1
|
Nogueira VB, de Oliveira Mendes-Aguiar C, Teixeira DG, Freire-Neto FP, Tassi LZ, Ferreira LC, Wilson ME, Lima JG, Jeronimo SMB. Impaired signaling pathways on Berardinelli-Seip congenital lipodystrophy macrophages during Leishmania infantum infection. Sci Rep 2024; 14:11236. [PMID: 38755198 PMCID: PMC11099049 DOI: 10.1038/s41598-024-61663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Berardinelli-Seip congenital lipodystrophy (CGL), a rare autosomal recessive disorder, is characterized by a lack of adipose tissue. Infections are one of the major causes of CGL individuals' premature death. The mechanisms that predispose to infections are poorly understood. We used Leishmania infantum as an in vitro model of intracellular infection to explore mechanisms underlying the CGL infection processes, and to understand the impact of host mutations on Leishmania survival, since this pathogen enters macrophages through specialized membrane lipid domains. The transcriptomic profiles of both uninfected and infected monocyte-derived macrophages (MDMs) from CGL (types 1 and 2) and controls were studied. MDMs infected with L. infantum showed significantly downregulated expression of genes associated with infection-response pathways (MHC-I, TCR-CD3, and granzymes). There was a transcriptomic signature in CGL cells associated with impaired membrane trafficking and signaling in response to infection, with concomitant changes in the expression of membrane-associated genes in parasites (e.g. δ-amastins). We identified pathways suggesting the lipid storage dysfunction led to changes in phospholipids expression and impaired responses to infection, including immune synapse (antigen presentation, IFN-γ signaling, JAK/STAT); endocytosis; NF-kappaB signaling; and phosphatidylinositol biosynthesis. In summary, lipid metabolism of the host plays an important role in determining antigen presentation pathways.
Collapse
Affiliation(s)
- Viviane Brito Nogueira
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | | | - Diego Gomes Teixeira
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | - Francisco Paulo Freire-Neto
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | - Leo Zenon Tassi
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | - Leonardo Capistrano Ferreira
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mary Edythe Wilson
- Departments of Internal Medicine and Microbiology & Immunology, University of Iowa and the Veterans' Affairs Medical Center, Iowa City, IA, 52242, USA
| | - Josivan Gomes Lima
- Department of Clinical Medicine, Onofre Lopes University Hospital, 620 Nilo Pecanha, Natal, RN, 59013300, Brazil
| | - Selma Maria Bezerra Jeronimo
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil.
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
2
|
Tusnády GE, Zeke A, Kálmán ZE, Fatoux M, Ricard-Blum S, Gibson TJ, Dobson L. LeishMANIAdb: a comparative resource for Leishmania proteins. Database (Oxford) 2023; 2023:baad074. [PMID: 37935582 PMCID: PMC10627299 DOI: 10.1093/database/baad074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/09/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
Leishmaniasis is a detrimental disease causing serious changes in quality of life and some forms can lead to death. The disease is spread by the parasite Leishmania transmitted by sandfly vectors and their primary hosts are vertebrates including humans. The pathogen penetrates host cells and secretes proteins (the secretome) to repurpose cells for pathogen growth and to alter cell signaling via host-pathogen protein-protein interactions). Here, we present LeishMANIAdb, a database specifically designed to investigate how Leishmania virulence factors may interfere with host proteins. Since the secretomes of different Leishmania species are only partially characterized, we collated various experimental evidence and used computational predictions to identify Leishmania secreted proteins to generate a user-friendly unified web resource allowing users to access all information available on experimental and predicted secretomes. In addition, we manually annotated host-pathogen interactions of 211 proteins and the localization/function of 3764 transmembrane (TM) proteins of different Leishmania species. We also enriched all proteins with automatic structural and functional predictions that can provide new insights in the molecular mechanisms of infection. Our database may provide novel insights into Leishmania host-pathogen interactions and help to identify new therapeutic targets for this neglected disease. Database URL https://leishmaniadb.ttk.hu/.
Collapse
Affiliation(s)
- Gábor E Tusnády
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| | - András Zeke
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary
| | - Zsófia E Kálmán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Marie Fatoux
- ICBMS UMR CNRS 5246, University Lyon 1, Rue Victor Grignard, Villeurbanne 69622, France
- UMR CNRS 5086, University Lyon 1, 7 Passage du Vercors, Lyon 69367, France
| | - Sylvie Ricard-Blum
- ICBMS UMR CNRS 5246, University Lyon 1, Rue Victor Grignard, Villeurbanne 69622, France
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Laszlo Dobson
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| |
Collapse
|
3
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
4
|
Devsani N, Vemula D, Bhandari V. The glycoprotein gp63- a potential pan drug target for developing new antileishmanial agents. Biochimie 2023; 207:75-82. [PMID: 36473603 DOI: 10.1016/j.biochi.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a tropical parasitic disease caused by Leishmania spp. They cause several presentations of illness ranging from cutaneous leishmaniasis to visceral leishmaniasis. The current arsenal of drugs to treat leishmaniasis is limited, and drug resistance further impedes the problem. Therefore, it is necessary to revisit the available information to identify an alternative or new target for treatment. The glycoprotein 63 (gp63), is a potential anti-leishmanial target that plays a significant role in host-pathogen interaction and virulence. Many studies are ongoing to develop gp63 inhibitors or use it as a vaccine target. In this review, we will discuss the potential of gp63 as a drug target. This review summarises the studies focusing on gp63 as a drug target and its inhibitors identified using in silico approaches.
Collapse
Affiliation(s)
- Namrata Devsani
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Divya Vemula
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vasundhra Bhandari
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
5
|
Hambrook JR, Hanington PC. A cercarial invadolysin interferes with the host immune response and facilitates infection establishment of Schistosoma mansoni. PLoS Pathog 2023; 19:e1010884. [PMID: 36730464 PMCID: PMC9928134 DOI: 10.1371/journal.ppat.1010884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/14/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Schistosoma mansoni employs immune evasion and immunosuppression to overcome immune responses mounted by its snail and human hosts. Myriad immunomodulating factors underlie this process, some of which are proteases. Here, we demonstrate that one protease, an invadolysin we have termed SmCI-1, is released from the acetabular glands of S. mansoni cercaria and is involved in creating an immunological milieu favorable for survival of the parasite. The presence of SmCI-1 in the cercarial stage of S. mansoni is released during transformation into the schistosomula. SmCI-1 functions as a metalloprotease with the capacity to cleave collagen type IV, gelatin and fibrinogen. Additionally, complement component C3b is cleaved by this protease, resulting in inhibition of the classical and alternative complement pathways. Using SmCI-1 knockdown cercariae, we demonstrate that SmCI-1 protects schistosomula from complement-mediated lysis in human plasma. We also assess the effect of SmCI-1 on cytokine release from human peripheral blood mononuclear cells, providing compelling evidence that SmCI-1 promotes an anti-inflammatory microenvironment by enhancing production of IL-10 and suppressing the production of inflammatory cytokines like IL-1B and IL-12p70 and those involved in eosinophil recruitment and activation, like Eotaxin-1 and IL-5. Finally, we utilize the SmCI-1 knockdown cercaria in a mouse model of infection, revealing a role for SmCI-1 in S. mansoni survival.
Collapse
Affiliation(s)
- Jacob R. Hambrook
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
6
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
7
|
Guay-Vincent MM, Matte C, Berthiaume AM, Olivier M, Jaramillo M, Descoteaux A. Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates. PLoS Pathog 2022; 18:e1010640. [PMID: 36191034 PMCID: PMC9560592 DOI: 10.1371/journal.ppat.1010640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/13/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022] Open
Abstract
Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.
Collapse
Affiliation(s)
- Marie-Michèle Guay-Vincent
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Christine Matte
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Anne-Marie Berthiaume
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Maritza Jaramillo
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Albert Descoteaux
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
8
|
Karim M, Singh G, Thakur S, Rana A, Rub A, Akhter Y. Evaluating complete surface-associated and secretory proteome of Leishmania donovani for discovering novel vaccines and diagnostic targets. Arch Microbiol 2022; 204:604. [PMID: 36069945 DOI: 10.1007/s00203-022-03219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult. The availability of complete L. donovani genome/proteome data allows for the development of specific and efficient vaccine candidates using the reverse vaccinology method, while utilizing the unique sequential and structural features of potential antigenic proteins to induce protective T cell and B cell responses. Such shortlisted candidates may then be tested quickly for their efficacy in the laboratory and later in clinical settings. These antigens will also be useful for designing antigen-based next-generation sero-diagnostic assays. L. donovani's cell surface-associated proteins and secretory proteins are among the first interacting entities to be exposed to the host immune machinery. As a result, potential antigenic epitope peptides derived from these proteins could serve as competent vaccine components. We used a stepwise filtering-based in silico approach to identify the entire surface-associated and secretory proteome of L. donovani, which may provide rationally selected most exposed antigenic proteins. Our study identified 12 glycosylphosphatidylinositol-anchored proteins, 45 transmembrane helix-containing proteins, and 73 secretory proteins as potent antigens unique to L. donovani. In addition, we used immunoinformatics to identify B and T cell epitopes in them. Out of the shortlisted surface-associated and secretory proteome, 66 protein targets were found to have the most potential overlapping B cell and T cell epitopes (linear and conformational; MHC class I and MHC class II).
Collapse
Affiliation(s)
- Munawwar Karim
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
9
|
Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine 2022; 157:155956. [PMID: 35785668 DOI: 10.1016/j.cyto.2022.155956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRβ hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.
Collapse
Affiliation(s)
- Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
10
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
11
|
Nagai K, Goto Y. Parasitomimetics: Can We Utilize Parasite-Derived Immunomodulatory Molecules for Interventions to Immunological Disorders? Front Immunol 2022; 13:824695. [PMID: 35386686 PMCID: PMC8977410 DOI: 10.3389/fimmu.2022.824695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Because our immune system has ability to expel microorganisms invading our body, parasites need evolution to maintain their symbiosis with the hosts. One such strategy of the parasites is to manipulate host immunity by producing immunomodulatory molecules and the ability of parasites to regulate host immunity has long been a target of research. Parasites can not only manipulate host immune response specific to them, but also influence the host's entire immune system. Such ability of the parasites may sometimes bring benefit to the hosts as many studies have indicated the "hygiene hypothesis" that a decreased opportunity of parasitic infections is associated with an increased incidence of allergy and autoimmune diseases. In other words, elucidating the mechanisms of parasites to regulate host immunity could be applied not only to resolution of parasitic infections but also to treatment of non-parasitic immunological disorders. In this review, we show how much progress has been made in the research on immunomodulation of host immunity by parasites. Here, we define the word 'parasitomimetics' as emulation of parasites' immunomodulatory systems to solve immunological problems in humans and discuss potential applications of parasite-derived molecules to other diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Bąska P, Norbury LJ. The Role of Nuclear Factor Kappa B (NF-κB) in the Immune Response against Parasites. Pathogens 2022; 11:pathogens11030310. [PMID: 35335634 PMCID: PMC8950322 DOI: 10.3390/pathogens11030310] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The immune system consists of various cells, organs, and processes that interact in a sophisticated manner to defend against pathogens. Upon initial exposure to an invader, nonspecific mechanisms are raised through the activation of macrophages, monocytes, basophils, mast cells, eosinophils, innate lymphoid cells, or natural killer cells. During the course of an infection, more specific responses develop (adaptive immune responses) whose hallmarks include the expansion of B and T cells that specifically recognize foreign antigens. Cell to cell communication takes place through physical interactions as well as through the release of mediators (cytokines, chemokines) that modify cell activity and control and regulate the immune response. One regulator of cell states is the transcription factor Nuclear Factor kappa B (NF-κB) which mediates responses to various stimuli and is involved in a variety of processes (cell cycle, development, apoptosis, carcinogenesis, innate and adaptive immune responses). It consists of two protein classes with NF-κB1 (p105/50) and NF-κB2 (p100/52) belonging to class I, and RelA (p65), RelB and c-Rel belonging to class II. The active transcription factor consists of a dimer, usually comprised of both class I and class II proteins conjugated to Inhibitor of κB (IκB). Through various stimuli, IκB is phosphorylated and detached, allowing dimer migration to the nucleus and binding of DNA. NF-κB is crucial in regulating the immune response and maintaining a balance between suppression, effective response, and immunopathologies. Parasites are a diverse group of organisms comprised of three major groups: protozoa, helminths, and ectoparasites. Each group induces distinct effector immune mechanisms and is susceptible to different types of immune responses (Th1, Th2, Th17). This review describes the role of NF-κB and its activity during parasite infections and its contribution to inducing protective responses or immunopathologies.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
- Correspondence:
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
13
|
da Silva Lira Filho A, Fajardo EF, Chang KP, Clément P, Olivier M. Leishmania Exosomes/Extracellular Vesicles Containing GP63 Are Essential for Enhance Cutaneous Leishmaniasis Development Upon Co-Inoculation of Leishmania amazonensis and Its Exosomes. Front Cell Infect Microbiol 2022; 11:709258. [PMID: 35186777 PMCID: PMC8851419 DOI: 10.3389/fcimb.2021.709258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Protozoan parasites of the genus Leishmania are transmitted by the bite of infected sand flies leading to a wide range of diseases called leishmaniasis. Recently, we demonstrated that Leishmania spp.-derived exosomes/extracellular vesicles (EVs/LeishEXO) were released in the lumen of the sand fly midgut and to be co-egested with the parasite during the blood meal and that LeishEXO were found to stimulate an inflammatory response conducting to an exacerbated cutaneous leishmaniasis, also it was shown that these vesicles cargo important virulence factors like GP63. Thus, this study aimed to confirm through morphological and proteomic analysis a novel model specificity utilizing another set of GP63-altered Leishmania amazonensis parasite strains. Consequently, we proposed to further study the impact of different GP63 vesicle expression levels on their ability to modulate innate inflammatory cell responses, and finally to determine the importance of GP63 vesicle content on the exacerbation of the cutaneous Leishmania spp. pathology after their host co-inoculation. Our results revealed that the protein composition of extracted extracellular vesicles were similar to each other and that GP63 was the sole virulence factor changed in the exosomes composition confirming the specificity of the chosen novel model. We further demonstrated that vesicles with different GP63 EVs cargo displayed distinctive macrophage immunomodulatory capabilities at both gene and protein expression in vitro. Finally, we showed their diverse impact on the Leishmania spp. cutaneous pathology in an in vivo setting and confirmed GP63 as a primordial component of the ability of these EVs in augmenting the inflammatory cutaneous response in Leishmania spp. infection. Our findings provide new insight on the immune response happening in cutaneous leishmaniasis, shade light on the mechanism behind the host-pathogen interaction occurring in the initial moments of infection, thus creating the opportunity of using them as the target of new pharmacological treatments and vaccinations.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Emanuella Francisco Fajardo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Kwang Poo Chang
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Pauline Clément
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
14
|
Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Front Immunol 2021; 12:748325. [PMID: 34712235 PMCID: PMC8546207 DOI: 10.3389/fimmu.2021.748325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Timur Oljuskin
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
15
|
Antonia AL, Barnes AB, Martin AT, Wang L, Ko DC. Variation in Leishmania chemokine suppression driven by diversification of the GP63 virulence factor. PLoS Negl Trop Dis 2021; 15:e0009224. [PMID: 34710089 PMCID: PMC8577781 DOI: 10.1371/journal.pntd.0009224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/09/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease with diverse outcomes ranging from self-healing lesions, to progressive non-healing lesions, to metastatic spread and destruction of mucous membranes. Although resolution of cutaneous leishmaniasis is a classic example of type-1 immunity leading to self-healing lesions, an excess of type-1 related inflammation can contribute to immunopathology and metastatic spread. Leishmania genetic diversity can contribute to variation in polarization and robustness of the immune response through differences in both pathogen sensing by the host and immune evasion by the parasite. In this study, we observed a difference in parasite chemokine suppression between the Leishmania (L.) subgenus and the Viannia (V.) subgenus, which is associated with severe immune-mediated pathology such as mucocutaneous leishmaniasis. While Leishmania (L.) subgenus parasites utilize the virulence factor and metalloprotease glycoprotein-63 (gp63) to suppress the type-1 associated host chemokine CXCL10, L. (V.) panamensis did not suppress CXCL10. To understand the molecular basis for the inter-species variation in chemokine suppression, we used in silico modeling to identify a putative CXCL10-binding site on GP63. The putative CXCL10 binding site is in a region of gp63 under significant positive selection, and it varies from the L. major wild-type sequence in all gp63 alleles identified in the L. (V.) panamensis reference genome. Mutating wild-type L. (L.) major gp63 to the L. (V.) panamensis sequence at the putative binding site impaired cleavage of CXCL10 but not a non-specific protease substrate. Notably, Viannia clinical isolates confirmed that L. (V.) panamensis primarily encodes non-CXCL10-cleaving gp63 alleles. In contrast, L. (V.) braziliensis has an intermediate level of activity, consistent with this species having more equal proportions of both alleles. Our results demonstrate how parasite genetic diversity can contribute to variation in immune responses to Leishmania spp. infection that may play critical roles in the outcome of infection. Leishmaniasis is a neglected tropical disease caused by Leishmania parasites and spread by the bites of infected sand flies. Most cases of leishmaniasis present as self-healing sores that are resolved by a balanced immune response. Other cases of leishmaniasis involve spread to sites distant from the original bite, including damage of the inner surfaces of the mouth and nose. These cases of leishmaniasis involve an excessive immune response. Leishmania parasites produce virulence factor proteins, such as GP63, to trick the immune system into mounting a weaker response. GP63 specifically degrades signaling proteins that attract and activate certain immune cells. Here, we demonstrate that Leishmania parasite species have evolved to differ in their ability to degrade signaling proteins. In Leishmania species known to cause more immune-mediated tissue damage, the GP63 virulence factor has evolved to not degrade specific immune signaling proteins, thus attracting, and activating more immune cells. Our results demonstrate how diversity among Leishmania parasite species can contribute to variation in immune responses that may play critical roles in the outcome of infection.
Collapse
Affiliation(s)
- Alejandro L. Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Alyson B. Barnes
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Amelia T. Martin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lecoeur H, Prina E, Gutiérrez-Sanchez M, Späth GF. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2021; 38:205-216. [PMID: 34666937 DOI: 10.1016/j.pt.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Intracellular parasites have evolved intricate strategies to subvert host cell functions for their own survival. These strategies are particularly damaging to the host if the infection involves immune cells, as illustrated by protozoan parasites of the genus Leishmania that thrive inside mononuclear phagocytic cells, causing devastating immunopathologies. While the impact of Leishmania infection on host cell phenotype and functions has been well documented, the regulatory mechanisms underlying host cell subversion were only recently investigated. Here we summarize the current knowledge on how Leishmania infection affects host nuclear activities and propose thought-provoking new concepts on the reciprocal relationship between epigenetic and transcriptional regulation in host cell phenotypic plasticity, its potential subversion by the intracellular parasite, and its relevance for host-directed therapy.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Maria Gutiérrez-Sanchez
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gerald F Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
17
|
Chadha A, Chadee K. The NF-κB Pathway: Modulation by Entamoeba histolytica and Other Protozoan Parasites. Front Cell Infect Microbiol 2021; 11:748404. [PMID: 34595137 PMCID: PMC8476871 DOI: 10.3389/fcimb.2021.748404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Protozoan parasites have led to worldwide devastation because of their ability to cause infectious diseases. They have evolved as successful pathogens in part because of their remarkable and sophisticated ways to evade innate host defenses. This holds true for both intracellular and extracellular parasites that deploy multiple strategies to circumvent innate host defenses for their survival. The different strategies protozoan parasites use include hijacking the host cellular signaling pathways and transcription factors. In particular, the nuclear factor-κB (NF-κB) pathway seems to be an attractive target for different pathogens owing to their central role in regulating prompt innate immune responses in host defense. NF-κB is a ubiquitous transcription factor that plays an indispensable role not only in regulating immediate immune responses against invading pathogens but is also a critical regulator of cell proliferation and survival. The major immunomodulatory components include parasite surface and secreted proteins/enzymes and stimulation of host cells intracellular pathways and inflammatory caspases that directly or indirectly interfere with the NF-κB pathway to thwart immune responses that are directed for containment and/or elimination of the pathogen. To showcase how protozoan parasites exploits the NF-κB signaling pathway, this review highlights recent advances from Entamoeba histolytica and other protozoan parasites in contact with host cells that induce outside-in and inside-out signaling to modulate NF-κB in disease pathogenesis and survival in the host.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Dong G, Wagner V, Minguez-Menendez A, Fernandez-Prada C, Olivier M. Extracellular vesicles and leishmaniasis: Current knowledge and promising avenues for future development. Mol Immunol 2021; 135:73-83. [PMID: 33873096 DOI: 10.1016/j.molimm.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are small, membrane-bound "delivery trucks" that are present in the extracellular environment, including biological fluids. EVs are capable of inducing changes in the physiological status of neighboring cells through the transfer of key macromolecules, and are thought to play a role in a number of pathological processes. Leishmaniasis, caused by the protozoan parasite Leishmania, is an important example. The biology of Leishmania EVs has been studied in detail, and findings point to their role in exacerbation of disease and potential involvement in the perpetuation of drug resistance. Furthermore, the use of EVs for development of vaccines has been explored, as well as their potential use in a number of fields as biomarkers of disease and drug resistance. Here we discuss the latest findings on EVs, with a particular focus on Leishmania, as well as potential avenues for their future development and clinical applications.
Collapse
Affiliation(s)
- George Dong
- Infectious Diseases and Immunology in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Victoria Wagner
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, QC, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, QC, Canada
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, QC, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, QC, Canada.
| | - Martin Olivier
- Infectious Diseases and Immunology in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
19
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
20
|
Shams M, Nourmohammadi H, Basati G, Adhami G, Majidiani H, Azizi E. Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
21
|
Regulation of macrophage subsets and cytokine production in leishmaniasis. Cytokine 2020; 147:155309. [PMID: 33334669 DOI: 10.1016/j.cyto.2020.155309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
Macrophages are host cells for parasites of the genus Leishmania where they multiply inside parasitophorous vacuoles. Paradoxically, macrophages are also the cells responsible for killing or controlling parasite growth, if appropriately activated. In this review, we will cover the patterns of macrophage activation and the mechanisms used by the parasite to circumvent being killed. We will highlight the impacts of the vector bite on macrophage activation. Finally, we will discuss the ontogeny of macrophages that are infected by Leishmania spp.
Collapse
|
22
|
Leishmania mexicana: Novel Insights of Immune Modulation through Amastigote Exosomes. J Immunol Res 2020; 2020:8894549. [PMID: 33344659 PMCID: PMC7728480 DOI: 10.1155/2020/8894549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular microvesicles of endosomal origin (multivesicular bodies, MVBs) constitutively released by eukaryotic cells by fusion of MVBs to the plasma membrane. The exosomes from Leishmania parasites contain an array of parasite molecules such as virulence factors and survival messengers, capable of modulating the host immune response and thereby favoring the infection of the host. We here show that exosomes of L. mexicana amastigotes (aExo) contain the virulence proteins gp63 and PP2C. The incubation of aExo with bone marrow-derived macrophages (BMMs) infected with L. mexicana led to their internalization and were found to colocalize with the cellular tetraspanin CD63. Furthermore, aExo inhibited nitric oxide production of infected BMMs, permitting enhanced intracellular parasite survival. Expressions of antigen-presenting (major histocompatibility complex class I, MHC-I, and CD1d) and costimulatory (CD86 and PD-L1) molecules were modulated in a dose-dependent fashion. Whereas MHC-I, CD86 and PD-L1 expressions were diminished by exosomes, CD1d was enhanced. We conclude that aExo of L. mexicana are capable of decreasing microbicidal mechanisms of infected macrophages by inhibiting nitric oxide production, thereby enabling parasite survival. They also hamper the cellular immune response by diminishing MHC-I and CD86 on an important antigen-presenting cell, which potentially interferes with CD8 T cell activation. The enhanced CD1d expression in combination with reduction of PD-L1 on BMMs point to a potential shift of the activation route towards lipid presentations, yet the effectivity of this immune activation is not evident, since in the absence of costimulatory molecules, cellular anergy and tolerance would be expected.
Collapse
|
23
|
Olivier M, Zamboni DS. Leishmania Viannia guyanensis, LRV1 virus and extracellular vesicles: a dangerous trio influencing the faith of immune response during muco-cutaneous leishmaniasis. Curr Opin Immunol 2020; 66:108-113. [PMID: 32877837 DOI: 10.1016/j.coi.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Parasites of Leishmania genus have developed various strategies to overcome host immune response favoring its infection and development toward leishmaniasis. With an array of virulence factors, those parasites modify host macrophage signaling and functions. Depending of the species involved, visceral or cutaneous leishmaniasis will develop. Several years ago, Leishmania Viannia guyanensis that is naturally infected with the endosymbiotic virus Leishmania RNA Virus 1 was found to cause a particularly aggressive form of South-American mucocutaneous leishmaniasis. This virus, when co-transmitted with the parasite was shown to strongly modulate RNA sensors and NLRP3 inflammasome network that could explain in part the exacerbated skin pathology caused by this particular parasite. In this review, we will be discussing how this endosymbiotic virus-infected Leishmania in conjunction with Leishmania exosomes partner together to manipulate host immune response in their favor.
Collapse
Affiliation(s)
- Martin Olivier
- Department of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, QC, Canada.
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, Uzonna JE. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms 2020; 8:E1201. [PMID: 32784615 PMCID: PMC7465679 DOI: 10.3390/microorganisms8081201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases still constitute a major global health problem affecting billions of people around the world. These diseases are capable of becoming chronic and result in high morbidity and mortality. Worldwide, millions of people die each year from parasitic diseases, with the bulk of those deaths resulting from parasitic protozoan infections. Leishmaniasis, which is a disease caused by over 20 species of the protozoan parasite belonging to the genus Leishmania, is an important neglected disease. According to the World Health Organization (WHO), an estimated 12 million people are currently infected in about 98 countries and about 2 million new cases occur yearly, resulting in about 50,000 deaths each year. Current treatment methods for leishmaniasis are not very effective and often have significant side effects. In this review, we discussed host immunity to leishmaniasis, various treatment options currently being utilized, and the progress of both immunotherapy and vaccine development strategies used so far in leishmaniasis. We concluded with insights into what the future holds toward the fight against this debilitating parasitic disease.
Collapse
Affiliation(s)
- Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Gloria N. Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chidalu A. Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Enitan S. Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chukwunonso Onyilagha
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Aida F. Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Jude E. Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| |
Collapse
|
25
|
Detection of Metalloproteases and Cysteine Proteases RNA Transcripts of Leishmania (Leishmania) infantum in Ear Edge Skin of Naturally Infected Dogs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2615787. [PMID: 32685457 PMCID: PMC7333044 DOI: 10.1155/2020/2615787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/03/2022]
Abstract
Leishmania spp. proteases have been proposed as virulence factors contributing to adaptive success these parasites to the mammalian hosts. Since these enzymes are poorly studied in naturally infected dogs, this work aims to show the differences in metalloprotease and cysteine proteases gene expression in ear edge skin of dogs naturally infected by Leishmania (Leishmania) infantum. A cohort of dogs (n = 20) naturally infected by L. (L.) infantum was clinically classified as asymptomatic, oligosymptomatic, and polysymptomatic and the parasite load range estimated. The analysis of proteases expression by RT-PCR in the ear edge skin was also assessed, suggesting more transcripts of proteases in cDNA samples from polysymptomatic dogs than oligosymptomatic and asymptomatic ones. Metalloprotease RT-PCR assays yielded products (202 bp) in all assessed cDNA dog samples. In contrast, cysteine proteases transcripts (227 bp) had shown to be better detected in cDNA samples of polysymptomatic dogs, compared with cDNA samples from asymptomatic and oligosymptomatic dogs. Predictive in silico assays suggested that secondary structures of metalloproteasee mRNAs can be more stable than cysteine proteases at the skin temperature of dogs. Evidence is presented that during natural infection of dogs by L. (L.) infantum, this parasite produces transcripts of metalloprotease and cysteine protease RNA in the skin from asymptomatic, oligosymptomatic, and polysymptomatic dogs.
Collapse
|
26
|
Nimsarkar P, Ingale P, Singh S. Systems Studies Uncover miR-146a as a Target in Leishmania major Infection Model. ACS OMEGA 2020; 5:12516-12526. [PMID: 32548436 PMCID: PMC7271362 DOI: 10.1021/acsomega.0c01502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Leishmaniasis, the second most neglected tropical disease, has been reported to affect approximately 12 million people worldwide. The causative protozoan parasite Leishmania has shown drug resistance to available chemotherapies, owing to which we need to look for better approaches to deal with the clinical situations. As per recent reports, several miRNAs have been found to be differentially expressed during Leishmania major infection in host macrophages. We aim to evaluate the impact of miRNA-mediated gene regulation on the key players of inflammation and macrophage dysfunction. The origin of Leishmania miRNAs and their processing is a questionable phenomenon as of yet. Through our study, we aim to provide a framework of their characterization. We amalgamate chemical systems biology and synthetic biology approaches to identify putative miRNA targets and unravel the complexity of host-pathogen gene regulatory networks.
Collapse
|
27
|
Ranatunga M, Rai R, Richardson SCW, Dyer P, Harbige L, Deacon A, Pecorino L, Getti GTM. Leishmania aethiopica cell-to-cell spreading involves caspase-3, AkT, and NF-κB but not PKC-δ activation and involves uptake of LAMP-1-positive bodies containing parasites. FEBS J 2020; 287:1777-1797. [PMID: 31804757 DOI: 10.1111/febs.15166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/27/2019] [Accepted: 12/04/2019] [Indexed: 11/25/2022]
Abstract
Development of human leishmaniasis is dependent on the ability of intracellular Leishmania parasites to spread and enter macrophages. The mechanism through which free promastigotes and amastigotes bind and enter host macrophages has been previously investigated; however, little is known about intracellular trafficking and cell-to-cell spreading. In this study, the mechanism involved in the spreading of Leishmania aethiopica and Leishmania mexicana was investigated. A significant increase in phosphatidylserine (PS) exhibition, cytochrome C release, and active caspase-3 expression was detected (P < 0.05) during L. aethiopica, but not L. mexicana spreading. A decrease (P < 0.05) of protein kinase B (Akt) protein and BCL2-associated agonist of cell death (BAD) phosphorylation was also observed. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB) signaling pathway and pro-apoptotic protein protein kinase C delta (PKC-δ) were downregulated while inhibition of caspase-3 activation prevented L. aethiopica spreading. Overall suggesting that L. aethiopica induces host cell's apoptosis during spreading in a caspase-3-dependent manner. The trafficking of amastigotes within macrophages following cell-to-cell spreading differed from that of axenic parasites and involved co-localization with lysosomal-associated membrane protein 1 (LAMP-1) within 10 min postinfection. Interestingly, following infection with axenic amastigotes and promastigotes, co-localization of parasites with LAMP-1-positive structures took place at 1 and 4 h, respectively, suggesting that the membrane coat and LAMP-1 protein were derived from the donor cell. Collectively, these findings indicate that host cell apoptosis, demonstrated by PS exhibition, caspase-3 activation, cytochrome C release, downregulation of Akt, BAD phosphorylation, NF-kB activation, and independent of PKC-δ expression, is involved in L. aethiopica spreading. Moreover, L. aethiopica parasites associate with LAMP-rich structures when taken up by neighboring macrophages.
Collapse
Affiliation(s)
| | - Rajeev Rai
- University of Greenwich at Medway, Kent, UK
| | | | - Paul Dyer
- University of Greenwich at Medway, Kent, UK
| | | | | | | | | |
Collapse
|
28
|
Faria CP, Neves BM, Lourenço Á, Cruz MT, Martins JD, Silva A, Pereira S, Sousa MDC. Giardia lamblia Decreases NF-κB p65 RelA Protein Levels and Modulates LPS-Induced Pro-Inflammatory Response in Macrophages. Sci Rep 2020; 10:6234. [PMID: 32277133 PMCID: PMC7148380 DOI: 10.1038/s41598-020-63231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
The protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G. lamblia with host immune cells, we investigated the ability of parasites to modulate the canonical activation of mouse macrophages (Raw 264.7 cell line) and human monocyte-derived macrophages triggered by the TLR4 agonist, lipopolysaccharide (LPS). We observed that G. lamblia impairs LPS-evoked pro-inflammatory status in these macrophage-like cells through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase expression and subsequent NO production. This effect was in part due to the activity of three G. lamblia proteases, a 135 kDa metalloprotease and two cysteine proteases with 75 and 63 kDa, that cleave the p65RelA subunit of the nuclear factor-kappa B (NF-κB). Moreover, Tnf and Ccl4 transcription was increased in the presence of the parasite. Overall, our data indicates that G. lamblia modulates macrophages inflammatory response through impairment of the NF-κB, thus silencing a crucial signaling pathway of the host innate immune response.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ágata Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João D Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia Pereira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
29
|
Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P, Aulner N, Varet H, Bussotti G, Xing Y, Milon G, Weil R, Meng G, Späth GF. Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-κB/NLRP3-Mediated Inflammatory Response. Cell Rep 2020; 30:1870-1882.e4. [DOI: 10.1016/j.celrep.2020.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
|
30
|
Münck NA, Roth J, Sunderkötter C, Ehrchen J. Aryl Hydrocarbon Receptor-Signaling Regulates Early Leishmania major-Induced Cytokine Expression. Front Immunol 2019; 10:2442. [PMID: 31749794 PMCID: PMC6843081 DOI: 10.3389/fimmu.2019.02442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023] Open
Abstract
The early inflammatory skin micromilieu affects resistance in experimental infection with Leishmania major. We pursue the concept that macrophages, which take up parasites during early infection, exert decisive influence on the inflammatory micromilieu after infection. In order to analyze their distinctive potential, we identified differentially regulated genes of murine granuloma macrophages (GMΦ) from resistant and susceptible mice after their infection with metacyclic Leishmania major. We found induction of several cytokines in GMΦ from both strains and a stronger upregulation of the transcription factor aryl hydrocarbon receptor (AhR) in GMΦ from resistant mice. Using both an AhR agonist and antagonist we demonstrated that AhR is involved in Leishmania-induced production of TNF in macrophages. In vivo, single local injection of an AhR agonist in early lesions of susceptible mice caused an increased induction of Tnf and other cytokines in the skin. Importantly, local agonist treatment led to a reduction of disease severity, reduced parasite loads and a weaker Th2 response. Our results demonstrate that local activation of AhR has a beneficial effect in experimental leishmaniasis.
Collapse
Affiliation(s)
- Niels-Arne Münck
- Institute of Immunology, University of Münster, Münster, Germany.,Department of Translational Dermatoinfectiology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Cord Sunderkötter
- Department of Translational Dermatoinfectiology, University of Münster, Münster, Germany.,Department of Dermatology, University of Münster, Münster, Germany.,Department of Dermatology and Venereology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jan Ehrchen
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
31
|
de Carvalho RVH, Silva ALN, Santos LL, Andrade WA, de Sá KSG, Zamboni DS. Macrophage priming is dispensable for NLRP3 inflammasome activation and restriction of Leishmania amazonensis replication. J Leukoc Biol 2019; 106:631-640. [PMID: 31063608 DOI: 10.1002/jlb.ma1118-471r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 12/23/2022] Open
Abstract
The NLRP3 inflammasome is activated in response to multiple stimuli and triggers activation of caspase-1 (CASP1), IL-1β production, and inflammation. NLRP3 activation requires two signals. The first leads to transcriptional regulation of specific genes related to inflammation, and the second is triggered when pathogens, toxins, or specific compounds damage cellular membranes and/or trigger the production of reactive oxygen species (ROS). Here, we assess the requirement of the first signal (priming) for the activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) infected with Leishmania amazonensis. We found that BMDMs express the inflammasome components NLRP3, ASC, and CASP1 at sufficient levels to enable the assembly and activation of NLRP3 inflammasome in response to infection. Therefore, priming was not required for the formation of ASC specks, CASP1 activation (measured by fluorescent dye FAM-YVAD), and restriction of L. amazonensis replication via the NLRP3 inflammasome. By contrast, BMDM priming was required for CASP1 cleavage (p20) and IL-1β secretion, because priming triggers robust up-regulation of pro-IL-1β and CASP11 that are important for efficient processing of CASP1 and IL-1β. Taken together, our data shed light into the cellular and molecular processes involved in activation of the NLRP3 in macrophages by Leishmania, a process that is important for the outcome of Leishmaniasis.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo L Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Warrison A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keyla S G de Sá
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
32
|
Leishmania donovani Lipophosphoglycan Increases Macrophage-Dependent Chemotaxis of CXCR6-Expressing Cells via CXCL16 Induction. Infect Immun 2019; 87:IAI.00064-19. [PMID: 30804103 DOI: 10.1128/iai.00064-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a multifunctional chemokine that is highly expressed by macrophages and other immune cells in response to bacterial and viral pathogens; however, little is known regarding the role of CXCL16 during parasitic infections. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. Even though chemokine production is a host defense mechanism during infection, subversion of the host chemokine system constitutes a survival strategy adopted by the parasite. Here, we report that L. donovani promastigotes upregulate CXCL16 synthesis and secretion by bone marrow-derived macrophages (BMDM). In contrast to wild-type parasites, a strain deficient in the virulence factor lipophosphoglycan (LPG) failed to induce CXCL16 production. Consistent with this, cell treatment with purified L. donovani LPG augmented CXCL16 expression and secretion. Notably, the ability of BMDM to promote migration of cells expressing CXCR6, the cognate receptor of CXCL16, was augmented upon L. donovani infection in a CXCL16- and LPG-dependent manner. Mechanistically, CXCL16 induction by L. donovani required the activity of AKT and the mechanistic target of rapamycin (mTOR) but was independent of Toll-like receptor signaling. Collectively, these data provide evidence that CXCL16 is part of the inflammatory response elicited by L. donovani LPG in vitro Further investigation using CXCL16 knockout mice is required to determine whether this chemokine contributes to the pathogenesis of visceral leishmaniasis and to elucidate the underlying molecular mechanisms.
Collapse
|
33
|
Immunotherapeutic potential of Codonopsis clematidea and naringenin against visceral leishmaniasis. Biomed Pharmacother 2018; 108:1048-1061. [DOI: 10.1016/j.biopha.2018.09.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022] Open
|
34
|
Chauhan K, Kaur G, Kaur S. Activity of rutin, a potent flavonoid against SSG-sensitive and -resistant Leishmania donovani parasites in experimental leishmaniasis. Int Immunopharmacol 2018; 64:372-385. [DOI: 10.1016/j.intimp.2018.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/02/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
|
35
|
Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol 2018; 9:883. [PMID: 29867798 PMCID: PMC5949370 DOI: 10.3389/fmicb.2018.00883] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain.,Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| |
Collapse
|
36
|
Abstract
This is a systematic review on the role of metalloproteases in the pathogenicity of the American tegumentary leishmaniasis (ATL) caused by New World Leishmania species. The review followed the PRISMA method, searching for articles in PubMed, EMBASE, LILACS and ISI Web of Science, by employing the following terms: 'leishmaniasis', 'cutaneous leishmaniasis', 'mucocutaneous leishmaniasis', 'diffuse cutaneous leishmaniasis', 'Leishmania' and 'metalloproteases'. GP63 of New World Leishmania species is a parasite metalloproteases involved in the degradation and cleavage of many biological molecules as kappa-B nuclear factor, fibronectin, tyrosine phosphatases. GP63 is capable of inhibiting the activity of the complement system and reduces the host's immune functions, allowing the survival of the parasite and its dissemination. High serological/tissue levels of host matrix metalloproteases (MMP)-9 have been associated with tissue damage during the infection, while high transcriptional levels of MMP-2 related with a satisfactory response to treatment. Host MMPs serological and tissue levels have been investigated using Western Blot, zymography, and Real Time polymerase chain reaction. GP63 detection characterizes species and virulence in promastigotes isolated from lesions samples using techniques mentioned previously. The monitoring of host MMPs levels and GP63 in Leishmania isolated from host samples could be used on the laboratory routine to predict the prognostic and treatment efficacy of ATL.
Collapse
|
37
|
Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front Immunol 2018. [PMID: 29520262 PMCID: PMC5827161 DOI: 10.3389/fimmu.2018.00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are features of infected and inflamed tissues. Here, we summarize our current knowledge on oxygen levels found in Leishmania-infected tissues and discuss which mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune responses.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Franz Rieger
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Mol M, Kosey D, Boppana R, Singh S. Transcription Factor Target Gene Network governs the Logical Abstraction Analysis of the Synthetic Circuit in Leishmaniasis. Sci Rep 2018; 8:3464. [PMID: 29472639 PMCID: PMC5823942 DOI: 10.1038/s41598-018-21840-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
With the advent of synthetic biology in medicine many synthetic or engineered proteins have made their way to therapeutics and diagnostics. In this paper, the downstream gene network of CD14-TNF-EGFR pathway in leishmaniasis, a tropical disease, is reconstructed. Network analysis showed that NFkB links the signaling and gene network, used as a point of intervention through a synthetic circuit embedded within the negative autoregulatory feedback loop. A chimeric protein kinase C (PKC) is incorporated in the synthetic circuit, under the transcriptional regulation of Lac repressor and IPTG, as an inducer. The chimeric PKC_ζα via IκKb phosphorylation activates NFκB, and modulates the gene expression from an anti-inflammatory to a pro-inflammatory phenotype in in vitro L. major infected macrophage model. This is the first ever report of a synthetic device construction in leishmania.
Collapse
Affiliation(s)
- Milsee Mol
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Dipali Kosey
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Ramanamurthy Boppana
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
39
|
Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol 2017; 8:1838. [PMID: 29312331 PMCID: PMC5743797 DOI: 10.3389/fimmu.2017.01838] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
The kinetoplastid protozoan parasites belonging to the genus Leishmania are the causative agents of different clinical forms of leishmaniasis, a vector-borne infectious disease with worldwide prevalence. The protective host immune response against Leishmania parasites relies on myeloid cells such as dendritic cells and macrophages in which upon stimulation by cytokines (e.g., interferon-γ) a complex network of signaling pathways is switched on leading to strong antimicrobial activities directed against the intracellular parasite stage. The regulation of these pathways classically depends on post-translational modifications of proteins, with phosphorylation events playing a cardinal role. Leishmania parasites deactivate their phagocytic host cells by inducing specific mammalian phosphatases that are capable to impede signaling. On the other hand, there is now also evidence that Leishmania spp. themselves express phosphatases that might target host cell molecules and thereby facilitate the intracellular survival of the parasite. This review will present an overview on the modulation of host phosphatases by Leishmania parasites as well as on the known families of Leishmania phosphatases and their possible function as virulence factors. A more detailed understanding of the role of phosphatases in Leishmania–host cell interactions might open new avenues for the treatment of non-healing, progressive forms of leishmaniasis.
Collapse
Affiliation(s)
- Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| |
Collapse
|
40
|
Apoptotic induction induces Leishmania aethiopica and L. mexicana spreading in terminally differentiated THP-1 cells. Parasitology 2017; 144:1912-1921. [PMID: 28737116 DOI: 10.1017/s0031182017001366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Leishmaniasis develops after parasites establish themselves as amastigotes inside mammalian cells and start replicating. As relatively few parasites survive the innate immune defence, intracellular amastigotes spreading towards uninfected cells is instrumental to disease progression. Nevertheless the mechanism of Leishmania dissemination remains unclear, mostly due to the lack of a reliable model of infection spreading. Here, an in vitro model representing the dissemination of Leishmania amastigotes between human macrophages has been developed. Differentiated THP-1 macrophages were infected with GFP expressing Leishmania aethiopica and Leishmania mexicana. The percentage of infected cells was enriched via camptothecin treatment to achieve 64·1 ± 3% (L. aethiopica) and 92 ± 1·2% (L. mexicana) at 72 h, compared to 35 ± 4·2% (L. aethiopica) and 36·2 ± 2·4% (L. mexicana) in untreated population. Infected cells were co-cultured with a newly differentiated population of THP-1 macrophages. Spreading was detected after 12 h of co-culture. Live cell imaging showed inter-cellular extrusion of L. aethiopica and L. mexicana to recipient cells took place independently of host cell lysis. Establishment of secondary infection from Leishmania infected cells provided an insight into the cellular phenomena of parasite movement between human macrophages. Moreover, it supports further investigation into the molecular mechanisms of parasites spreading, which forms the basis of disease development.
Collapse
|
41
|
Parashar S, Mukhopadhyay A. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania. J Biol Chem 2017; 292:12111-12125. [PMID: 28576830 DOI: 10.1074/jbc.m117.784033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/30/2017] [Indexed: 12/30/2022] Open
Abstract
Metalloprotease gp63 (Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His6-LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63L594A/L595A or GFP-Ldgp63V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion.
Collapse
Affiliation(s)
- Smriti Parashar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
42
|
Belkhelfa-Slimani R, Djerdjouri B. Caffeic acid and quercetin exert caspases-independent apoptotic effects on Leishmania major promastigotes, and reactivate the death of infected phagocytes derived from BALB/c mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Schatz V, Strüssmann Y, Mahnke A, Schley G, Waldner M, Ritter U, Wild J, Willam C, Dehne N, Brüne B, McNiff JM, Colegio OR, Bogdan C, Jantsch J. Myeloid Cell-Derived HIF-1α Promotes Control of Leishmania major. THE JOURNAL OF IMMUNOLOGY 2016; 197:4034-4041. [PMID: 27798163 DOI: 10.4049/jimmunol.1601080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α), which accumulates in mammalian host organisms during infection, supports the defense against microbial pathogens. However, whether and to what extent HIF-1α expressed by myeloid cells contributes to the innate immune response against Leishmania major parasites is unknown. We observed that Leishmania-infected humans and L. major-infected C57BL/6 mice exhibited substantial amounts of HIF-1α in acute cutaneous lesions. In vitro, HIF-1α was required for leishmanicidal activity and high-level NO production by IFN-γ/LPS-activated macrophages. Mice deficient for HIF-1α in their myeloid cell compartment had a more severe clinical course of infection and increased parasite burden in the skin lesions compared with wild-type controls. These findings were paralleled by reduced expression of type 2 NO synthase by lesional CD11b+ cells. Together, these data illustrate that HIF-1α is required for optimal innate leishmanicidal immune responses and, thereby, contributes to the cure of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Yannic Strüssmann
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Alexander Mahnke
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gunnar Schley
- Medizinische Klinik 4, Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maximilian Waldner
- Medizinische Klinik 1, Gastroenterologie, Pneumologie und Endokrinologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Uwe Ritter
- Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Jens Wild
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Carsten Willam
- Medizinische Klinik 4, Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nathalie Dehne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510
| | - Oscar R Colegio
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany;
| |
Collapse
|
44
|
Antileishmanial Activity and Inducible Nitric Oxide Synthase Activation by RuNO Complex. Mediators Inflamm 2016; 2016:2631625. [PMID: 27795620 PMCID: PMC5067336 DOI: 10.1155/2016/2631625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/04/2016] [Accepted: 07/17/2016] [Indexed: 02/04/2023] Open
Abstract
Parasites of the genus Leishmania are capable of inhibiting effector functions of macrophages. These parasites have developed the adaptive ability to escape host defenses; for example, they inactivate the NF-κB complex and suppress iNOS expression in infected macrophages, which are responsible for the production of the major antileishmanial substance nitric oxide (NO), favoring then its replication and successful infection. Metal complexes with NO have been studied as potential compounds for the treatment of certain tropical diseases, such as ruthenium compounds, known to be exogenous NO donors. In the present work, the compound cis-[Ru(bpy)2SO3(NO)]PF6, or RuNO, showed leishmanicidal activity directly and indirectly on promastigote forms of Leishmania (Leishmania) amazonensis. In addition, treatment with RuNO increased NO production by reversing the depletion of NO caused by Leishmania. We also found increased expression of Akt, iNOS, and NF-κB in infected and treated macrophages. These results demonstrated that RuNO was able to kill the parasite by NO release and modulate the transcriptional capacity of the cell.
Collapse
|
45
|
Séguin O, Descoteaux A. Leishmania, the phagosome, and host responses: The journey of a parasite. Cell Immunol 2016; 309:1-6. [PMID: 27531526 DOI: 10.1016/j.cellimm.2016.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
Abstract
Leishmania is the eukaryotic parasite responsible for leishmaniases, a spectrum of diseases that puts at risk roughly 350millions of people in 98 countries according to the Drugs for Neglected Diseases initiative (DNDi). This parasite has a complex life cycle composed of two distinct stages, the promastigote form found in the female sand-fly vector and the amastigote form that replicates in the mammalian host (Teixeira et al., 2013) [1]. To survive, the parasite interacts with its host immune system at multiple levels. In this review, we discuss the nature of those interactions, how they affect the host immune system, and how they affect parasite survival from the very beginning of the life cycle in the vector to its dissemination within the mammalian host.
Collapse
Affiliation(s)
- Olivier Séguin
- INRS-Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada.
| |
Collapse
|
46
|
Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C, Olivier M. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cell Immunol 2016; 309:7-18. [PMID: 27499212 DOI: 10.1016/j.cellimm.2016.07.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
Abstract
Leishmania parasites are the causative agents of the leishmaniases, a collection of vector-borne diseases that range from simple cutaneous to fatal visceral forms. Employing potent immune modulation mechanisms, Leishmania is able to render the host macrophage inactive and persist inside its phagolysosome. In the last few years, the role of exosomes in Leishmania-host interactions has been increasingly investigated. For instance, it was reported that Leishmania exosome release is augmented following temperature shift, a condition mimicking parasite's entry into its mammalian host. Leishmania exosomes were found to strongly affect macrophage cell signaling and functions, similarly to whole parasites. Importantly, these vesicles were shown to be pro-inflammatory, capable to recruit neutrophils at their inoculation site exacerbating the pathology. In this review, we provide the most recent insights on the role of exosomes and other virulence factors, especially the surface protease GP63, in Leishmania-host interactions, deepening our knowledge on leishmaniasis and paving the way for the development of new therapeutics.
Collapse
Affiliation(s)
- Vanessa Diniz Atayde
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Kasra Hassani
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Alonso da Silva Lira Filho
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Andrezza Raposo Borges
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Anupam Adhikari
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Caroline Martel
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada
| | - Martin Olivier
- Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
47
|
Abstract
Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research.
Collapse
|
48
|
Hodgson A, Wan F. Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: global and selective inhibition. Mol Microbiol 2016; 99:439-52. [PMID: 26449378 PMCID: PMC5003429 DOI: 10.1111/mmi.13245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Pathogens have evolved a myriad of ways to abrogate and manipulate the host response to infections. Of the various mechanisms involved, pathogen-encoded and sometimes host-encoded proteases are an important category of virulence factors that cause robust changes on the host response by targeting key proteins along signaling cascades. The nuclear factor kappaB (NF-κB) signaling pathway is a crucial regulatory mechanism for the cell, controlling the expression of survival, immune and proliferation genes. Proteases from pathogens of almost all types have been demonstrated to target and cleave members of the NF-κB signaling pathway at nearly every level. This review provides discussion of proteases targeting the most abundant NF-κB subunit, p65, and the impact of protease-mediated p65 cleavage on the immune responses and survival of the infected host cell. After examining various examples of protease interference, it becomes evident that the cleavage fragments produced by pathogen-driven proteolytic processing should be further characterized to determine whether they have novel and unique functions within the cell. The selective targeting of p65 and its effect on gene transcription reveals unique mechanisms by which pathogens acutely alter their microenvironment, and further research may open new opportunities for novel therapeutics to combat pathogens.
Collapse
Affiliation(s)
- Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
49
|
Calegari-Silva TC, Vivarini ÁC, Miqueline M, Dos Santos GRRM, Teixeira KL, Saliba AM, Nunes de Carvalho S, de Carvalho L, Lopes UG. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway. Open Biol 2015; 5:150118. [PMID: 26400473 PMCID: PMC4593669 DOI: 10.1098/rsob.150118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression.
Collapse
Affiliation(s)
- Teresa C Calegari-Silva
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Áislan C Vivarini
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Marina Miqueline
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Guilherme R R M Dos Santos
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Karina Luiza Teixeira
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- Departamento de Microbiologia e Parasitologia, Da Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone Nunes de Carvalho
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laís de Carvalho
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses G Lopes
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Shio MT, Christian JG, Jung JY, Chang KP, Olivier M. PKC/ROS-Mediated NLRP3 Inflammasome Activation Is Attenuated by Leishmania Zinc-Metalloprotease during Infection. PLoS Negl Trop Dis 2015; 9:e0003868. [PMID: 26114647 PMCID: PMC4482689 DOI: 10.1371/journal.pntd.0003868] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/01/2015] [Indexed: 01/06/2023] Open
Abstract
Parasites of the Leishmania genus infect and survive within macrophages by inhibiting several microbicidal molecules, such as nitric oxide and pro-inflammatory cytokines. In this context, various species of Leishmania have been reported to inhibit or reduce the production of IL-1β both in vitro and in vivo. However, the mechanism whereby Leishmania parasites are able to affect IL-1β production and secretion by macrophages is still not fully understood. Dependent on the stimulus at hand, the maturation of IL-1β is facilitated by different inflammasome complexes. The NLRP3 inflammasome has been shown to be of pivotal importance in the detection of danger molecules such as inorganic crystals like asbestos, silica and malarial hemozoin, (HZ) as well as infectious agents. In the present work, we investigated whether Leishmania parasites modulate NLRP3 inflammasome activation. Using PMA-differentiated THP-1 cells, we demonstrate that Leishmania infection effectively inhibits macrophage IL-1β production upon stimulation. In this context, the expression and activity of the metalloprotease GP63 - a critical virulence factor expressed by all infectious Leishmania species - is a prerequisite for a Leishmania-mediated reduction of IL-1β secretion. Accordingly, L. mexicana, purified GP63 and GP63-containing exosomes, caused the inhibition of macrophage IL-1β production. Leishmania-dependent suppression of IL-1β secretion is accompanied by an inhibition of reactive oxygen species (ROS) production that has previously been shown to be associated with NLRP3 inflammasome activation. The observed loss of ROS production was due to an impaired PKC-mediated protein phosphorylation. Furthermore, ROS-independent inflammasome activation was inhibited, possibly due to an observed GP63-dependent cleavage of inflammasome and inflammasome-related proteins. Collectively for the first time, we herein provide evidence that the protozoan parasite Leishmania, through its surface metalloprotease GP63, can significantly inhibit NLRP3 inflammasome function and IL-1β production. Leishmania parasites are the causative agent of leishmaniasis, a wide spread disease in tropical and subtropical areas. The microorganisms have been shown to be well-adapted to their hosts and are able to enter their target cells where they replicate themselves. To ensure these processes, Leishmania disrupts a multitude of cellular signals and protective mechanisms, which overall attenuates immune responses against the parasites. A key factor for inflammatory processes, also during infections, is IL-1β. As previous studies suggested a dysregulation of IL-1β levels after infection with Leishmania parasites, we herein investigated the underlying mechanisms. Our work reveals that Leishmania suppressing IL-1β production through its virulence factor GP63. Furthermore, our data suggests that the parasites can dampen the maturation of IL-1β after different stimuli. In this regard we established a role for the suppression of the kinase PKC and the generation of reactive oxygen species, as well as the cleavage of cellular proteins that are important for IL-1β-generation. Thus, we here present a novel aspect for how Leishmania parasites can counteract host protective mechanisms.
Collapse
Affiliation(s)
- Marina Tiemi Shio
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jan Gregor Christian
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- McGill International Tuberculosis (TB) Centre and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Jee Yong Jung
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Kwang-Poo Chang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- McGill International Tuberculosis (TB) Centre and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|