1
|
Pelissier A, Laragione T, Gulko PS, Rodríguez Martínez M. Cell-specific gene networks and drivers in rheumatoid arthritis synovial tissues. Front Immunol 2024; 15:1428773. [PMID: 39161769 PMCID: PMC11330812 DOI: 10.3389/fimmu.2024.1428773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease characterized by inflammation and hyperplasia of the synovial tissues. RA pathogenesis involves multiple cell types, genes, transcription factors (TFs) and networks. Yet, little is known about the TFs, and key drivers and networks regulating cell function and disease at the synovial tissue level, which is the site of disease. In the present study, we used available RNA-seq databases generated from synovial tissues and developed a novel approach to elucidate cell type-specific regulatory networks on synovial tissue genes in RA. We leverage established computational methodologies to infer sample-specific gene regulatory networks and applied statistical methods to compare network properties across phenotypic groups (RA versus osteoarthritis). We developed computational approaches to rank TFs based on their contribution to the observed phenotypic differences between RA and controls across different cell types. We identified 18 (fibroblast-like synoviocyte), 16 (T cells), 19 (B cells) and 11 (monocyte) key regulators in RA synovial tissues. Interestingly, fibroblast-like synoviocyte (FLS) and B cells were driven by multiple independent co-regulatory TF clusters that included MITF, HLX, BACH1 (FLS) and KLF13, FOSB, FOSL1 (B cells). However, monocytes were collectively governed by a single cluster of TF drivers, responsible for the main phenotypic differences between RA and controls, which included RFX5, IRF9, CREB5. Among several cell subset and pathway changes, we also detected reduced presence of Natural killer T (NKT) cells and eosinophils in RA synovial tissues. Overall, our novel approach identified new and previously unsuspected Key driver genes (KDG), TF and networks and should help better understanding individual cell regulation and co-regulatory networks in RA pathogenesis, as well as potentially generate new targets for treatment.
Collapse
Affiliation(s)
- Aurelien Pelissier
- Institute of Computational Life Sciences, Zürich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- AI for Scientific Discovery, IBM Research Europe, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Percio S. Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - María Rodríguez Martínez
- AI for Scientific Discovery, IBM Research Europe, Rüschlikon, Switzerland
- Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
3
|
Pelissier A, Laragione T, Gulko PS, Rodríguez Martínez M. Cell-Specific Gene Networks and Drivers in Rheumatoid Arthritis Synovial Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573505. [PMID: 38234732 PMCID: PMC10793435 DOI: 10.1101/2023.12.28.573505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease characterized by inflammation and hyperplasia of the synovial tissues. RA pathogenesis involves multiple cell types, genes, transcription factors (TFs) and networks. Yet, little is known about the TFs, and key drivers and networks regulating cell function and disease at the synovial tissue level, which is the site of disease. In the present study, we used available RNA-seq databases generated from synovial tissues and developed a novel approach to elucidate cell type-specific regulatory networks on synovial tissue genes in RA. We leverage established computational methodologies to infer sample-specific gene regulatory networks and applied statistical methods to compare network properties across phenotypic groups (RA versus osteoarthritis). We developed computational approaches to rank TFs based on their contribution to the observed phenotypic differences between RA and controls across different cell types. We identified 18,16,19,11 key regulators of fibroblast-like synoviocyte (FLS), T cells, B cells, and monocyte signatures and networks, respectively, in RA synovial tissues. Interestingly, FLS and B cells were driven by multiple independent co-regulatory TF clusters that included MITF, HLX, BACH1 (FLS) and KLF13, FOSB, FOSL1 (synovial B cells). However, monocytes were collectively governed by a single cluster of TF drivers, responsible for the main phenotypic differences between RA and controls, which included RFX5, IRF9, CREB5. Among several cell subset and pathway changes, we also detected reduced presence of NKT cell and eosinophils in RA synovial tissues. Overall, our novel approach identified new and previously unsuspected KDG, TF and networks and should help better understanding individual cell regulation and co-regulatory networks in RA pathogenesis, as well as potentially generate new targets for treatment.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, 8803 Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Currently at Institute of Computational Life Sciences, ZHAW, 8400 Winterthur, Switzerland
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, 10029 New York, United States
| | - Percio S. Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, 10029 New York, United States
| | - María Rodríguez Martínez
- IBM Research Europe, 8803 Rüschlikon, Switzerland
- Currently at Yale School of Medicine, 06510 New Haven, United States
| |
Collapse
|
4
|
Takahashi M, Kinugawa S, Takada S, Kakutani N, Furihata T, Sobirin MA, Fukushima A, Obata Y, Saito A, Ishimori N, Iwabuchi K, Tsutsui H. The disruption of invariant natural killer T cells exacerbates cardiac hypertrophy and failure caused by pressure overload in mice. Exp Physiol 2020; 105:489-501. [PMID: 31957919 DOI: 10.1113/ep087652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? We questioned whether the disruption of invariant natural killer T (iNKT) cells exacerbates left ventricular (LV) remodelling and heart failure after transverse aortic constriction in mice. What are the main findings and their importance? Pressure overload induced by transverse aortic constriction increased the infiltration of iNKT cells in mouse hearts. The disruption of iNKT cells exacerbated LV remodelling and hastened the transition from hypertrophy to heart failure, in association with the activation of mitogen-activated protein kinase signalling. Activation of iNKT cells modulated the immunological balance in this process and played a protective role against LV remodelling and failure. ABSTRACT Chronic inflammation is involved in the development of cardiac remodelling and heart failure (HF). Invariant natural killer T (iNKT) cells, a subset of T lymphocytes, have been shown to produce various cytokines and orchestrate tissue inflammation. The pathophysiological role of iNKT cells in HF caused by pressure overload has not been studied. In the present study, we investigated whether the disruption of iNKT cells affected this process in mice. Transverse aortic constriction (TAC) and a sham operation were performed in male C57BL/6J wild-type (WT) and iNKT cell-deficient Jα18 knockout (KO) mice. The infiltration of iNKT cells was increased after TAC. The disruption of iNKT cells exacerbated left ventricular (LV) remodelling and hastened the transition to HF after TAC. Histological examinations also revealed that the disruption of iNKT cells induced greater myocyte hypertrophy and a greater increase in interstitial fibrosis after TAC. The expressions of interleukin-10 and tumour necrosis factor-α mRNA and their ratio in the LV after TAC were decreased in the KO compared with WT mice, which might indicate that the disruption of iNKT cells leads to an imbalance between T-helper type 1 and type 2 cytokines. The phosphorylation of extracellular signal-regulated kinase was significantly increased in the KO mice. The disruption of iNKT cells exacerbated the development of cardiac remodelling and HF after TAC. The activation of iNKT cells might play a protective role against HF caused by pressure overload. Targeting the activation of iNKT cells might thus be a promising candidate as a new therapeutic strategy for HF.
Collapse
Affiliation(s)
- Masashige Takahashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Iwabuchi
- Department of Immunobiology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Wang HX, Li WJ, Hou CL, Lai S, Zhang YL, Tian C, Yang H, Du J, Li HH. CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodelling via IL-10 signalling in mice. Cardiovasc Res 2020; 115:83-93. [PMID: 29939225 DOI: 10.1093/cvr/cvy164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Aims CD1d is a member of the cluster of differentiation 1 (CD1) family of glycoproteins expressed on the surface of various antigen-presenting cells, which is recognized by natural killer T (NKT) cells. CD1d-dependent NKT cells play an important role in immune-mediated diseases; but the role of these cells in regulating cardiac remodelling remains unknown. Methods and results Cardiac remodelling was induced by angiotensin (Ang) II infusion for 2 weeks. Ang II-induced increase in hypertension, cardiac performance, hypertrophy and fibrosis, inflammatory response, and activation of the NF-kB and TGF-β1/Smad2/3 pathways was significantly aggravated in CD1d knockout (CD1dko) mice compared with wild-type (WT) mice, but these effects were markedly abrogated in WT mice treated with α-galactosylceramide (αGC), a specific activator of NKT cells. Adoptive transfer of CD1dko bone marrow cells to WT mice further confirmed the deleterious effect of CD1dko. Moreover, IL-10 expression was significantly decreased in CD1dko hearts but increased in αGC-treated mice. Co-culture experiments revealed that CD1dko dendritic cells significantly reduced IL-10 mRNA expression from NKT cells. Administration of recombinant murine IL-10 to CD1dko mice improved hypertension, cardiac performance, and adverse cardiac remodelling induced by Ang II, and its cardioprotective effect was possibly associated with activation of STAT3, and inhibition of the TGF-β1 and NF-kB pathways. Conclusion These findings revealed a previously undefined role for CD1d-dependent NKT cells in Ang II-induced cardiac remodelling, hence activation of NKT cells may be a novel therapeutic target for hypertensive cardiac disease.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen-Jun Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cui-Liu Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Song Lai
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yun-Long Zhang
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Cui Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Mortier C, Govindarajan S, Venken K, Elewaut D. It Takes "Guts" to Cause Joint Inflammation: Role of Innate-Like T Cells. Front Immunol 2018; 9:1489. [PMID: 30008717 PMCID: PMC6033969 DOI: 10.3389/fimmu.2018.01489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Innate-like T cells such as invariant natural killer T (iNKT) cells and mucosal-associated T (MAIT) cells, characterized by a semi-invariant T cell receptor and restriction toward MHC-like molecules (CD1 and MR1 respectively), are a unique unconventional immune subset acting at the interface of innate and adaptive immunity. Highly represented at barrier sites and capable of rapidly producing substantial amounts of cytokines, they serve a pivotal role as first-line responders against microbial infections. In contrast, it was demonstrated that innate-like T cells can be skewed toward a predominant pro-inflammatory state and are consequently involved in a number of autoimmune and inflammatory diseases like inflammatory bowel diseases and rheumatic disorders, such as spondyloarthritis (SpA) and rheumatoid arthritis. Interestingly, there is link between gut and joint disease as they often co-incide and share certain aspects of the pathogenesis such as established genetic risk factors, a critical role for pro-inflammatory cytokines, such as TNF-α, IL-23, and IL-17 and therapeutic susceptibility. In this regard dysregulated IL-23/IL-17 responses appear to be crucial in both debilitating pathologies and innate-like T cells likely act as key player. In this review, we will explore the remarkable features of iNKT cells and MAIT cells, and discuss their contribution to immunity and combined gut-joint disease.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Srinath Govindarajan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Van Kaer L, Wu L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front Immunol 2018; 9:519. [PMID: 29593743 PMCID: PMC5859017 DOI: 10.3389/fimmu.2018.00519] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT) cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
8
|
Oleinika K, Rosser EC, Matei DE, Nistala K, Bosma A, Drozdov I, Mauri C. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun 2018; 9:684. [PMID: 29449556 PMCID: PMC5814456 DOI: 10.1038/s41467-018-02911-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Regulatory B cells (Breg) express high levels of CD1d that presents lipid antigens to invariant natural killer T (iNKT) cells. The function of CD1d in Breg biology and iNKT cell activity during inflammation remains unclear. Here we show, using chimeric mice, cell depletion and adoptive cell transfer, that CD1d-lipid presentation by Bregs induces iNKT cells to secrete interferon (IFN)-γ to contribute, partially, to the downregulation of T helper (Th)1 and Th17-adaptive immune responses and ameliorate experimental arthritis. Mice lacking CD1d-expressing B cells develop exacerbated disease compared to wild-type mice, and fail to respond to treatment with the prototypical iNKT cell agonist α-galactosylceramide. The absence of lipid presentation by B cells alters iNKT cell activation with disruption of metabolism regulation and cytokine responses. Thus, we identify a mechanism by which Bregs restrain excessive inflammation via lipid presentation.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes, Regulatory/immunology
- Cells, Cultured
- Galactosylceramides/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- K Oleinika
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK, UK
| | - E C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - D E Matei
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - K Nistala
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - A Bosma
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | | | - C Mauri
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
9
|
Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev 2018; 17:142-154. [PMID: 29180124 DOI: 10.1016/j.autrev.2017.11.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Chen J, Yang J, Qiao Y, Li X. Understanding the Regulatory Roles of Natural Killer T Cells in Rheumatoid Arthritis: T Helper Cell Differentiation Dependent or Independent? Scand J Immunol 2017; 84:197-203. [PMID: 27384545 DOI: 10.1111/sji.12460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is the most common chronic systemic autoimmune disease. This disease is thought to be caused by pathogenic T cells. Th1, Th2, Th17 and Treg cells have been implicated in the pathogenesis of RA. These Th cells differentiate from CD4+ T cells primarily due to the effects of cytokines. Natural killer T (NKT) cells are a distinct subset of lymphocytes that can rapidly secrete massive amount of cytokines, including IL-2, IL-4, IL-12 and IFN-γ. Numerous studies showed that NKT cells can influence the differentiation of CD4+ T cells via cytokines in vitro. These findings suggest that NKT cells play an important role in RA by polarizing Th1, Th2, Th17 and Treg cells. In view of the complexity of RA, we discussed whether NKT cells really influence the development of RA through regulating the differentiation of Th cells.
Collapse
Affiliation(s)
- J Chen
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - J Yang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Y Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - X Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Jin HM, Kee SJ, Cho YN, Kang JH, Kim MJ, Jung HJ, Park KJ, Kim TJ, Lee SI, Choi H, Koh JT, Kim N, Park YW. Dysregulated osteoclastogenesis is related to natural killer T cell dysfunction in rheumatoid arthritis. Arthritis Rheumatol 2016; 67:2639-50. [PMID: 26097058 DOI: 10.1002/art.39244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the role played by natural killer T (NKT) cells in osteoclastogenesis and their effects on inflammatory bone destruction. METHODS Patients with rheumatoid arthritis (RA) (n = 25) and healthy controls (n = 12) were enrolled in this study. In vitro osteoclastogenesis experiments were performed using peripheral blood mononuclear cells (PBMCs) in the presence of macrophage colony-stimulating factor and RANKL. PBMCs were cultured in vitro with α-galactosylceramide (αGalCer), and proliferation indices of NKT cells were estimated by flow cytometry. In vivo effects of αGalCer-stimulated NKT cells on inflammation and bone destruction were determined in mice with collagen-induced arthritis. RESULTS In vitro osteoclastogenesis was found to be significantly inhibited by αGalCer in healthy controls but not in RA patients. Proliferative responses of NKT cells and STAT-1 phosphorylation in monocytes in response to αGalCer were impaired in RA patients. Notably, αGalCer-stimulated NKT cells inhibited osteoclastogenesis mainly via interferon-γ production in a cytokine-dependent manner (not by cell-cell contact) and down-regulated osteoclast-associated genes. Mice treated with αGalCer showed less severe arthritis and reduced bone destruction. Moreover, proinflammatory cytokine expression in arthritic joints was found to be reduced by αGalCer treatment. CONCLUSION This study primarily demonstrates that αGalCer-stimulated NKT cells have a regulatory effect on osteoclastogenesis and a protective effect against inflammatory bone destruction. However, it also shows that these effects of αGalCer are diminished in RA patients and that this is related to NKT cell dysfunction. These findings provide important information for those searching for novel therapeutic strategies to prevent bone destruction in RA.
Collapse
Affiliation(s)
- Hye-Mi Jin
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jeong-Hwa Kang
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Moon-Ju Kim
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun-Ju Jung
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Jong Kim
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sang-Il Lee
- Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - Hyuck Choi
- Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Nacksung Kim
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Semerano L, Duvallet E, Belmellat N, Marival N, Schall N, Monteil M, Grouard-Vogel G, Bernier E, Lecouvey M, Hlawaty H, Muller S, Boissier MC, Assier E. Targeting VEGF-A with a vaccine decreases inflammation and joint destruction in experimental arthritis. Angiogenesis 2015; 19:39-52. [PMID: 26419779 DOI: 10.1007/s10456-015-9487-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether vaccination against vascular endothelial growth factor (VEGF) ameliorates collagen-induced arthritis (CIA). METHODS Anti-VEGF vaccines were heterocomplexes consisting of the entire VEGF cytokine (or a VEGF-derived peptide) linked to the carrier protein keyhole limpet hemocyanin (KLH). Two kinds of vaccines were separately tested in two independent experiments of CIA. In the first, we tested a kinoid of the murine cytokine VEGF (VEGF-K), obtained by conjugating VEGF-A to KLH. For the second, we selected two VEGF-A-derived peptide sequences to produce heterocomplexes (Vpep1-K and Vpep2-K). DBA/1 mice were immunized with either VEGF-K, Vpep1-K, or Vpep2-K, before CIA induction. Clinical and histological scores of arthritis, anti-VEGF, anti-Vpep Ab titers, and anti-VEGF Abs neutralizing capacity were determined. RESULTS Both VEGF-K and Vpep1-K significantly ameliorated clinical arthritis scores and reduced synovial inflammation and joint destruction at histology. VEGF-K significantly reduced synovial vascularization. None of the vaccines reduced anti-collagen Ab response in mice. Both VEGF-K and Vpep1-K induced persistently high titers of anti-VEGF Abs capable of inhibiting VEGF-A bioactivity. CONCLUSION Vaccination against the pro-angiogenic factor VEGF-A leads to the production of anti-VEGF polyclonal Abs and has a significant anti-inflammatory effect in CIA. Restraining Ab response to a single peptide sequence (Vpep1) with a peptide vaccine effectively protects immunized mice from joint inflammation and destruction.
Collapse
Affiliation(s)
- Luca Semerano
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Service de Rhumatologie, Assistance Publique - Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, 125 rue de Stalingrad, 93000, Bobigny, France.
| | - Emilie Duvallet
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nadia Belmellat
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nicolas Marival
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Inserm UMR 1148, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nicolas Schall
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Maëlle Monteil
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,CNRS UMR 7244, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | | | | | - Marc Lecouvey
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,CNRS UMR 7244, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Hanna Hlawaty
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Inserm UMR 1148, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Sylviane Muller
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Marie-Christophe Boissier
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Service de Rhumatologie, Assistance Publique - Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, 125 rue de Stalingrad, 93000, Bobigny, France.
| | - Eric Assier
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| |
Collapse
|
13
|
Birkholz AM, Girardi E, Wingender G, Khurana A, Wang J, Zhao M, Zahner S, Illarionov PA, Wen X, Li M, Yuan W, Porcelli SA, Besra GS, Zajonc DM, Kronenberg M. A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-γ Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:924-33. [PMID: 26078271 PMCID: PMC4506857 DOI: 10.4049/jimmunol.1500070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022]
Abstract
In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Petr A Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Michelle Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037;
| |
Collapse
|
14
|
Activation of invariant natural killer T cells by α-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice. J Mol Cell Cardiol 2013; 62:179-88. [PMID: 23774048 DOI: 10.1016/j.yjmcc.2013.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 11/22/2022]
Abstract
Invariant natural killer T (iNKT) cells orchestrate tissue inflammation via regulating various cytokine productions. However the role of iNKT cells has not been determined in myocardial ischemia/reperfusion (I/R) injury. The purpose of this study was to examine whether the activation of iNKT cells by α-galactosylceramide (α-GC), which specifically activates iNKT cells, could affect myocardial I/R injury. I/R or sham operation was performed in male C57BL/6J mice. I/R mice received the injection of either αGC (I/R+αGC, n=48) or vehicle (I/R+vehicle, n=49) 30 min before reperfusion. After 24h, infarct size/area at risk was smaller in I/R+αGC than in I/R+vehicle (37.8 ± 2.7% vs. 47.1 ± 2.5%, P<0.05), with no significant changes in area at risk. The numbers of infiltrating myeloperoxidase- and CD3-positive cells were lower in I/R+αGC. Apoptosis evaluated by TUNEL staining and caspase-3 protein was also attenuated in I/R+αGC. Myocardial gene expression of tumor necrosis factor-α and interleukin (IL)-1β in I/R+αGC was lower to 46% and 80% of that in I/R+vehicle, respectively, whereas IL-10, IL-4, and interferon (IFN)-γ were higher in I/R+αGC than I/R+vehicle by 2.0, 4.1, and 9.6 folds, respectively. The administration of anti-IL-10 receptor antibody into I/R+αGC abolished the protective effects of αGC on I/R injury (infarct size/area at risk: 53.1 ± 5.2% vs. 37.4 ± 3.5%, P<0.05). In contrast, anti-IL-4 and anti-IFN-γ antibodies did not exert such effects. In conclusion, activated iNKT cells by αGC play a protective role against myocardial I/R injury through the enhanced expression of IL-10. Therapies designed to activate iNKT cells might be beneficial to protect the heart from I/R injury.
Collapse
|
15
|
Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol 2013. [PMID: 23199318 DOI: 10.1111/j.1365-2249.2012.04625.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases.
Collapse
Affiliation(s)
- Y Simoni
- INSERM, U986, Hospital Cochin/St Vincent de Paul, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
16
|
Horikoshi M, Goto D, Segawa S, Yoshiga Y, Iwanami K, Inoue A, Tanaka Y, Matsumoto I, Sumida T. Activation of Invariant NKT cells with glycolipid ligand α-galactosylceramide ameliorates glucose-6-phosphate isomerase peptide-induced arthritis. PLoS One 2012; 7:e51215. [PMID: 23251456 PMCID: PMC3520964 DOI: 10.1371/journal.pone.0051215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/30/2012] [Indexed: 12/31/2022] Open
Abstract
Objective Invariant natural killer T (iNKT) cells regulate collagen-induced arthritis (CIA) when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer). Glucose-6-phosphate isomerase (GPI)-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339) can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis. Methods Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO) or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs) by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells. Results α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b) and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells. Conclusion α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.
Collapse
Affiliation(s)
- Masanobu Horikoshi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Goto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Segawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yohei Yoshiga
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Keiichi Iwanami
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Asuka Inoue
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuki Tanaka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
17
|
Kong N, Lan Q, Chen M, Wang J, Shi W, Horwitz DA, Quesniaux V, Ryffel B, Liu Z, Brand D, Zou H, Zheng SG. Antigen-specific transforming growth factor β-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance. ACTA ACUST UNITED AC 2012; 64:2548-58. [PMID: 22605463 DOI: 10.1002/art.34513] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Transferred CD4+CD25+FoxP3+ Treg cells can prevent autoimmune disease, but generally fail to ameliorate established disease. This study was undertaken to compare the effects of antigen-specific Treg cells induced with interleukin-2 (IL-2) and transforming growth factor β (TGFβ) ex vivo (induced Treg [iTreg] cells) to the effects of equivalent expanded thymus-derived natural Treg (nTreg) cells on established collagen-induced arthritis (CIA). METHODS CIA was induced in DBA/1 mice by immunization with type II collagen (CII), and before or shortly after immunization, mice were treated with iTreg or nTreg cells that were generated or expanded in vitro. Clinical scores were determined. Inflammatory responses were determined by measuring the levels of anti-CII antibody in the serum and examining the histologic features of the mouse joints. The Th1/Th17-mediated autoreactive response was evaluated by determining the cytokine profile of the draining lymph node (LN) cells of the mice by flow cytometry. RESULTS Following transfer, nTreg cells exhibited decreased FoxP3 and Bcl-2 expression and decreased suppressive activity, and many converted to Th17 cells. In contrast, transferred iTreg cells were more numerous, retained FoxP3 expression and their suppressive activity in the presence of IL-6, and were resistant to Th17 conversion. Notably, 10 days after the transfer of donor iTreg cells, predominance was shifted from Th17 cells to Treg cells in the draining LNs of recipient mice. CONCLUSION These findings provide evidence that transferred TGFβ-induced iTreg cells are more stable and functional than nTreg cells in mice with established autoimmunity. Moreover, iTreg cells can have tolerogenic effects even in the presence of ongoing inflammation. The therapeutic potential of human iTreg cells in subjects with chronic, immune-mediated inflammatory diseases should be investigated.
Collapse
Affiliation(s)
- Ning Kong
- University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sobirin MA, Kinugawa S, Takahashi M, Fukushima A, Homma T, Ono T, Hirabayashi K, Suga T, Azalia P, Takada S, Taniguchi M, Nakayama T, Ishimori N, Iwabuchi K, Tsutsui H. Activation of natural killer T cells ameliorates postinfarct cardiac remodeling and failure in mice. Circ Res 2012; 111:1037-47. [PMID: 22887770 DOI: 10.1161/circresaha.112.270132] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Chronic inflammation in the myocardium is involved in the development of left ventricular (LV) remodeling and failure after myocardial infarction (MI). Invariant natural killer T (iNKT) cells have been shown to produce inflammatory cytokines and orchestrate tissue inflammation. However, no previous studies have determined the pathophysiological role of iNKT cells in post-MI LV remodeling. OBJECTIVE The purpose of this study was to examine whether the activation of iNKT cells might affect the development of LV remodeling and failure. METHODS AND RESULTS After creation of MI, mice received the injection of either α-galactosylceramide (αGC; n=27), the activator of iNKT cells, or phosphate-buffered saline (n=31) 1 and 4 days after surgery, and were followed during 28 days. Survival rate was significantly higher in MI+αGC than MI+PBS (59% versus 32%, P<0.05). LV cavity dilatation and dysfunction were significantly attenuated in MI+αGC, despite comparable infarct size, accompanied by a decrease in myocyte hypertrophy, interstitial fibrosis, and apoptosis. The infiltration of iNKT cells were increased during early phase in noninfarcted LV from MI and αGC further enhanced them. It also enhanced LV interleukin (IL)-10 gene expression at 7 days, which persisted until 28 days. AntienIL-10 receptor antibody abrogated these protective effects of αGC on MI remodeling. The administration of αGC into iNKT cell-deficient Jα18(-/-) mice had no such effects, suggesting that αGC was a specific activator of iNKT cells. CONCLUSIONS iNKT cells play a protective role against post-MI LV remodeling and failure through the enhanced expression of cardioprotective cytokines such as IL-10.
Collapse
Affiliation(s)
- Mochamad Ali Sobirin
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo Faculty of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kobayashi T, Kawamura H, Kanda Y, Matsumoto H, Saito S, Takeda K, Kawamura T, Abo T. Natural killer T cells suppress zymosan A-mediated granuloma formation in the liver by modulating interferon-γ and interleukin-10. Immunology 2012; 136:86-95. [PMID: 22268994 DOI: 10.1111/j.1365-2567.2012.03562.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wild-type (WT) and CD1d(-/-) [without natural killer (NK) T cells] mice were treated with zymosan A to induce granuloma formation in the liver. Increased granuloma formation was seen in NKT-less mice on days 7 and 14 after administration. WT mice showed limited granuloma formation, and zymosan A eventually induced NKT cell accumulation as identified by their surface marker (e.g. CD1d-tetramer). Zymosan A augmented the expression of Toll-like receptor 2 on the cell surface of both macrophages and NKT cells. One possible reason for accelerated granuloma formation in NKT-less mice was increased production of interferon- γ (IFN-γ); a theory that was confirmed using IFN-γ(-/-) mice. Also, zymosan A increased interleukin-10 production in WT mice, which suppresses IFN-γ production. Taken together, these results suggest that NKT cells in the liver have the potential to suppress zymosan A-mediated granuloma formation.
Collapse
Affiliation(s)
- Takahiro Kobayashi
- Department of Immunology, Niigata University School of Medicine, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ratsimandresy RA, Duvallet E, Assier E, Semerano L, Delavallée L, Bessis N, Zagury JF, Boissier MC. Active immunization against IL-23p19 improves experimental arthritis. Vaccine 2011; 29:9329-36. [DOI: 10.1016/j.vaccine.2011.09.134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 12/26/2022]
|
21
|
Jung S, Park YK, Shin JH, Lee H, Kim SY, Lee GR, Park SH. The requirement of natural killer T-cells in tolerogenic APCs-mediated suppression of collagen-induced arthritis. Exp Mol Med 2011; 42:547-54. [PMID: 20610917 DOI: 10.3858/emm.2010.42.8.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
TGF-beta-induced tolerogenic-antigen presenting cells (Tol-APCs) could induce suppression of autoimmune diseases such as collagen-induced arthritis (CIA) and allergic asthma. In contrast, many studies have shown that NKT cells are involved in the pathogenesis of Th1-mediated autoimmune joint inflammation and Th2-mediated allergic pulmonary inflammation. In this study, we investigated the effect of CD1d-restricted NKT cells in the Tol-APCs-mediated suppression of autoimmune disease using a murine CIA model. When CIA-induced mice were treated with Tol-APCs obtained from CD1d+/- or CD1d-/- mice, unlike CD1d+/- APCs, CD1d-/- Tol-APCs failed to suppress CIA. More specifically, CD1d-/- Tol-APCs failed to suppress the production of inflammatory cytokines and the induction of Th2 responses by antigen-specific CD4 T cells both in vitro and in vivo. Our results demonstrate that the presence of CD1d-restricted NKT cells is critical for the induction of Tol-APCs-mediated suppression of CIA.
Collapse
Affiliation(s)
- Sundo Jung
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Yoshiga Y, Goto D, Segawa S, Horikoshi M, Hayashi T, Matsumoto I, Ito S, Taniguchi M, Sumida T. Activation of natural killer T cells by α-carba-GalCer (RCAI-56), a novel synthetic glycolipid ligand, suppresses murine collagen-induced arthritis. Clin Exp Immunol 2011; 164:236-47. [PMID: 21391989 DOI: 10.1111/j.1365-2249.2011.04369.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alpha-carba-GalCer (RCAI-56), a novel synthetic analogue of α-galactosylceramide (α-GalCer), stimulates invariant natural killer T (NK T) cells to produce interferon (IFN)-γ. IFN-γ exhibits immunoregulatory properties in autoimmune diseases by suppressing T helper (Th)-17 cell differentiation and inducing regulatory T cells and apoptosis of autoreactive T cells. Here, we investigated the protective effects of α-carba-GalCer on collagen-induced arthritis (CIA) in mice. First, we confirmed that α-carba-GalCer selectively induced IFN-γ in CIA-susceptible DBA/1 mice in vivo. Then, DBA/1 mice were immunized with bovine type II collagen (CII) and α-carba-GalCer. The incidence and clinical score of CIA were significantly lower in α-carba-GalCer-treated mice. Anti-IFN-γ antibodies abolished the beneficial effects of α-carba-GalCer, suggesting that α-carba-GalCer ameliorated CIA in an IFN-γ-dependent manner. Treatment with α-carba-GalCer reduced anti-CII antibody production [immunoglobulin (Ig)G and IgG2a] and CII-reactive interleukin (IL)-17 production by draining lymph node (DLN) cells, did not induce apoptosis or regulatory T cells, and significantly increased the ratio of the percentage of IFN-γ-producing T cells to IL-17-producing T cells (Th1/Th17 ratio). Moreover, the gene expression levels of IL-6 and IL-23p19, Th17-related cytokines, were reduced significantly in mice treated with α-carba-GalCer. In addition, we observed higher IFN-γ production by NK T cells in α-carba-GalCer-treated mice in the initial phase of CIA. These findings indicate that α-carba-GalCer polarizes the T cell response toward Th1 and suppresses Th17 differentiation or activation, suggesting that α-carba-GalCer, a novel NK T cell ligand, can potentially provide protection against Th17-mediated autoimmune arthritis by enhancing the Th1 response.
Collapse
Affiliation(s)
- Y Yoshiga
- Division of Clinical Immunology, Doctoral Program in Clinical Sciences, University of Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu L, Van Kaer L. Natural killer T cells in health and disease. Front Biosci (Schol Ed) 2011; 3:236-51. [PMID: 21196373 DOI: 10.2741/s148] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural killer T (NKT) cells are a subset of T lymphocytes that share surface markers and functional characteristics with both conventional T lymphocytes and natural killer cells. Most NKT cells express a semi-invariant T cell receptor that reacts with glycolipid antigens presented by the major histocompatibility complex class I-related protein CD1d on the surface of antigen-presenting cells. NKT cells become activated during a variety of infections and inflammatory conditions, rapidly producing large amounts of immunomodulatory cytokines. NKT cells can influence the activation state and functional properties of multiple other cell types in the immune system and, thus, modulate immune responses against infectious agents, autoantigens, tumors, tissue grafts and allergens. One attractive aspect of NKT cells is that their immunomodulatory activities can be readily harnessed with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid alpha-galactosylceramide. These properties of NKT cells are being exploited for therapeutic intervention to prevent or treat cancer, infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Lan Wu
- Department of Microbiology and Immunology, Room A-5301, Medical Center North, 1161 21st Avenue South, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
24
|
Denys A, Thiolat A, Descamps D, Lemeiter D, Benihoud K, Bessis N, Boissier MC. Intra-articular electrotransfer of mouse soluble tumour necrosis factor receptor in a murine model of rheumatoid arthritis. J Gene Med 2010; 12:659-68. [PMID: 20623491 DOI: 10.1002/jgm.1482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and destruction of the joints. In the collagen-induced arthritis mouse model of RA, we developed a nonviral gene therapy method designed to block in situ the main cytokine tumour necrosis factor (TNF)-alpha METHODS Electrotransfer was used to deliver a plasmid encoding extracellular domain of mouse soluble TNF-alpha receptor type I fused to the Fc fragment of mouse immunoglobulin (Ig)G1 (pTNFR-Is) corresponding to a dimeric TNF-alpha soluble receptor fusion protein (mTNFR-Is/Ig). RESULTS Delivery of the plasmid into the knees at symptom onset improved the histological inflammation and destruction not only at the knees, but also at the ankles, indicating a local and a regional therapeutic effect. The plasmid was detected in synovial membrane and meniscus specimens from the injected joints. In the synovial membrane, 15 days post-injection, interleukin (IL)-17 and TNF-alpha mRNAs expression were increased, whereas IL-10 mRNA was unchanged. However, the empty plasmid exerted a pro-inflammatory effect 30 days post-injection. CONCLUSIONS These data indicate that local nonviral gene therapy against TNF-alpha is effective, although further work is needed to decrease plasmid induced inflammation.
Collapse
Affiliation(s)
- Anne Denys
- EA4222, Li2P, University of Paris 13, Bobigny, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Novak J, Lehuen A. Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 2010; 53:263-70. [PMID: 21185200 DOI: 10.1016/j.cyto.2010.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 10/06/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023]
Abstract
iNKT cells, CD1d dependent natural killer T cells are a unique population of T cells. The capacity of iNKT cells to produce regulatory cytokines first provided an indication of their regulatory potential. Later on, in experimental models as well as in patients afflicted with an auto-immune disease, such as Type 1 diabetes mellitus, multiple sclerosis, and systemic lupus erythematosus along with others, a deficit in iNKT cell number was observed, suggesting the role these cells may possibly have in the prevention of auto-immune diseases. More importantly, experimental strategies which focused on increasing the volume or stimulation of iNKT cells in laboratory animals, demonstrated an improved level of protection against the development of auto-immune diseases. This article reviews the mechanism of protection against autoimmunity by iNKT cells, discusses the obstacles against and indications for the potential use of iNKT cell manipulation in the treatment of human auto-immune diseases.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Centre of Research for Diabetes, Endocrinological Diseases and Clinical Nutrition, Czech Republic.
| | | |
Collapse
|
26
|
Caielli S, Sorini C, Falcone M. The dangerous liaison between iNKT cells and dendritic cells: does it prevent or promote autoimmune diseases? Autoimmunity 2010; 44:11-22. [PMID: 20672910 DOI: 10.3109/08916931003782130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Invariant natural killer T (iNKT) cells represent an important regulatory T-cell subset that perceives signals of danger and/or cellular distress and modulate the adaptive immune response accordingly. In the presence of pathogens, iNKT cells acquire an adjuvant function that is fundamental to boost anti-microbial and anti-tumor immunity. At the same time, iNKT cells can play a negative regulatory function to maintain peripheral T-cell tolerance toward self-antigens and to prevent autoimmune disease. Both these effects of iNKT cells involve the modulation of the activity of dendritic cells (DCs) through cell-cell interaction. Indeed, iNKT cells can either boost Th1 immunity by enhancing maturation of pro-inflammatory DCs or promote immune tolerance through the maturation of tolerogenic DCs. This dual action of iNKT cells opens questions on the modalities by which a single-cell subset can exert opposite effects on DCs and may even put in question the overall immunosuppressive properties of iNKT cells. This review presents the large body of evidence that shows the ability of iNKT cells to negatively regulate autoimmunity and to prevent autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. In addition, an update is provided on the mechanisms of iNKT-DCs interactions and how this can result in inflammatory or tolerogenic responses.
Collapse
Affiliation(s)
- Simone Caielli
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
27
|
Löfgren SE, Delgado-Vega AM, Gallant CJ, Sánchez E, Frostegård J, Truedsson L, de Ramón Garrido E, Sabio JM, González-Escribano MF, Pons-Estel BA, D'Alfonso S, Witte T, Lauwerys BR, Endreffy E, Kovács L, Vasconcelos C, Martins da Silva B, Martín J, Alarcón-Riquelme ME, Kozyrev SV. A 3′-untranslated region variant is associated with impaired expression of CD226 in T and natural killer T cells and is associated with susceptibility to systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:3404-14. [DOI: 10.1002/art.27677] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Teige A, Bockermann R, Hasan M, Olofsson KE, Liu Y, Issazadeh-Navikas S. CD1d-Dependent NKT Cells Play a Protective Role in Acute and Chronic Arthritis Models by Ameliorating Antigen-Specific Th1 Responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:345-56. [DOI: 10.4049/jimmunol.0901693] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Lo CKC, Lam QLK, Sun L, Wang S, Ko KH, Xu H, Wu CY, Zheng BJ, Lu L. Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. ACTA ACUST UNITED AC 2010; 58:2700-11. [PMID: 18759269 DOI: 10.1002/art.23760] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE An altered phenotype and dysfunction of natural killer (NK) cells have been observed in patients with rheumatoid arthritis. The aim of this study was to determine whether dysregulated NK cells contribute to the pathogenesis of experimental arthritis. METHODS For initiation of collagen-induced arthritis (CIA), DBA/1J mice were immunized with type II collagen in Freund's adjuvant. Control mice were immunized with adjuvant alone. NK cells from the blood, spleens, and bone marrow of immunized mice were analyzed by flow cytometry. Levels of interleukin-17 (IL-17) secretion and autoantibody production were measured by enzyme-linked immunosorbent assays. Immunized mice in which NK cells were depleted by anti-asialo G(M1) antibody treatment were assessed for the development of CIA. Moreover, sorting-purified NK cells from both mice with CIA and control mice were analyzed for cytokine gene expression. RESULTS We observed markedly reduced frequencies of NK cells in the blood and spleens of mice with CIA compared with the frequencies in adjuvant-treated control mice. Upon NK cell depletion, immunized mice displayed an early onset of arthritis with more severe clinical symptoms, which correlated with increased plasma cell generation and autoantibody production. Moreover, a substantially increased number of IL-17-secreting cells in synovial tissue and more pronounced joint damage were observed. Freshly isolated NK cells from mice with CIA showed markedly reduced expression of interferon-gamma (IFNgamma). Furthermore, coculture of normal NK cells and CD4+ T cells revealed that NK cells strongly suppressed production of Th17 cells via their IFNgamma production. CONCLUSION These results suggest that NK cells play a protective role in the development of experimental arthritis, an effect that is possibly mediated by suppressing Th17 cell generation via IFNgamma production.
Collapse
Affiliation(s)
- Cherry Kam Chun Lo
- Department of Pathology, Center of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Miellot-Gafsou A, Biton J, Bourgeois E, Herbelin A, Boissier MC, Bessis N. Early activation of invariant natural killer T cells in a rheumatoid arthritis model and application to disease treatment. Immunology 2010; 130:296-306. [PMID: 20113367 DOI: 10.1111/j.1365-2567.2009.03235.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Invariant NKT (iNKT) cells are a distinctive subtype of CD1d-restricted T cells involved in regulating autoimmunity and capable of producing various T helper type 1 (Th1), Th2 and Th17 cytokines. Activation of iNKT cells by their exogenous ligand alpha-galactosylceramide (alpha-GalCer) exerts therapeutic effects in autoimmune diseases such as rheumatoid arthritis (RA). However, the pathophysiological role of iNKT cells in RA, in the absence of exogenous stimulation, is incompletely understood. We investigated the potential pathophysiological effects of iNKT cells in mice with collagen-induced arthritis (CIA), a model of RA. We found that iNKT cells underwent activation only in the early phases of the disease (6 days post-induction). In the liver, but not the spleen or lymph nodes, this early activation led to the release of interleukins -4, -17A and -10 and of interferon-gamma; and an increased CD69 expression. Importantly, clinical and histological signs of arthritis were improved by the functional blockade of iNKT cells by a monoclonal antibody to CD1d at the early phase of the disease. This improvement was associated on day 6 post-induction with decreased expression of co-stimulatory molecules (CD80, CD86, CD40) on splenic dendritic cells and macrophages, whereas regulatory T-cell suppressive effects and proportions were not modified. Taken in concert, these findings suggest that iNKT cells are activated early in the course of CIA and contribute to the pathogenesis of arthritis. Therefore, iNKT-cell activation may be a valid treatment target in RA.
Collapse
|
32
|
Jung S, Shin HS, Hong C, Lee H, Park YK, Shin JH, Hong S, Lee GR, Park SH. Natural killer T cells promote collagen-induced arthritis in DBA/1 mice. Biochem Biophys Res Commun 2009; 390:399-403. [PMID: 19737532 DOI: 10.1016/j.bbrc.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
The role of NKT cells in the pathogenesis of collagen-induced arthritis (CIA) remains unclear since most studies have used C57BL/6 (B6) mice, which are less susceptible to CIA than mice with a DBA/1 background. To clarify the immunological functions of NKT cells in CIA, it is necessary to analyze in detail the effects of NKT cell deficiency on CIA development in DBA/1 mice. The incidence and severity of CIA were significantly exacerbated in DBA/1CD1d(+/-) mice as compared to DBA/1CD1d(-/-) mice. In DBA/1CD1d(+/-) mice, antigen-specific responses of B and T cells against CII were remarkably increased and inflammatory cytokine levels were also increased in vivo and in vitro. The number of IL-17-producing NKT cells significantly increased in DBA/1CD1d(+/-) mice as the disease progressed. Our results clearly show that NKT cells are involved not only in accelerating the severity and incidence of CIA but also in perpetuating the disease progression.
Collapse
Affiliation(s)
- Sundo Jung
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bharhani MS, Chiu B, Na KS, Inman RD. Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int Immunol 2009; 21:859-70. [DOI: 10.1093/intimm/dxp052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Bloquel C, Denys A, Boissier MC, Apparailly F, Bigey P, Scherman D, Bessis N. Intra-articular electrotransfer of plasmid encoding soluble TNF receptor variants in normal and arthritic mice. J Gene Med 2008; 9:986-93. [PMID: 17912759 DOI: 10.1002/jgm.1088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Anti-inflammatory gene therapy is promising in inflammatory diseases such as rheumatoid arthritis (RA). We have previously demonstrated that intra-muscular (i.m.) electrotransfer (ET) of plasmids encoding three different human tumor necrosis factor-alpha-soluble receptor I variants (hTNFR-Is) exert protective effects in an experimental RA model. However, such a systemic approach could be responsible for side effects. The present study aimed at performing an intra-articular (i.a.) gene therapy by electrotransfer using the hTNFR-Is plasmids. METHODS AND RESULTS We evaluated targeting of mice joints by CCD optical imaging after i.a. ET of a luciferase-encoding plasmid and we showed that ET led to strongly increased transgene expression in a plasmid dose-dependent manner. Moreover, articular and seric hTNFR-Is was detectable for 2 weeks. As expected, systemic hTNFR-Is rates were lower after i.a. ET than after i.m. ET. A longer protein secretion could be achieved with several i.a. ETs. Also, we observed that hTNFR-Is expression within arthritic joints was slightly higher than in normal joints. CONCLUSIONS In collagen-induced arthritis (CIA), a mouse model for RA, we demonstrated that hTNFR-Is/mIgG1-encoding plasmid i.a. ET decreased joint destruction in the ankles. In conclusion, our results suggest that local TNFR-Is gene therapy may play a role in decreasing joint destruction in CIA.
Collapse
Affiliation(s)
- C Bloquel
- Inserm, Eri-18, F-93017 Bobigny, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Coppieters K, Van Beneden K, Jacques P, Dewint P, Vervloet A, Vander Cruyssen B, Van Calenbergh S, Chen G, Franck RW, Verbruggen G, Deforce D, Matthys P, Tsuji M, Rottiers P, Elewaut D. A Single Early Activation of Invariant NK T Cells Confers Long-Term Protection against Collagen-Induced Arthritis in a Ligand-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2007; 179:2300-9. [PMID: 17675491 DOI: 10.4049/jimmunol.179.4.2300] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The glycosphingolipid alpha-galactosylceramide (alpha-GalCer) has been shown to be a potent activator of invariant NKT (iNKT) cells, rapidly inducing large amounts of both Th1 and Th2 cytokines upon injection in mice. The C-glycoside analog of alpha-GalCer (alpha-C-GalCer), by contrast, results in an enhanced Th1-type response upon activation of iNKT cells. We administered a single dose of these Ags to DBA/1 mice during the early induction phase of collagen-induced arthritis and demonstrated therapeutic efficacy of alpha-GalCer when administered early rather than late during the disease. Surprisingly, the Th1-polarizing analog alpha-C-GalCer also conferred protection. Furthermore, a biphasic role of IFN-gamma in the effect of iNKT cell stimulation was observed. Whereas in vivo neutralization of IFN-gamma release induced by either alpha-GalCer or alpha-C-GalCer early during the course of disease resulted in partial improvement of clinical arthritis symptoms, blockade of IFN-gamma release later on resulted in a more rapid onset of arthritis. Although no phenotypic changes in conventional T cells, macrophages, or APCs could be detected, important functional differences in T cell cytokine production in serum were observed upon polyclonal T cell activation, 2 wk after onset of arthritis. Whereas alpha-GalCer-treated mice produced significantly higher amounts of IL-10 upon systemic anti-CD3 stimulation compared with PBS controls, T cells from alpha-C-GalCer-treated mice, by contrast, produced substantially lower levels of cytokines, suggesting the involvement of different protective mechanisms. In conclusion, these findings suggest long-term, ligand-specific, time-dependent, and partially IFN-gamma-dependent immunomodulatory effects of iNKT cells in collagen-induced arthritis.
Collapse
Affiliation(s)
- Ken Coppieters
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To update the knowledge on the contribution of T cells in rheumatoid arthritis, a selection of publications between the end of 2005 and 2006 were reviewed. RECENT FINDINGS Th17 cells driven by TGF-beta, IL-1, IL-6 and IL-23 challenge previous concepts of 'Th1'-induced rheumatoid arthritis. Other advancements in IL-17 studies include novel concepts on the IL-17 receptor and additional information on the mechanism of IL-17-induced effects. Regulatory T cells fail to control disease due to defective function secondary to the synovial inflammatory milieu. The predominance of pathogenic effector T cells in the presence of impaired T-cell regulatory mechanisms may therefore contribute to rheumatoid arthritis chronicity. Cellular therapies attempt to restore the balance that includes production of immunoregulatory cytokines such as IL-4 or IL-10. Better T-cell-targeted therapies controlling costimulation are in place with purported increased efficacy and durability, including anti-tumour necrosis factor nonresponders. Additional direct and indirect T-cell approaches include antagonism of T-cell-derived cytokines, T-cell activation or B-cell ablation. SUMMARY A renewed interest in T cells comes from the discovery of Th17 in rheumatoid arthritis and from novel findings on the role of T cells in rheumatoid arthritis induction, chronicity and relapse.
Collapse
Affiliation(s)
- Myew-Ling Toh
- Department of Immunology and Rheumatology, Hôpital Edouard Herriot, Lyon, France
| | | |
Collapse
|
37
|
Chu CQ, Swart D, Alcorn D, Tocker J, Elkon KB. Interferon-gamma regulates susceptibility to collagen-induced arthritis through suppression of interleukin-17. ACTA ACUST UNITED AC 2007; 56:1145-51. [PMID: 17393396 DOI: 10.1002/art.22453] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The enhanced expression of experimental arthritis in the absence of interferon-gamma (IFNgamma) suggests that IFNgamma suppresses arthritis. Interleukin-17 (IL-17) is a pivotal T cell cytokine in arthritis, and in vitro studies have indicated that IFNgamma suppresses IL-17 production. We undertook this study to test the hypothesis that resistance to collagen-induced arthritis (CIA) in C57BL/6 (B6) mice is regulated by IFNgamma-mediated suppression of IL-17. METHODS Wild-type (WT) B6 mice, IFNgamma-knockout (KO) B6 mice, and DBA/1 mice were immunized with type II collagen (CII) in Freund's complete adjuvant (CFA). Lymphocytes from immunized mice were analyzed for cytokine production ex vivo by intracellular staining or restimulation with CII and enzyme-linked immunosorbent assays. In vivo blockade of IL-17 was achieved with an anti-IL-17 monoclonal antibody (mAb). RESULTS CII restimulation of T cells from CII/CFA-immunized mice resulted in an approximately 5-fold increase in IL-17 production in IFNgamma-KO B6 mice compared with WT B6 mice. Neutralization of IFNgamma increased IL-17 production in WT B6 mice, and neutralization of IL-4 had a synergistic effect. Interestingly, the prototypical CIA-susceptible strain DBA/1 also demonstrated a high IL-17 and a low IFNgamma cytokine profile compared with WT B6 mice. Administration of the anti-IL-17 mAb attenuated arthritis in DBA/1 mice and almost completely prevented expression of arthritis in IFNgamma-KO B6 mice. CONCLUSION These results indicate that sensitivity of IFNgamma-deficient B6 mice to CIA is associated with high IL-17 production and that this cytokine is required for expression of arthritis in this strain.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Collagen Type II/immunology
- Collagen Type II/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Gene Silencing
- Genetic Predisposition to Disease
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-17/biosynthesis
- Interleukin-17/immunology
- Interleukin-17/pharmacology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/metabolism
- Mice
- Mice, Inbred DBA
- Mice, Knockout
- NIH 3T3 Cells/drug effects
- NIH 3T3 Cells/metabolism
- Spleen/drug effects
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Cong-Qiu Chu
- Division of Rheumatology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
38
|
Wahl C, Bochtler P, Schirmbeck R, Reimann J. Type I IFN-producing CD4 Valpha14i NKT cells facilitate priming of IL-10-producing CD8 T cells by hepatocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:2083-93. [PMID: 17277112 DOI: 10.4049/jimmunol.178.4.2083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Upon entering the liver CD8 T cells encounter large numbers of NKT cells patrolling the hepatocyte (HC) surface facing the perisinusoidal space. We asked whether hepatic NKT cells modulate the priming of CD8 T cells by HC. Hepatic (alpha-galactosyl-ceramide-loaded CD1d dimer binding) NKT cells produce predominantly IL-4 when stimulated with glycolipid-presenting HC but predominantly IFN-gamma when stimulated with glycolipid-presenting dendritic cells. These NKT cells prime naive CD8 T cells to a (K(b)-presented) peptide ligand if they simultaneously recognize a CD1d-binding glycolipid presented to them on the surface of the responding CD8 T cells that they prime. No IL-10-producing CD8 T cells are detected if these T cells are primed by either HC or NKT cells. In contrast, IL-10 is produced by HC-primed CD8 T cells if IFN-beta-producing NKT cells are coactivated by the same HC presenting a glycolipid (in the context of CD1d) and an antigenic peptide (in the context of K(b)). Hence, IL-10-producing CD8 T cells are generated in a type I IFN-dependent manner if the three cell types (CD8 T cells, NKT cells, and ligand-presenting HC) specifically and closely interact. IL-10-producing CD8 T cells generated under these conditions down-modulate IL-2 (and proliferative) responses of naive CD4 or CD8 T cells primed by DC. If in close proximity, NKT cells can thus locally modulate the phenotype of CD8 T cells during their priming by HC thereby limiting the local activation of proinflammatory immune effector cells and protecting the liver against immune injury.
Collapse
Affiliation(s)
- Christian Wahl
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
39
|
Le Buanec H, Delavallée L, Bessis N, Paturance S, Bizzini B, Gallo R, Zagury D, Boissier MC. TNFalpha kinoid vaccination-induced neutralizing antibodies to TNFalpha protect mice from autologous TNFalpha-driven chronic and acute inflammation. Proc Natl Acad Sci U S A 2006; 103:19442-7. [PMID: 17158801 PMCID: PMC1748245 DOI: 10.1073/pnas.0604827103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The proinflammatory cytokine TNFalpha is a potent mediator of septic shock and a therapeutic target for chronic inflammatory pathologies including rheumatoid arthritis and Crohn's disease. As an alternative to anti-human TNFalpha (hTNFalpha) mAbs and other hTNFalpha blocker approved drugs, we developed an active anti-hTNFalpha immunotherapy, based on a vaccine comprised of a keyhole limpet hemocyanin-hTNFalpha heterocomplex immunogen (hTNFalpha kinoid) adjuvanted in incomplete Freund's adjuvant. In mice transgenic for hTNFalpha (TTg mice), hTNFalpha kinoid vaccination elicited high titers of Abs that neutralized hTNFalpha bioactivities but did not result in a cellular response to hTNFalpha. The vaccine was safe and effective in two experimental models. Kinoid-immunized but not control TTg mice resisted hTNFalpha-driven shock in one model and were prevented from spontaneous arthritis, inflammatory synovitis, and articular destruction in a second model. These data demonstrate an anti-cytokine induction of autoimmune protection against both acute and chronic hTNFalpha exposure. They show that active vaccination against a human cytokine can be achieved, and that the immune response can be effective and safe.
Collapse
Affiliation(s)
- Hélène Le Buanec
- *Neovacs, Incorporated, Université Pierre et Marie Curie, 96 Boulevard Raspail, 75006 Paris, France
| | - Laure Delavallée
- Institut National de la Santé et de la Recherche Médicale (INSERM) ERI18, 74 Rue Marcel Cachin, 93017 Bobigny, France
- Université de Paris 13, 93017 Bobigny, France
| | - Natacha Bessis
- Institut National de la Santé et de la Recherche Médicale (INSERM) ERI18, 74 Rue Marcel Cachin, 93017 Bobigny, France
- Université de Paris 13, 93017 Bobigny, France
| | - Sébastien Paturance
- *Neovacs, Incorporated, Université Pierre et Marie Curie, 96 Boulevard Raspail, 75006 Paris, France
| | - Bernard Bizzini
- *Neovacs, Incorporated, Université Pierre et Marie Curie, 96 Boulevard Raspail, 75006 Paris, France
| | - Robert Gallo
- Institute of Human Virology, University of Maryland, 725 West Lombard Street, Suite S307, Baltimore, MD 21201
| | - Daniel Zagury
- *Neovacs, Incorporated, Université Pierre et Marie Curie, 96 Boulevard Raspail, 75006 Paris, France
- To whom correspondence should be addressed. E-mail:
| | - Marie-Christophe Boissier
- Institut National de la Santé et de la Recherche Médicale (INSERM) ERI18, 74 Rue Marcel Cachin, 93017 Bobigny, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Department of Rheumatology, Avicenne Hospital, 93009 Bobigny, France; and
| |
Collapse
|