB kinase (IKK) and IκBα phosphorylation induced by TNF-α. In a murine model, administration of fluoxetine significantly reduced the severity of dextran sulfate sodium (DSS)-induced colitis, as assessed by the disease activity index, colon length, and histology. In addition, the DSS-induced phospho-IKK activation, myeloperoxidase activity, a parameter of neutrophil accumulation, and the secretion of macrophage-inflammatory protein-2, a mouse homolog of IL-8, were significantly decreased in fluoxetine-pretreated mice. Moreover, fluoxetine significantly attenuated the development of colon cancer in mice inoculated with azoxymethane and DSS. These results indicate that fluoxetine inhibits NF-κB activation in IEC and that it ameliorates DSS-induced acute murine colitis and colitis-associated tumorigenesis, suggesting that fluoxetine is a potential therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Hanyang University College of Medicine, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Roh HC, Yoo DY, Ko SH, Kim YJ, Kim JM. Bacteroides fragilis enterotoxin upregulates intercellular adhesion molecule-1 in endothelial cells via an aldose reductase-, MAPK-, and NF-κB-dependent pathway, leading to monocyte adhesion to endothelial cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1931-41. [PMID: 21724992 DOI: 10.4049/jimmunol.1101226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) produces a ∼ 20-kDa heat-labile enterotoxin (BFT) that plays an essential role in mucosal inflammation. Although a variety of inflammatory cells is found at ETBF-infected sites, little is known about leukocyte adhesion in response to BFT stimulation. We investigated whether BFT affected the expression of ICAM-1 and monocytic adhesion to endothelial cells (ECs). Stimulation of HUVECs and rat aortic ECs with BFT resulted in the induction of ICAM-1 expression. Upregulation of ICAM-1 was dependent on the activation of IκB kinase (IKK) and NF-κB signaling. In contrast, suppression of AP-1 did not affect ICAM-1 expression in BFT-stimulated cells. Suppression of NF-κB activity in HUVECs significantly reduced monocytic adhesion, indicating that ICAM-1 expression is indispensable for BFT-induced adhesion of monocytes to the endothelium. Inhibition of JNK resulted in a significant attenuation of BFT-induced ICAM-1 expression in ECs. Moreover, inhibition of aldose reductase significantly reduced JNK-dependent IKK/NF-κB activation, ICAM-1 expression, and adhesion of monocytes to HUVECs. These results suggest that a signaling pathway involving aldose reductase, JNK, IKK, and NF-κB is required for ICAM-1 induction in ECs exposed to BFT, and may be involved in the leukocyte-adhesion cascade following infection with ETBF.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Department of Microbiology, Hanyang University College of Medicine, Seoul 133-791, Korea
| | | | | | | | | |
Collapse
|
49
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
50
|
Shimohata T, Nakano M, Lian X, Shigeyama T, Iba H, Hamamoto A, Yoshida M, Harada N, Yamamoto H, Yamato M, Mawatari K, Tamaki T, Nakaya Y, Takahashi A. Vibrio parahaemolyticus infection induces modulation of IL-8 secretion through dual pathway via VP1680 in Caco-2 cells. J Infect Dis 2010; 203:537-44. [PMID: 21177635 DOI: 10.1093/infdis/jiq070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vibrio parahaemolyticus causes acute gastroenteritis and inflammations in humans. A variety of pathogenic bacteria can stimulate mitogen-activated protein kinases (MAPKs) in host cells. Phosphorylation of MAPKs leads to production of interleukin (IL)- 8 and subsequently causes inflammations. Thus, MAPK cascades were strong candidates for the main signaling pathway of V. parahaemolyticus-induced acute inflammation. METHODS To determine whether the signaling pathway on V. parahaemolyticus infection induces inflammation, we analyzed the secretion level of IL-8 and phosphorylation of MAPKs by use of intestinal epithelial Caco-2 cells. RESULTS V. parahaemolyticus infection of Caco-2 cells activated extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK signal pathways, leading to IL-8 secretion, whereas MAPK inhibitors, UO126 or SB203580, suppressed IL-8 secretion. A strain carrying a deletion of VP1680, a type three secretion system 1 (T3SS1) effector protein, failed to activate phosphorylation of ERK1/2 and p38 MAPK and secretion of IL-8. ERK1/2 pathway inhibitor, UO126, failed IL-8 promoter activity, whereas p38 MAPK inhibitor, SB203580, decreased the stabilization of IL-8 messenger RNA following V. parahaemolyticus infection. CONCLUSIONS We showed that V. parahaemolyticus infection of Caco-2 cells results in the secretion of IL-8, and that VP1680 plays a pivotal role in manipulating host cell signaling and is responsible for triggering IL-8 secretion.
Collapse
Affiliation(s)
- Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|