1
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
2
|
Liu W, Jiang H, Liu X, Zheng Y, Liu Y, Pan F, Yu F, Li Z, Gu M, Du Q, Li X, Zhang H, Han D. Altered intestinal microbiota enhances adenoid hypertrophy by disrupting the immune balance. Front Immunol 2023; 14:1277351. [PMID: 38090578 PMCID: PMC10715246 DOI: 10.3389/fimmu.2023.1277351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Adenoid hypertrophy (AH) is a common upper respiratory disorder in children. Disturbances of gut microbiota have been implicated in AH. However, the interplay of alteration of gut microbiome and enlarged adenoids remains elusive. Methods 119 AH children and 100 healthy controls were recruited, and microbiome profiling of fecal samples in participants was performed using 16S rRNA gene sequencing. Fecal microbiome transplantation (FMT) was conducted to verify the effects of gut microbiota on immune response in mice. Results In AH individuals, only a slight decrease of diversity in bacterial community was found, while significant changes of microbial composition were observed between these two groups. Compared with HCs, decreased abundances of Akkermansia, Oscillospiraceae and Eubacterium coprostanoligenes genera and increased abundances of Bacteroides, Faecalibacterium, Ruminococcus gnavus genera were revealed in AH patients. The abundance of Bacteroides remained stable with age in AH children. Notably, a microbial marker panel of 8 OTUs were identified, which discriminated AH from HC individuals with an area under the curve (AUC) of 0.9851 in the discovery set, and verified in the geographically different validation set, achieving an AUC of 0.9782. Furthermore, transfer of mice with fecal microbiota from AH patients dramatically reduced the proportion of Treg subsets within peripheral blood and nasal-associated lymphoid tissue (NALT) and promoted the expansion of Th2 cells in NALT. Conclusion These findings highlight the effect of the altered gut microbiota in the AH pathogenesis.
Collapse
Affiliation(s)
- Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huier Jiang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yue Zheng
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Pathology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meizhen Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Medical School, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Ye Q, Sun S, Deng J, Chen X, Zhang J, Lin S, Du H, Gao J, Zou X, Lin X, Cai Y, Lu Z. Using 16S rDNA and metagenomic sequencing technology to analyze the fecal microbiome of children with avoidant/restrictive food intake disorder. Sci Rep 2023; 13:20253. [PMID: 37985845 PMCID: PMC10661725 DOI: 10.1038/s41598-023-47760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
To investigate the gut microbiota distribution and its functions in children with avoidant/restrictive food intake disorder (ARFID). A total of 135 children were enrolled in the study, including 102 children with ARFID and 33 healthy children. Fecal samples were analyzed to explore differences in gut microbiota composition and diversity and functional differences between the ARFID and healthy control (HC) groups via 16S rDNA and metagenomic sequencing. The gut microbiota composition and diversity in children with ARFID were different from those in heathy children, but there is no difference in the composition and diversity of gut microbiota between children at the age of 3-6 and 7-12 with ARFID. At the phylum level, the most abundant microbes in the two groups identified by 16S rDNA and metagenomic sequencing were the same. At the genus level, the abundance of Bacteroides was higher in the ARFID group (P > 0.05); however, different from the result of 16SrDNA sequencing, metagenomic sequencing showed that the abundance of Bacteroides in the ARFID group was significantly higher than that in the HC group (P = 0.041). At the species level, Escherichia coli, Streptococcus thermophilus and Lachnospira eligens were the most abundant taxa in the ARFID group, and Prevotella copri, Bifidobacterium pseudocatenulatum, and Ruminococcus gnavus were the top three microbial taxa in the HC group; there were no statistically significant differences between the abundance of these microbial taxa in the two groups. LefSe analysis indicated a greater abundance of the order Enterobacterales and its corresponding family Enterobacteriaceae, the family Bacteroidaceae and corresponding genus Bacteroides, the species Bacteroides vulgatus in ARFID group, while the abundance of the phylum Actinobacteriota and its corresponding class Actinobacteria , the order Bifidobacteriales and corresponding family Bifidobacteriaceae, the genus Bifidobacterium were enriched in the HC group. There were no statistically significant differences in the Chao1, Shannon and Simpson indices between the Y1 and Y2 groups (P = 0.1, P = 0.06, P = 0.06). At the phylum level, Bacillota, Bacteroidota, Proteobacteria and Actinobacteriota were the most abundant taxa in both groups, but there were no statistically significant differences among the abundance of these bacteria (P = 0.958, P = 0.456, P = 0.473, P = 0.065). At the genus level, Faecalibacterium was more abundant in the Y2 group than in the Y1 group, and the difference was statistically significant (P = 0.037). The KEGG annotation results showed no significant difference in gut microbiota function between children with ARFID and healthy children; however, GT26 was significantly enriched in children with ARFID based on the CAZy database. The most abundant antibiotic resistance genes in the ARFID group were the vanT, tetQ, adeF, ermF genes, and the abundance of macrolide resistance genes in the ARFID group was significantly higher than that in the HC group (P = 0.041). Compared with healthy children, children with ARFID have a different distribution of the gut microbiota and functional genes. This indicates that the gut microbiome might play an important role in the pathogenesis of ARFID.Clinical trial registration: ChiCTR2300074759.
Collapse
Affiliation(s)
- Qina Ye
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shaodan Sun
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jian Deng
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaogang Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Suihua Lin
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Hongxuan Du
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Jinxiong Gao
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaoyin Zou
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaoling Lin
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yawen Cai
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhuoming Lu
- Department of Traditional Chinese Medicine, Guangzhou Women and Children Medical Center, No. 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
4
|
Li S, Wang D, Cheng J, Sun J, Kalvakolanu DV, Zhao X, Wang D, You Y, Zhang L, Yu D. A photodynamically sensitized dendritic cell vaccine that promotes the anti-tumor effects of anti-PD-L1 monoclonal antibody in a murine model of head and neck squamous cell carcinoma. J Transl Med 2022; 20:505. [PMID: 36329529 PMCID: PMC9635135 DOI: 10.1186/s12967-022-03707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are promising tools in combating several cancers, including head and neck squamous cell carcinoma (HNSCC). However, a substantial portion of HNSCC patients do not respond to PD-L1 antibody. Here we describe a photodynamic therapeutic (PDT) approach to enhance anti-tumor effects of the anti-PD-L1 antibody. METHODS Phototoxicity of PDT was confirmed using fluorescence microscopy, Cell Counting Kit-8 (CCK-8), Enzyme Linked Immunosorbent Assay (ELISA) and flow cytometry analyses. Phenotypic and functional maturation of immature DCs (imDCs) induced by PDT were measured using flow cytometry and ELISA. A mouse model was established using the HNSCC line, SCC7, and was used to evaluate therapeutic effects of PDT-DC vaccine in facilitating anti-tumor immunity of PD-L1 antibody. RESULTS Immunogenic cell death (ICD) of SCC7 cells was induced by PDT with 0.5 µM of m-THPC and the 5 J/cm2 of light dose. ICD of SCC7 cells stimulated imDCs maturation. In vivo assays suggested that PDT-DC vaccine and anti-PD-L1 mAb synergistically induced anti-tumor immunity and suppressed tumor progression. CONCLUSION PDT-DC vaccine enhances therapeutic effects of PD-L1 antibody, which might provide a novel approach for HNSCC immunotherapy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Ding Wang
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China
| | - Jinzhang Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Jicheng Sun
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China
| | - Dhan V Kalvakolanu
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China.,Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Di Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Yunhan You
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Department of pathophysiology, College of Basic Medical Sciences, Ministry of Education, Jilin University, 126 Xinmin Street, 130012, Changchun, Jilin, P.R. China.
| | - Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, 130041, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
5
|
Song HY, Han JM, Kim WS, Lee JH, Park WY, Byun EB, Byun EH. Deinococcus radiodurans R1 Lysate Induces Tolerogenic Maturation in Lipopolysaccharide-Stimulated Dendritic Cells and Protects Dextran Sulfate Sodium-Induced Colitis in Mice. J Microbiol Biotechnol 2022; 32:835-843. [PMID: 35719091 PMCID: PMC9628914 DOI: 10.4014/jmb.2203.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
Deinococcus radiodurans is an extremophilic bacterium that can thrive in harsh environments. This property can be attributed to its unique metabolites that possess strong antioxidants and other pharmacological properties. To determine the potential of D. radiodurans R1 lysate (DeinoLys) as a pharmacological candidate for inflammatory bowel disease (IBD), we investigated the anti-inflammatory activity of DeinoLys in bone marrow-derived dendritic cells (BMDCs) and a colitis mice model. Lipopolysaccharide (LPS)-stimulated BMDCs treated with DeinoLys exhibited alterations in their phenotypic and functional properties by changing into tolerogenic DCs, including strongly inhibited proinflammatory cytokines (TNF-α and IL-12p70) and surface molecule expression and activated DC-induced T cell proliferation/activation with high IL-10 production. These phenotypic and functional changes in BMDCs induced by DeinoLys in the presence of LPS were abrogated by IL-10 neutralization. Furthermore, oral administration of DeinoLys significantly reduced clinical symptoms against dextran sulfate sodium-induced colitis, including body weight loss, disease activity index, histological severity in colon tissue, and lower myeloperoxidase level in mice. Our results establish DeinoLys as a potential anti-inflammatory candidate for IBD therapy.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea,Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ji Hee Lee
- Division of Pathogen Resource Management, Center for Vaccine Development Support, National Institute of Infectious Disease, National Institute of Health (NIH), Korea Disease Control and Prevention Agency, Cheongju, 28160, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea,Corresponding authors E.-B. Byun Phone: +82-63-570-3245 Fax: +82-63-570-3371 E-mail:
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, 32439, Republic of Korea,
E.-H. Byun Phone: +82-41-330-1481 Fax: +82-41-330-1489 E-mail:
| |
Collapse
|
6
|
Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23094885. [PMID: 35563276 PMCID: PMC9099521 DOI: 10.3390/ijms23094885] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.
Collapse
|
7
|
Yuan N, Li X, Wang M, Zhang Z, Qiao L, Gao Y, Xu X, Zhi J, Li Y, Li Z, Jia Y. Gut Microbiota Alteration Influences Colorectal Cancer Metastasis to the Liver by Remodeling the Liver Immune Microenvironment. Gut Liver 2022; 16:575-588. [PMID: 35318288 PMCID: PMC9289841 DOI: 10.5009/gnl210177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022] Open
Abstract
Background/Aims This study aimed to explore the effect of gut microbiota-regulated Kupffer cells (KCs) on colorectal cancer (CRC) liver metastasis. Methods A series of in vivo and in vitro researches were showed to demonstrate the gut microbiota and its possible mechanism in CRC liver metastasis. Results Fewer liver metastases were identified in the ampicillin-streptomycin-colistin and colistin groups. Increased proportions of Parabacteroides goldsteinii, Bacteroides vulgatus, Bacteroides thetaiotaomicron, and Bacteroides uniformis were observed in the colistin group. The significant expansion of KCs was identified in the ampicillin-streptomycin-colistin and colistin groups. B. vulgatus levels were positively correlated with KC levels. More liver metastases were observed in the vancomycin group. An increased abundance of Parabacteroides distasonis and Proteus mirabilis and an obvious reduction of KCs were noted in the vancomycin group. P. mirabilis levels were negatively related to KC levels. The number of liver metastatic nodules was increased in the P. mirabilis group and decreased in the B. vulgatus group. The number of KCs decreased in the P. mirabilis group and increased in the B. vulgatus group. In vitro, as P. mirabilis or B. vulgatus doses increased, there was an opposite effect on KC proliferation in dose- and time-dependent manners. P. mirabilis induced CT26 cell migration by controlling KC proliferation, whereas B. vulgatus prevented this migration. Conclusions An increased abundance of P. mirabilis and decreased amount of B. vulgatus play key roles in CRC liver metastasis, which might be related to KC reductions in the liver.
Collapse
Affiliation(s)
- Na Yuan
- Department of Oncology, Hebei Medical University, Shijiazhuang, China.,The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China.,Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiaoyan Li
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Meng Wang
- Department of Clinical Psychology, Baoding No.1 Central Hospital, Baoding, China
| | - Zhilin Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Lu Qiao
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yamei Gao
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xinjian Xu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhi
- The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhongxin Li
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yitao Jia
- Department of Oncology, Hebei Medical University, Shijiazhuang, China.,The Third Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells that serve as a link between the innate and adaptive immune systems. These cells are broadly involved in cellular and humoral immune responses by presenting antigens to initiate T cell reactions, cytokine and chemokine secretion, T cell differentiation and expansion, B cell activation and regulation, and the mediation of immune tolerance. The functions of DCs depend on their activation status, which is defined by the stages of maturation, phenotype differentiation, and migration ability, among other factors. IL-6 is a soluble mediator mainly produced by a variety of immune cells, including DCs, that exerts pleiotropic effects on immune and inflammatory responses through interaction with specific receptors expressed on the surface of target cells. Here, we review the role of IL-6, when generated in an inflammatory context or as derived from DCs, in modulating the biologic function and activation status of DCs and emphasize the importance of searching for novel strategies to target the IL-6/IL-6 signaling pathway as a means to diminish the inflammatory activity of DCs in immune response or to prime the immunogenic activity of DCs in immunosuppressive conditions.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Michaelis L, Treß M, Löw HC, Klees J, Klameth C, Lange A, Grießhammer A, Schäfer A, Menz S, Steimle A, Schulze-Osthoff K, Frick JS. Gut Commensal-Induced IκBζ Expression in Dendritic Cells Influences the Th17 Response. Front Immunol 2021; 11:612336. [PMID: 33542719 PMCID: PMC7851057 DOI: 10.3389/fimmu.2020.612336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal commensal bacteria can have a large impact on the state of health and disease of the host. Regulation of Th17 cell development by gut commensals is known to contribute to their dichotomous role in promoting gut homeostasis and host defense, or development of autoimmune diseases. Yet, the underlying mechanisms remain to be fully elucidated. One candidate factor contributing to Th17 differentiation, and the expression of which could be influenced by commensals is the atypical nuclear IκB protein IκBζ. IκBζ acts as a transcriptional regulator of the expression of Th17-related secondary response genes in many cell types including dendritic cells (DCs). Insights into the regulation of IκBζ in DCs could shed light on how these immune sentinel cells at the interface between commensals, innate and adaptive immune system drive an immune-tolerogenic or inflammatory Th17 cell response. In this study, the influence of two gut commensals of low (Bacteroides vulgatus) or high (Escherichia coli) immunogenicity on IκBζ expression in DCs and its downstream effects was analyzed. We observed that the amount of IκBζ expression and secretion of Th17-inducing cytokines correlated with the immunogenicity of these commensals. However, under immune-balanced conditions, E. coli also strongly induced an IκBζ-dependent secretion of anti-inflammatory IL-10, facilitating a counter-regulative Treg response as assessed in in vitro CD4+ T cell polarization assays. Yet, in an in vivo mouse model of T cell-induced colitis, prone to inflammatory and autoimmune conditions, administration of E. coli promoted an expansion of rather pro-inflammatory T helper cell subsets whereas administration of B. vulgatus resulted in the induction of protective T helper cell subsets. These findings might contribute to the development of new therapeutic strategies for the treatment of autoimmune diseases using commensals or commensal-derived components.
Collapse
Affiliation(s)
- Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Marcel Treß
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Johanna Klees
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christian Klameth
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Grießhammer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Sarah Menz
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alex Steimle
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr 2020; 61:3518-3536. [PMID: 32757948 DOI: 10.1080/10408398.2020.1802695] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Research Institute, Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
11
|
Gut bacteria characteristic of the infant microbiota down-regulate inflammatory transcriptional responses in HT-29 cells. Anaerobe 2020; 61:102112. [DOI: 10.1016/j.anaerobe.2019.102112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
|
12
|
Maerz JK, Trostel C, Lange A, Parusel R, Michaelis L, Schäfer A, Yao H, Löw HC, Frick JS. Bacterial Immunogenicity Is Critical for the Induction of Regulatory B Cells in Suppressing Inflammatory Immune Responses. Front Immunol 2020; 10:3093. [PMID: 32038631 PMCID: PMC6993086 DOI: 10.3389/fimmu.2019.03093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
B cells fulfill multifaceted functions that influence immune responses during health and disease. In autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, depletion of functional B cells results in an aggravation of disease in humans and respective mouse models. This could be due to a lack of a pivotal B cell subpopulation: regulatory B cells (Bregs). Although Bregs represent only a small proportion of all immune cells, they exhibit critical properties in regulating immune responses, thus contributing to the maintenance of immune homeostasis in healthy individuals. In this study, we report that the induction of Bregs is differentially triggered by the immunogenicity of the host microbiota. In comparative experiments with low immunogenic Bacteroides vulgatus and strong immunogenic Escherichia coli, we found that the induction and longevity of Bregs depend on strong Toll-like receptor activation mediated by antigens of strong immunogenic commensals. The potent B cell stimulation via E. coli led to a pronounced expression of suppressive molecules on the B cell surface and an increased production of anti-inflammatory cytokines like interleukin-10. These bacteria-primed Bregs were capable of efficiently inhibiting the maturation and function of dendritic cells (DCs), preventing the proliferation and polarization of T helper (Th)1 and Th17 cells while simultaneously promoting Th2 cell differentiation in vitro. In addition, Bregs facilitated the development of regulatory T cells (Tregs) resulting in a possible feedback cooperation to establish immune homeostasis. Moreover, the colonization of germfree wild type mice with E. coli but not B. vulgatus significantly reduced intestinal inflammatory processes in dextran sulfate sodium (DSS)-induced colitis associated with an increase induction of immune suppressive Bregs. The quantity of Bregs directly correlated with the severity of inflammation. These findings may provide new insights and therapeutic approaches for B cell-controlled treatments of microbiota-driven autoimmune disease.
Collapse
Affiliation(s)
- Jan Kevin Maerz
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Constanze Trostel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hans Yao
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Sialylation and fucosylation modulate inflammasome-activating eIF2 Signaling and microbial translocation during HIV infection. Mucosal Immunol 2020; 13:753-766. [PMID: 32152415 PMCID: PMC7434596 DOI: 10.1038/s41385-020-0279-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
Abstract
An emerging paradigm suggests that gut glycosylation is a key force in maintaining the homeostatic relationship between the gut and its microbiota. Nevertheless, it is unclear how gut glycosylation contributes to the HIV-associated microbial translocation and inflammation that persist despite viral suppression and contribute to the development of several comorbidities. We examined terminal ileum, right colon, and sigmoid colon biopsies from HIV-infected virally-suppressed individuals and found that gut glycomic patterns are associated with distinct microbial compositions and differential levels of chronic inflammation and HIV persistence. In particular, high levels of the pro-inflammatory hypo-sialylated T-antigen glycans and low levels of the anti-inflammatory fucosylated glycans were associated with higher abundance of glycan-degrading microbial species (in particular, Bacteroides vulgatus), a less diverse microbiome, higher levels of inflammation, and higher levels of ileum-associated HIV DNA. These findings are linked to the activation of the inflammasome-mediating eIF2 signaling pathway. Our study thus provides the first proof-of-concept evidence that a previously unappreciated factor, gut glycosylation, is a force that may impact the vicious cycle between HIV infection, microbial translocation, and chronic inflammation.
Collapse
|
14
|
Downing I, Macdonald SL, Atkinson APM, Turner ML, Kilpatrick DC. Drug modification of LPS-stimulated human monocyte-derived dendritic cells. Br J Biomed Sci 2019. [DOI: 10.1080/09674845.2012.12069139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- I. Downing
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - S. L. Macdonald
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - A. P. M. Atkinson
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - M. L. Turner
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| | - D. C. Kilpatrick
- SNBTS, National Science Laboratory, Ellen's Glen Road, Edinburgh, Scotland, UK
| |
Collapse
|
15
|
Steimle A, Michaelis L, Di Lorenzo F, Kliem T, Münzner T, Maerz JK, Schäfer A, Lange A, Parusel R, Gronbach K, Fuchs K, Silipo A, Öz HH, Pichler BJ, Autenrieth IB, Molinaro A, Frick JS. Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Mol Ther 2019; 27:1974-1991. [PMID: 31416777 PMCID: PMC6838991 DOI: 10.1016/j.ymthe.2019.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
Generated by gram-negative bacteria, lipopolysaccharides (LPSs) are one of the most abundant and potent immunomodulatory substances present in the intestinal lumen. Interaction of agonistic LPS with the host myeloid-differentiation-2/Toll-like receptor 4 (MD-2/TLR4) receptor complex results in nuclear factor κB (NF-κB) activation, followed by the robust induction of pro-inflammatory immune responses. Here we have isolated LPS from a common gut commensal, Bacteroides vulgatus mpk (BVMPK), which provides only weak agonistic activity. This weak agonistic activity leads to the amelioration of inflammatory immune responses in a mouse model for experimental colitis, and it was in sharp contrast to strong agonists and antagonists. In this context, the administration of BVMPK LPS into mice with severe intestinal inflammation re-established intestinal immune homeostasis within only 2 weeks, resulting in the clearance of all symptoms of inflammation. These inflammation-reducing properties of weak agonistic LPS are grounded in the induction of a special type of endotoxin tolerance via the MD-2/TLR4 receptor complex axis in intestinal lamina propria CD11c+ cells. Thus, weak agonistic LPS represents a promising agent to treat diseases involving pathological overactivation of the intestinal immune system, e.g., in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alex Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Thorsten Kliem
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Tobias Münzner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Jan Kevin Maerz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Kerstin Gronbach
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Kerstin Fuchs
- Institute of Radiology, Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Hasan Halit Öz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Institute of Radiology, Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Julia-Stefanie Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Steimle A, Menz S, Bender A, Ball B, Weber ANR, Hagemann T, Lange A, Maerz JK, Parusel R, Michaelis L, Schäfer A, Yao H, Löw HC, Beier S, Tesfazgi Mebrhatu M, Gronbach K, Wagner S, Voehringer D, Schaller M, Fehrenbacher B, Autenrieth IB, Oelschlaeger TA, Frick JS. Flagellin hypervariable region determines symbiotic properties of commensal Escherichia coli strains. PLoS Biol 2019; 17:e3000334. [PMID: 31206517 PMCID: PMC6597123 DOI: 10.1371/journal.pbio.3000334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/27/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli represents a classical intestinal gram-negative commensal. Despite this commensalism, different E. coli strains can mediate disparate immunogenic properties in a given host. Symbiotic E. coli strains such as E. coli Nissle 1917 (EcN) are attributed beneficial properties, e.g., promotion of intestinal homeostasis. Therefore, we aimed to identify molecular features derived from symbiotic bacteria that might help to develop innovative therapeutic alternatives for the treatment of intestinal immune disorders. This study was performed using the dextran sodium sulphate (DSS)-induced colitis mouse model, which is routinely used to evaluate potential therapeutics for the treatment of Inflammatory Bowel Diseases (IBDs). We focused on the analysis of flagellin structures of different E. coli strains. EcN flagellin was found to harbor a substantially longer hypervariable region (HVR) compared to other commensal E. coli strains, and this longer HVR mediated symbiotic properties through stronger activation of Toll-like receptor (TLR)5, thereby resulting in interleukin (IL)-22–mediated protection of mice against DSS-induced colitis. Furthermore, using bone-marrow–chimeric mice (BMCM), CD11c+ cells of the colonic lamina propria (LP) were identified as the main mediators of these flagellin-induced symbiotic effects. We propose flagellin from symbiotic E. coli strains as a potential therapeutic to restore intestinal immune homeostasis, e.g., for the treatment of IBD patients. A flagellum renders bacteria motile, but this study reveals another property important for symbiosis: the hypervariable region of Escherichia coli flagellin strongly determines activation of TLR5, mediating benefits for the host such as protection against colitis.
Collapse
Affiliation(s)
- Alex Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Sarah Menz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Annika Bender
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Brianna Ball
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | | | - Thomas Hagemann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Anna Lange
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Jan K. Maerz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Hans Yao
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Sina Beier
- Chair of Algorithms in Bioinformatics, Faculty of Computer Science, University of Tübingen, Tübingen, Germany
| | - Mehari Tesfazgi Mebrhatu
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Kerstin Gronbach
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Ingo B. Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | | | - Julia-Stefanie Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
17
|
Sane F, Scuotto A, Pierrat V, Kacet N, Hober D, Romond MB. Diabetes progression and alterations in gut bacterial translocation: prevention by diet supplementation with human milk in NOD mice. J Nutr Biochem 2018; 62:108-122. [PMID: 30292969 DOI: 10.1016/j.jnutbio.2018.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/19/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Impaired intestinal barrier function occurs before type 1 diabetes (T1D) onset with a possible contribution of microbial translocation. Breastfeeding is associated with enhanced mucosal intestinal integrity and T1D protection. Our aim was to study the potential of human milk (HM) to prevent diabetes onset and modulate the translocation of gut bacteria susceptible to breastfeeding or associated to diabetes onset. We show that HM intake can prevent T1D in nonobese diabetic mice independently of bifidobacteria colonization. Prior to diabetes onset, HM mice harbored splenic bacterial counts and plasma lipopolysaccharides level similar to control mice but exhibited a reduced expansion of Anaerotruncus sp. in pancreas and Lactobacillus johnsonii and Barnesiella in Peyer's patches (PP). Surprisingly, pancreas and PP bacterial expansion did not correlate with their own gut localization but with ileal Escherichia coli and cecal HM-susceptible bacteria (the promoted L. murinus and Bacteroides vulgatus, and the repressed B. fragilis and E. coli), respectively. Besides, higher colonic B. vulgatus counts induced by HM intake were associated with low islet infiltration and pancreatic E. coli expansion. On another hand, splenic dendritic cells (DCs) were identified as negative covariate of PP Barnesiella, suggesting a possible HM contribution to preserving splenic DCs through the reduction of Barnesiella translocation. Fecal B. vulgatus also negatively correlated with PP Barnesiella expansion, indicating that the mouse coprophagic behavior likely added to HM effect. Our findings provide evidence that HM has a multilevel impact and cooperates with some gut bacteria for controlling bacterial translocation at the earliest stage of insulitis.
Collapse
Affiliation(s)
- Famara Sane
- Université Lille et CHU de Lille Laboratoire de Virologie EA3610, F-59037 Lille, France
| | | | - Véronique Pierrat
- CHRU Lille, Hôpital Jeanne de Flandres, Lactarium Régional, Lille 59133, France
| | - Nadine Kacet
- CHRU Lille, Hôpital Jeanne de Flandres, Lactarium Régional, Lille 59133, France
| | - Didier Hober
- Université Lille et CHU de Lille Laboratoire de Virologie EA3610, F-59037 Lille, France
| | | |
Collapse
|
18
|
Abstract
Dendritic cells (DCs) are a heterogeneous population playing a pivotal role in immune responses and tolerance. DCs promote immune tolerance by participating in the negative selection of autoreactive T cells in the thymus. Furthermore, to eliminate autoreactive T cells that have escaped thymic deletion, DCs also induce immune tolerance in the periphery through various mechanisms. Breakdown of these functions leads to autoimmune diseases. Moreover, DCs play a critical role in maintenance of homeostasis in body organs, especially the skin and intestine. In this review, we focus on recent developments in our understanding of the mechanisms of tolerance induction by DCs in the body.
Collapse
Affiliation(s)
- Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takuya Matsumoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
19
|
Korkmaz AG, Popov T, Peisl L, Codrea MC, Nahnsen S, Steimle A, Velic A, Macek B, von Bergen M, Bernhardt J, Frick JS. Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states. J Proteomics 2017; 180:11-24. [PMID: 29155090 DOI: 10.1016/j.jprot.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
Dendritic cells (DCs) can shape the immune system towards an inflammatory or tolerant state depending on the bacterial antigens and the environment they encounter. In this study we provide a proteomic catalogue of differentially expressed proteins between distinct DC maturation states, brought about by bacteria that differ in their endotoxicity. To achieve this, we have performed proteomics and phosphoproteomics on murine DC cultures. Symbiont and pathobiont bacteria were used to direct dendritic cells into a semi-mature and fully-mature state, respectively. The comparison of semi-mature and fully-mature DCs revealed differential expression in 103 proteins and differential phosphorylation in 118 phosphosites, including major regulatory factors of central immune processes. Our analyses predict that these differences are mediated by upstream elements such as SOCS1, IRF3, ABCA1, TLR4, and PTGER4. Our analyses indicate that the symbiont bacterial strain affects DC proteome in a distinct way, by downregulating inflammatory proteins and activating anti-inflammatory upstream regulators. Biological significance In this study we have investigated the responses of immune cells to distinct bacterial stimuli. We have used the symbiont bacterial strain B. vulgatus and the pathobiont E. coli strain to stimulate cultured primary dendritic cells and performed a shotgun proteome analysis to investigate the protein expression and phosphorylation level differences on a genome level. We have observed expression and phosphorylation level differences in key immune regulators, transcription factors and signal transducers. Moreover, our subsequent bioinformatics analysis indicated regulation at several signaling pathways such as PPAR signaling, LXR/RXR activation and glucocorticoid signaling pathways, which are not studied in detail in an inflammation and DC maturation context. Our phosphoproteome analysis showed differential phosphorylation in 118 phosphosites including those belonging to epigenetic regulators, transcription factors and major cell cycle regulators. We anticipate that our study will facilitate further investigation of immune cell proteomes under different inflammatory and non-inflammatory conditions.
Collapse
Affiliation(s)
- Ali Giray Korkmaz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany.
| | - Todor Popov
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Loulou Peisl
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | | | - Sven Nahnsen
- Quantitative Biology Center, University of Tübingen, Germany
| | - Alexander Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Ana Velic
- Proteome Center, University of Tübingen, Germany
| | - Boris Macek
- Proteome Center, University of Tübingen, Germany
| | | | - Joerg Bernhardt
- Ernst-Moritz-Arndt Universität Greifswald, Institute for Microbiology, Germany
| | | |
Collapse
|
20
|
The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe 2017; 47:209-217. [DOI: 10.1016/j.anaerobe.2017.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/06/2023]
|
21
|
Maerz JK, Steimle A, Lange A, Bender A, Fehrenbacher B, Frick JS. Outer membrane vesicles blebbing contributes to B. vulgatus mpk-mediated immune response silencing. Gut Microbes 2017; 9:1-12. [PMID: 28686482 PMCID: PMC5914909 DOI: 10.1080/19490976.2017.1344810] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Gram negative intestinal symbiont Bacteroides vulgatus mpk is able to prevent from induction of colonic inflammation in Rag1-/- mice and promotes immune balance in Il2-/- mice. These inflammation-silencing effects are associated with B. vulgatus mpk-mediated induction of semi-mature dendritic cells, especially in the colonic lamina propria (cLP). However the beneficial interaction of bacteria with host immune cells is limited due to the existence of a large mucus layer covering the intestinal epithelium. How can intestinal bacteria overcome this physical barrier and contact the host immune system? One mechanism is the production of outer membrane vesicles (OMVs) via ubiquitous blebbing of the outer membrane. These proteoliposomes have the ability to traverse the mucus layer. Hence, OMVs play an important role in immunomodulation and the maintenance of a balanced gut microbiota. Here we demonstrate that the stimulation of bone marrow derived dendritic cells (BMDCs) with isolated OMVs originated from B. vulgatus mpk leads to the induction of a tolerant semi-mature phenotype. Thereby, microbe- associated molecular patterns (MAMPs) delivered by OMVs are crucial for the interaction and the resulting maturation of immune cells. Additional to the binding to host TLR4, a yet unknown ligand to TLR2 is indispensable for the conversion of immature BMDCs into a semi-mature state. Thus, crossing the epithelial mucus layer and directly contact host cells, OMV mediate cross-tolerance via the transport of various Toll-like receptor antigens. These features make OMVs to a key attribute of B. vulgatus mpk for a vigorous acellular prevention and treatment of systemic diseases.
Collapse
Affiliation(s)
- Jan Kevin Maerz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Alex Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Annika Bender
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Birgit Fehrenbacher
- University Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany,CONTACT Prof. Dr. Julia-Stefanie Frick , Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str.6, D-72076 Tübingen, Germany
| |
Collapse
|
22
|
Microbiome and chronic inflammatory bowel diseases. J Mol Med (Berl) 2016; 95:21-28. [PMID: 27988792 DOI: 10.1007/s00109-016-1495-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/15/2016] [Accepted: 11/25/2016] [Indexed: 01/12/2023]
Abstract
It is nowadays generally accepted that the microbiome is a central driver of chronic inflammatory bowel diseases based on observations from human patients as well as inflammatory rodent models. Many studies focussed on different aspects of microbiota and some scientists believe that a primary dis-balance results in a direct microbial induced inflammatory situation. It is also clear that the microbiome is influenced by environmental and genetic factors and is also tightly regulated by host defense molecules such as antimicrobial peptides (defensins et al.). Different lines of investigations showed different complex antimicrobial barrier defects in inflammatory bowel diseases which also influence the composition of the microbiome and generally impact on the microbial-mucosal interface. In this review, we aim to discuss the bigger picture of these different aspects and current views and conclude about therapeutic consequences for future concepts beyond anti-inflammatory treatment.
Collapse
|
23
|
Symbiotic gut commensal bacteria act as host cathepsin S activity regulators. J Autoimmun 2016; 75:82-95. [PMID: 27484364 DOI: 10.1016/j.jaut.2016.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022]
Abstract
Cathepsin S (CTSS) is a lysosomal protease whose activity regulation is important for MHC-II signaling and subsequent activation of CD4+ T cell mediated immune responses. Dysregulation of its enzymatic activity or enhanced secretion into extracellular environments is associated with the induction or progression of several autoimmune diseases. Here we demonstrate that commensal intestinal bacteria influence secretion rates and intracellular activity of host CTSS and that symbiotic bacteria, i.e. Bacteroides vulgatus mpk, may actively regulate this process and help to maintain physiological levels of CTSS activities in order to prevent from induction of pathological inflammation. The symbiont-controlled regulation of CTSS activity is mediated by anticipating reactive oxygen species induction in dendritic cells which, in turn, maintains cystatin C (CysC) monomer binding to CTSS. CysC monomers are potent endogenous CTSS inhibitors. This Bacteroides vulgatus caused and CysC dependent CTSS activity regulation is involved in the generation of tolerant intestinal dendritic cells contributing to prevention of T-cell mediated induction of colonic inflammation. Taken together, we demonstrate that symbionts of the intestinal microbiota regulate host CTSS activity and secretion and might therefore be an attractive approach to deal with CTSS associated autoimmune diseases.
Collapse
|
24
|
Hörmannsperger G, Schaubeck M, Haller D. Intestinal Microbiota in Animal Models of Inflammatory Diseases. ILAR J 2016; 56:179-91. [PMID: 26323628 DOI: 10.1093/ilar/ilv019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The intestinal microbiota has long been known to play an important role in the maintenance of health. In addition, alterations of the intestinal microbiota have recently been associated with a range of immune-mediated and metabolic disorders. Characterizing the composition and functionality of the intestinal microbiota, unravelling relevant microbe-host interactions, and identifying disease-relevant microbes are therefore currently of major interest in scientific and medical communities. Experimental animal models for the respective diseases of interest are pivotal in order to address functional questions on microbe-host interaction and to clarify the clinical relevance of microbiome alterations associated with disease initiation and development. This review presents an overview of the outcomes of highly sophisticated experimental studies on microbe-host interaction in animal models of inflammatory diseases, with a focus on inflammatory bowel disease (IBD). We will address the advantages and drawbacks of analyzing microbe-host interaction in complex colonized animal models compared with gnotobiotic animal models using monoassociation, simplified microbial consortia (SMC), or microbial humanization.
Collapse
Affiliation(s)
- G Hörmannsperger
- Gabriele Hörmannsperger, PhD, is a molecular biologist researcher, Monika Schaubeck, MSc, is a PhD student, and Dirk Haller, PhD, is full professor and head of the Chair of Nutrition and Immunology at the Technische Universität München, Freising-Weihenstephan, Germany
| | - M Schaubeck
- Gabriele Hörmannsperger, PhD, is a molecular biologist researcher, Monika Schaubeck, MSc, is a PhD student, and Dirk Haller, PhD, is full professor and head of the Chair of Nutrition and Immunology at the Technische Universität München, Freising-Weihenstephan, Germany
| | - D Haller
- Gabriele Hörmannsperger, PhD, is a molecular biologist researcher, Monika Schaubeck, MSc, is a PhD student, and Dirk Haller, PhD, is full professor and head of the Chair of Nutrition and Immunology at the Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
25
|
Steimle A, Kalbacher H, Maurer A, Beifuss B, Bender A, Schäfer A, Müller R, Autenrieth IB, Frick JS. A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells. J Immunol Methods 2016; 432:87-94. [PMID: 26899824 DOI: 10.1016/j.jim.2016.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/09/2023]
Abstract
Cathepsin S (CTSS) is a eukaryotic protease mostly expressed in professional antigen presenting cells (APCs). Since CTSS activity regulation plays a role in the pathogenesis of various autoimmune diseases like multiple sclerosis, atherosclerosis, Sjögren's syndrome and psoriasis as well as in cancer progression, there is an ongoing interest in the reliable detection of cathepsin S activity. Various applications have been invented for specific detection of this enzyme. However, most of them have only been shown to be suitable for human samples, do not deliver quantitative results or the experimental procedure requires technical equipment that is not commonly available in a standard laboratory. We have tested a fluorogen substrate, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2, that has been described to specifically detect CTSS activities in human APCs for its potential use for mouse samples. We have modified the protocol and thereby offer a cheap, easy, reproducible and quick activity assay to detect CTSS activities in mouse APCs. Since most of basic research on CTSS is performed in mice, this method closes a gap and offers a possibility for reliable and quantitative CTSS activity detection that can be performed in almost every laboratory.
Collapse
Affiliation(s)
- Alex Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Hubert Kalbacher
- Interfacultary Institute of Biochemistry, University of Tübingen, Germany
| | | | - Brigitte Beifuss
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Annika Bender
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Andrea Schäfer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Ricarda Müller
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Ingo B Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | | |
Collapse
|
26
|
Molecular Mechanisms of Induction of Tolerant and Tolerogenic Intestinal Dendritic Cells in Mice. J Immunol Res 2016; 2016:1958650. [PMID: 26981546 PMCID: PMC4766351 DOI: 10.1155/2016/1958650] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/06/2016] [Accepted: 01/17/2016] [Indexed: 12/31/2022] Open
Abstract
How does the host manage to tolerate its own intestinal microbiota? A simple question leading to complicated answers. In order to maintain balanced immune responses in the intestine, the host immune system must tolerate commensal bacteria in the gut while it has to simultaneously keep the ability to fight pathogens and to clear infections. If this tender equilibrium is disturbed, severe chronic inflammatory reactions can result. Tolerogenic intestinal dendritic cells fulfil a crucial role in balancing immune responses and therefore creating homeostatic conditions and preventing from uncontrolled inflammation. Although several dendritic cell subsets have already been characterized to play a pivotal role in this process, less is known about definite molecular mechanisms of how intestinal dendritic cells are converted into tolerogenic ones. Here we review how gut commensal bacteria interact with intestinal dendritic cells and why this bacteria-host cell interaction is crucial for induction of dendritic cell tolerance in the intestine. Hereby, different commensal bacteria can have distinct effects on the phenotype of intestinal dendritic cells and these effects are mainly mediated by impacting toll-like receptor signalling in dendritic cells.
Collapse
|
27
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 2015; 220:833-44. [DOI: 10.1016/j.imbio.2014.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/07/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
|
28
|
Han Y, Wang Y, Xu Z, Li J, Yang J, Li Y, Shang Y, Luo J. Effect of bone marrow mesenchymal stem cells from blastic phase chronic myelogenous leukemia on the growth and apoptosis of leukemia cells. Oncol Rep 2013; 30:1007-13. [PMID: 23733230 DOI: 10.3892/or.2013.2518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/08/2013] [Indexed: 11/06/2022] Open
Abstract
Chronic myelogenous leukemia (CML) has a typical progressive course with transition from a chronic phase to a terminal blast crisis phase. However, the mechanisms that lead to disease progression remain unclear. Bone marrow mesenchymal stem cells (BMMSCs) play important roles in maintaining the bone marrow microenvironment. In the present study, the biological characteristics of BMMSCs were determined including proliferation, apoptosis and secretion of cytokines during blastic phase CML (CML-Bp). The effect of BMMSCs in CML-Bp on K562 human CML cells and the CML-Bp original generation leukemia cells were also explored. Our results showed that CML-Bp BMMSCs protect tumor cells and increase their anti-apoptotic ability through regulating the expression of apoptosis-related proteins and activating the Wnt pathway.
Collapse
Affiliation(s)
- Yuxiang Han
- Department of Hematology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Martinez FF, Cervi L, Knubel CP, Panzetta-Dutari GM, Motran CC. The Role of Pregnancy-Specific Glycoprotein 1a (PSG1a) in Regulating the Innate and Adaptive Immune Response. Am J Reprod Immunol 2013; 69:383-94. [DOI: 10.1111/aji.12089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Fernando F. Martinez
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Carolina P. Knubel
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Graciela M. Panzetta-Dutari
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| | - Claudia C. Motran
- Departamento de Bioquímica Clínica; Facultad de Ciencias Químicas; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET); Universidad Nacional de Córdoba; Haya de la Torre y Medina Allende; Ciudad Universitaria; Córdoba; Argentina
| |
Collapse
|
30
|
Martínez FF, Knubel CP, Sánchez MC, Cervi L, Motrán CC. Pregnancy-specific glycoprotein 1a activates dendritic cells to provide signals for Th17-, Th2-, and Treg-cell polarization. Eur J Immunol 2012; 42:1573-84. [DOI: 10.1002/eji.201142140] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Lutz MB. Therapeutic potential of semi-mature dendritic cells for tolerance induction. Front Immunol 2012; 3:123. [PMID: 22629255 PMCID: PMC3355325 DOI: 10.3389/fimmu.2012.00123] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/30/2012] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are major players in the control of adaptive tolerance and immunity. Therefore, their specific generation and adoptive transfer into patients or their in vivo targeting is attractive for clinical applications. While injections of mature immunogenic DCs are tested in clinical trials, tolerogenic DCs still are awaiting this step. Besides the tolerogenic potential of immature DCs, also semi-mature DCs can show tolerogenic activity but both types also bear unfavorable features. Optimal tolerogenic DCs, their molecular tool bar, and their use for specific diseases still have to be defined. Here, the usefulness of in vitro generated and adoptively transferred semi-mature DCs for tolerance induction is outlined. The in vivo targeting of semi-mature DCs as represented by steady state migratory DCs are discussed for treatment of autoimmune diseases and allergies. First clinical trials with transcutaneous allergen application may point to their therapeutic use in the future.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg Wuerzburg, Germany
| |
Collapse
|
32
|
Gerlach AM, Steimle A, Krampen L, Wittmann A, Gronbach K, Geisel J, Autenrieth IB, Frick JS. Role of CD40 ligation in dendritic cell semimaturation. BMC Immunol 2012; 13:22. [PMID: 22537317 PMCID: PMC3485177 DOI: 10.1186/1471-2172-13-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/16/2012] [Indexed: 01/17/2023] Open
Abstract
Background DC are among the first antigen presenting cells encountering bacteria at mucosal surfaces, and play an important role in maintenance of regular homeostasis in the intestine. Upon stimulation DC undergo activation and maturation and as initiators of T cell responses they have the capacity to stimulate naïve T cells. However, stimulation of naïve murine DC with B. vulgatus or LPS at low concentration drives DC to a semimature (sm) state with low surface expression of activation-markers and a reduced capacity to activate T-cells. Additionally, semimature DC are nonresponsive to subsequent TLR stimulation in terms of maturation, TNF-α but not IL-6 production. Ligation of CD40 is an important mechanism in enhancing DC maturation, function and capacity to activate T-cells. We investigated whether the DC semimaturation can be overcome by CD40 ligation. Results Upon CD40 ligation smDC secreted IL-12p40 but not the bioactive heterodimer IL-12p70. Additionally, CD40 ligation of smDC resulted in an increased production of IL-6 but not in an increased expression of CD40. Analysis of the phosphorylation pattern of MAP kinases showed that in smDC the p38 phosphorylation induced by CD40 ligation is inhibited. In contrast, phosphorylation of ERK upon CD40 ligation was independent of the DC maturation state. Conclusion Our data show that the semimature differentiation state of DC can not be overcome by CD40 ligation. We suggest that the inability of CD40 ligation in overcoming DC semimaturation might contribute to the tolerogenic phenotype of semimature DC and at least partially account for maintenance of intestinal immune homeostasis.
Collapse
Affiliation(s)
- Anna-Maria Gerlach
- Institute for Medical Microbiology and Hygiene, University Hospital of Tübingen, 72076 Elfriede-Aulhorn-Str. 6, Tübingen, D-72076, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chinen T, Rudensky AY. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol Rev 2012; 245:45-55. [PMID: 22168413 DOI: 10.1111/j.1600-065x.2011.01083.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Billions of years of coevolution shaped the mutually beneficial relationships between metazoans and symbiotic commensal microorganisms. Commensal microorganisms profoundly affect the physiology of the host and provide the host with survival advantages in several ways, while they could also trigger pathogenic immune responses and threaten the well-being of the host. Recent advances in DNA sequencing technology enabled the analysis of commensal microbiota, and improvements in the techniques of culturing gut-resident microorganisms and of rearing gnotobiotic rodents have made it possible to assess the effect of individual component of microbial communities on host physiology. In this review, we discuss the current understanding of the interactions of commensal microbiota with the host immune system.
Collapse
Affiliation(s)
- Takatoshi Chinen
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
34
|
Bunz H, Plankenhorn S, Klein R. Effect of buckminsterfullerenes on cells of the innate and adaptive immune system: an in vitro study with human peripheral blood mononuclear cells. Int J Nanomedicine 2012; 7:4571-80. [PMID: 22942641 PMCID: PMC3428246 DOI: 10.2147/ijn.s33773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
C60 nanoparticles, the so-called buckminsterfullerenes, have attracted great attention for medical applications as carriers, enzyme inhibitors or radical scavengers. However, publications evaluating their immunological mechanisms are still rather limited. Therefore, we aimed to analyze systematically the in vitro influence of polyhydroxy-C60 (poly-C60) and N-ethyl-polyamino-C60 (nepo-C60) on peripheral blood mononuclear cells (PBMC) from healthy individuals, angling their effect on proliferation, expression of surface markers, and cytokine production. We isolated PBMC from 20 healthy subjects and incubated them in a first step only with poly-C60 or nepo-C60, and in a second step together with recall antigens (purified protein derivative, tetanus toxoid, bacillus Calmette-Guérin). Proliferation was determined by (3)H-thymidine incorporation, activation of PBMC-subpopulations by flow cytometry by measurement of the activation marker CD69, and secretion of T helper cell type 1 (TH1)- (interferon-gamma [IFN-γ], tumor necrosis factor beta [TNF-β]), TH2- (interleukin-5 [IL-5], -13, -10) and macrophage/monocyte-related cytokines (IL-1, IL-6, TNF-α) into the supernatants by enzyme-linked immunosorbent assay. Both fullerenes did not influence T cell reactivity, with no enhanced expression of CD69 and production of T cell cytokines observed, the CD4/CD8 ratio remaining unaffected. In contrast, they significantly enhanced the release of IL-6 and CD69-expression by CD56 positive natural killer cells. PBMC, which had been cultured together with the three recall antigens were not affected by both fullerenes at all. These data indicate that fullerenes do not interact with T cell reactivity but may activate cells of the innate immune system. Furthermore, they seem to act only on 'naïve' cells, which have not been prestimulated with recall antigens, there are however, large inter individual differences.
Collapse
Affiliation(s)
| | | | - Reinhild Klein
- Correspondence: Reinhild Klein, Department of Internal Medicine II, University of Tübingen, Otfried, Müller-Str 10, 72076 Tübingen, Germany, Tel +49 7071 29 84479, Fax +49 7071 29 2760, Email
| |
Collapse
|
35
|
Pletinckx K, Stijlemans B, Pavlovic V, Laube R, Brandl C, Kneitz S, Beschin A, De Baetselier P, Lutz MB. Similar inflammatory DC maturation signatures induced by TNF or Trypanosoma brucei antigens instruct default Th2-cell responses. Eur J Immunol 2011; 41:3479-94. [PMID: 21928284 DOI: 10.1002/eji.201141631] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 12/14/2022]
Abstract
DCs represent the major cell type leading to polarized T-helper (Th) cell responses in vivo. Here, we asked whether the instruction of murine Th2 responses by DCs matured with the proinflammatory cytokine TNF is qualitatively different from maturation by different types of TLR4/MyD88-dependent variant-specific surface glycoproteins (VSGs) of Trypanosoma brucei (T. brucei). The results obtained by analyzing DC surface markers, Notch ligand mRNA, cytokines, asthma, and experimental autoimmune encephalomyelitis (EAE) models as well as performing microarrays indicate that both types of stimuli induce similar inflammatory, semi-mature DC profiles. DCs matured by TNF or VSG treatment expressed a common inflammatory signature of 24 genes correlating with their Th2-polarization capacity. However, the same 24 genes and 4498 additional genes were expressed by DCs treated with LPS that went on to induce Th1 cells. These findings support the concept of a default pathway for Th2-cell induction in DCs matured under suboptimal or inflammatory conditions, independent of the surface receptors and signaling pathways involved. Our data also indicate that quantitative differences in DC maturation might direct Th2- vs Th1-cell responses, since suboptimally matured inflammatory DCs induce default Th2-cell maturation, whereas fully mature DCs induce Th1-cell maturation.
Collapse
Affiliation(s)
- Katrien Pletinckx
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Frick JS, Grünebach F, Autenrieth IB. Immunomodulation by semi-mature dendritic cells: A novel role of Toll-like receptors and interleukin-6. Int J Med Microbiol 2010; 300:19-24. [DOI: 10.1016/j.ijmm.2009.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
37
|
Yoon SH, Yun SO, Park JY, Won HY, Kim EK, Sohn HJ, Cho HI, Kim TG. Selective addition of CXCR3(+) CCR4(-) CD4(+) Th1 cells enhances generation of cytotoxic T cells by dendritic cells in vitro. Exp Mol Med 2009; 41:161-70. [PMID: 19293635 DOI: 10.3858/emm.2009.41.3.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increasing importance is being given to the stimulation of Th1 response in cancer immunotherapy because its presence can shift the direction of adaptive immune responses toward protective immunity. Based on chemokine receptor expression, CXCR3(+) CCR4(-) CD4(+) T cells as Th1-type cells were investigated its capacity in monocyte-derived dendritic cell (DC) maturation and polarization, and induction of antigen specific cytotoxic T lymphocytes (CTL) in vitro. The levels of IL-4, IL-5 and IL-10 were decreased to the basal level compared with high production of IFN-gamma, TNF-alpha, and IL-2 in CXCR3+CCR4-CD4+ T cells stimulated with anti-CD3 and anti-CD28 antibodies. Co-incubation of activated CD4(+) or CXCR3(+) CCR4-CD4(+) T cells with DC (CD4(+/) DC or CXCR3(+) CD4(+/) DC, respectively) particularly up-regulated IL-12 and CD80 expression compared with DC matured with TNF-a and LPS (mDC). Although there was no significant difference between the effects of the CXCR3(+) CCR4(-) CD4(+) and CD4(+) T cells on DC phenotype expression, CXCR3(+) CD4(+/) DC in CTL culture were able to expand number of CD8(+) T cells and increased frequencies of IFN-gamma secreting cells and overall cytolytic activity against tumor antigen WT-1. These results demonstrated that the selective addition of CXCR3(+) CCR4(-) CD4(+) T cells to CTL cultures could enhance the induction of CTLs by DC in vitro, and implicated on a novel strategy for adoptive T cell therapy.
Collapse
Affiliation(s)
- Sung Hee Yoon
- Department of Microbiology and Immunology College of Medicine, The Catholic University of Korea Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chino T, Santer DM, Giordano D, Chen C, Li C, Chen CH, Darveau RP, Clark EA. Effects of oral commensal and pathogenic bacteria on human dendritic cells. ACTA ACUST UNITED AC 2009; 24:96-103. [PMID: 19239635 DOI: 10.1111/j.1399-302x.2008.00478.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS The oral cavity harbors a diverse and complex microbial community. Bacteria accumulate on both the hard and soft oral tissues in sessile biofilms and engage the host in an intricate cellular dialog, which normally constrains the bacteria to a state of commensal harmony. Dendritic cells (DCs) are likely to balance tolerance and active immunity to commensal microorganisms as part of chronic inflammatory responses. While the role played by DCs in maintaining intestinal homeostasis has been investigated extensively, relatively little is known about DC responses to oral bacteria. METHODS In this study, we pulsed human monocyte-derived immature DCs (iDCs) with cell wall extracts from pathogenic and commensal gram-positive or gram-negative oral bacteria. RESULTS Although all bacterial extracts tested induced iDCs to mature and produce cytokines/chemokines including interleukin-12p40, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 (MCP-1), the most important factor for programming DCs by oral bacteria was whether they were gram-positive or gram-negative, not whether they were commensal or pathogenic. In general, gram-negative oral bacteria, except for periodontopathic Porphyromonas gingivalis, stimulated DC maturation and cytokine production at lower concentrations than gram-positive oral bacteria. The threshold of bacteria needed to stimulate chemokine production was 100-fold to 1000-fold lower than that needed to induce cytokines. In addition, very low doses of oral commensal bacteria triggered monocytes to migrate toward DC-derived MCP-1. CONCLUSION Oral commensal and pathogenic bacteria do not differ qualitatively in how they program DCs. DC-derived MCP-1 induced in response to oral commensal bacteria may play a role, at least in part, in the maintenance of oral tissue integrity by attracting monocytes.
Collapse
Affiliation(s)
- T Chino
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, WA 98195-7650, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Although commensal bacteria are known to play an important role in the proper maturation of the immune system of their mammalian hosts, the molecular mechanisms underlying this immunomodulation are poorly characterized. The present review summarizes recent findings in the field and describes new knowledge on the interplay of the innate and adaptive arms of the immune response induced by symbiotic bacterial carbohydrate antigens. RECENT FINDINGS Commensal bacteria in the intestine not only interact directly with dendritic cells but also engage in cross-talk with epithelial cells. These interactions lead to the induction of tolerogenic antigen-presenting cells in the lamina propria and ultimately to the regulation of functional maturation of effector T cells. Upon recognition of capsular polysaccharide antigens of commensal bacteria by dendritic cells (through toll-like receptor 2), innate immune responses facilitate and act in conjunction with adaptive responses to promote optimal Th1 polarization. In contrast, adaptive immunoglobulin A responses to symbiotic bacteria regulate the magnitude of oxidative innate immune responses in the mucosa as well as bacterial epitope expression in the lumen. SUMMARY Accumulating evidence is elucidating surface carbohydrate structures of symbiotic bacteria that drive the modulation of the intestinal immune system, resulting in mature, balanced immune responses and oral tolerance.
Collapse
|
40
|
Müller M, Fink K, Geisel J, Kahl F, Jilge B, Reimann J, Mach N, Autenrieth IB, Frick JS. Intestinal colonization of IL-2 deficient mice with non-colitogenic B. vulgatus prevents DC maturation and T-cell polarization. PLoS One 2008; 3:e2376. [PMID: 18545662 PMCID: PMC2398772 DOI: 10.1371/journal.pone.0002376] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/29/2008] [Indexed: 11/18/2022] Open
Abstract
Background IL-2 deficient (IL-2−/−) mice mono-colonized with E. coli mpk develop colitis whereas IL-2−/−-mice mono-colonized with B. vulgatus mpk do not and are even protected from E. coli mpk induced colitis. Methodology/Principal Findings We investigated if mono-colonization with E. coli mpk or B. vulgatus mpk differentially modulates distribution, activation and maturation of intestinal lamina propria (LP) dendritic cells (DC). LP DC in mice mono-colonized with protective B. vulgatus mpk or co-colonized with E. coli mpk/B. vulgatus mpk featured a semi-mature LP DC phenotype (CD40loCD80loMHC-IIhi) whereas mono-colonization with colitogenic E. coli mpk induced LP DC activation and maturation prior to onset of colitis. Accordingly, chemokine receptor (CCR) 7 surface expression was more strikingly enhanced in mesenteric lymph node DC from E. coli mpk than B. vulgatus mpk mono- or co-colonized mice. Mature but not semi-mature LP DC promoted Th1 polarization. As B. vulgatus mpk promotes differentiation of semi-mature DC presumably by IL-6, mRNA and protein expression of IL-6 was investigated in LP DC. The data demonstrated that IL-6 mRNA and protein was increased in LP DC of B. vulgatus mpk as compared to E. coli mpk mono-colonized IL-2−/−-mice. The B. vulgatus mpk mediated suppression of CCR7 expression and DC migration was abolished in IL-6−/−-DC in vitro. Conclusions/Significance From this data we conclude that the B. vulgatus triggered IL-6 secretion by LP DC in absence of proinflammatory cytokines such as IL-12 or TNF-α induces a semi-mature LP DC phenotype, which might prevent T-cell activation and thereby the induction of colitis in IL-2−/−-mice. The data provide new evidence that IL-6 might act as an immune regulatory cytokine in the mucosa by targeting intestinal DC.
Collapse
Affiliation(s)
- Martina Müller
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Kerstin Fink
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Julia Geisel
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Frauke Kahl
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | | | | | - Nicolas Mach
- Oncology Division, Geneva University Hospital, Geneva, Switzerland
| | - Ingo B. Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Julia S. Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
41
|
Liu CC, Wang YS, Lin CY, Chuang TF, Liao KW, Chi KH, Chen MF, Chiang HC, Chu RM. Transient downregulation of monocyte-derived dendritic-cell differentiation, function, and survival during tumoral progression and regression in an in vivo canine model of transmissible venereal tumor. Cancer Immunol Immunother 2008; 57:479-91. [PMID: 17710396 PMCID: PMC11030039 DOI: 10.1007/s00262-007-0386-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 08/01/2007] [Indexed: 12/29/2022]
Abstract
Tumors often target dendritic cells (DCs) to evade host immune surveillance. DC injury is reported in many rodent and human tumors but seldom in tumors of other mammals. Canine transmissible venereal tumor (CTVT), a unique and spontaneous cancer transmitted by means of viable tumor cells. CTVT causes manifold damage to monocyte-derived DCs. This cancer provides an in vivo model of cancer to study the role of monocyte-derived DCs during spontaneous regression. Using flow cytometry and real-time reverse-transcription polymerase chain reactions, we compared the expression of surface molecules on monocyte-derived DCs between normal dogs and dogs with CTVT. These markers were CD1a, CD83, costimulatory factors (CD40, CD80, and CD86), and major histocompatability complex classes I and II. In immature DCs (iDCs) and lipopolysaccharide-treated mature DCs (mDCs), the surface markers were mostly downregulated during tumoral progression and regression. The tumor lowered endocytic activity of iDCs, as reflected in dextran uptake, and decreased allogeneic mixed lymphocyte reactions of mDCs. In addition, it decreased the number of monocytes in the peripheral blood by 40%. The tumor substantially impaired the efficiency with which DCs were generated from monocytes and with which mDCs were generated from iDCs. We also found that progression-phase CTVT supernatants that were cultured for 48 h and that contained protein components killed both monocytes and DCs. Additionally, DC numbers were significantly lower in the draining lymph nodes in CTVT dogs than in normal dogs. In conclusion, CTVT caused devastating damage to monocyte-derived DCs; this might be one of its mechanisms for evading host immunity. Reestablishment of monocyte-derived DC activity by the host potentially might contribute to spontaneous tumoral regression. These findings provide insight into the extent of tumoral effects on host immune systems and responses. This information is useful for developing cancer immunotherapies.
Collapse
Affiliation(s)
- Cheng-Chi Liu
- Department of Veterinary Medicine, Animal Cancer Research Center, National Taiwan University, 1, Roosevelt Road, Section 4, 106 Taipei, Taiwan, ROC
| | - Yu-Shan Wang
- Department of Veterinary Medicine, Animal Cancer Research Center, National Taiwan University, 1, Roosevelt Road, Section 4, 106 Taipei, Taiwan, ROC
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
| | - Ching-Yi Lin
- Department of Veterinary Medicine, Animal Cancer Research Center, National Taiwan University, 1, Roosevelt Road, Section 4, 106 Taipei, Taiwan, ROC
| | - Tien-Fu Chuang
- Department of Veterinary Medicine, Animal Cancer Research Center, National Taiwan University, 1, Roosevelt Road, Section 4, 106 Taipei, Taiwan, ROC
| | - Kuang-Wen Liao
- Department of Biological Sciences and Technology, College of Life Sciences, Hsin-Chu, Taiwan, ROC
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
| | - Mo-Fan Chen
- Department of Veterinary Medicine, Animal Cancer Research Center, National Taiwan University, 1, Roosevelt Road, Section 4, 106 Taipei, Taiwan, ROC
| | - Hsin-Chien Chiang
- Department of Veterinary Medicine, Animal Cancer Research Center, National Taiwan University, 1, Roosevelt Road, Section 4, 106 Taipei, Taiwan, ROC
| | - Rea-Min Chu
- Department of Veterinary Medicine, Animal Cancer Research Center, National Taiwan University, 1, Roosevelt Road, Section 4, 106 Taipei, Taiwan, ROC
| |
Collapse
|
42
|
Geisel J, Kahl F, Müller M, Wagner H, Kirschning CJ, Autenrieth IB, Frick JS. IL-6 and maturation govern TLR2 and TLR4 induced TLR agonist tolerance and cross-tolerance in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:5811-8. [PMID: 17947654 DOI: 10.4049/jimmunol.179.9.5811] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of naive mouse dendritic cells (DC) with LPS or Pam(3)CSK(4) (P3C) induces production of TNF-alpha via TLR4- or TLR2-signaling. Although tolerance in macrophages has been studied in detail, we investigated the role of TLR agonist concentration and IL-6 for tolerance in DC. P3C- or LPS-primed DC were nonresponsive to P3C or LPS restimulation in terms of TNF-alpha but not IL-6 production. The mechanisms involved in tolerance were dependent on the concentration of the TLR ligand used for DC priming. DC primed with LPS or P3C at high concentrations developed a maturation dependent, IL-6 independent tolerance associated with inhibition of TLR signaling upstream of IkappaB as indicated by decreased IkappaB degradation. In contrast, priming of DC with LPS or P3C at low concentrations resulted in IL-6-dependent tolerance, which was abolished in IL-6 deficient DC, and was not accompanied by maturation of DC or by down-regulation of TLR2 or TLR4. In homotolerogenic DC primed with LPS or P3C at high concentrations, degradation of IkappaB upon restimulation with LPS or P3C was inhibited suggesting tolerance mechanism(s) upstream of IkappaB; in contrast, cross-tolerance in DC primed with LPS or P3C at low concentrations was not associated with reduced IkappaB degradation suggesting tolerance mechanisms downstream of IkappaB. Our data indicate that in naive DC TLR4- and TLR2-stimulation results in homo- and cross-tolerance; the mechanisms involved in tolerance depend on the concentration of the TLR agonist used for DC priming and are governed by IL-6 and maturation.
Collapse
Affiliation(s)
- Julia Geisel
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|