1
|
Glidden CK, Karakoç C, Duan C, Jiang Y, Beechler B, Jabbar A, Jolles AE. Distinct life history strategies underpin clear patterns of succession in microparasite communities infecting a wild mammalian host. Mol Ecol 2023; 32:3733-3746. [PMID: 37009964 PMCID: PMC10389068 DOI: 10.1111/mec.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free-living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth. Here, we studied community dynamics of 12 subtypes of protozoan microparasites (Theileria spp.) in a herd of African buffalo. We show that Theileria communities followed predictable patterns of succession underpinned by four different parasite life history strategies. However, in contrast to many free-living communities, network complexity decreased with host age. Examining parasite communities through the lens of succession may better inform the effect of complex within host eco-evolutionary dynamics on infection outcomes, including parasite co-existence through the lifetime of the host.
Collapse
Affiliation(s)
- Caroline K. Glidden
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Canan Karakoç
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chenyang Duan
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Brianna Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Victoria, Australia
| | - Anna E. Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Connelley T, Nicastri A, Sheldrake T, Vrettou C, Fisch A, Reynisson B, Buus S, Hill A, Morrison I, Nielsen M, Ternette N. Immunopeptidomic Analysis of BoLA-I and BoLA-DR Presented Peptides from Theileria parva Infected Cells. Vaccines (Basel) 2022; 10:vaccines10111907. [PMID: 36423003 PMCID: PMC9699068 DOI: 10.3390/vaccines10111907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The apicomplexan parasite Theileria parva is the causative agent of East Coast fever, usually a fatal disease for cattle, which is prevalent in large areas of eastern, central, and southern Africa. Protective immunity against T. parva is mediated by CD8+ T cells, with CD4+ T-cells thought to be important in facilitating the full maturation and development of the CD8+ T-cell response. T. parva has a large proteome, with >4000 protein-coding genes, making T-cell antigen identification using conventional screening approaches laborious and expensive. To date, only a limited number of T-cell antigens have been described. Novel approaches for identifying candidate antigens for T. parva are required to replace and/or complement those currently employed. In this study, we report on the use of immunopeptidomics to study the repertoire of T. parva peptides presented by both BoLA-I and BoLA-DR molecules on infected cells. The study reports on peptides identified from the analysis of 13 BoLA-I and 6 BoLA-DR datasets covering a range of different BoLA genotypes. This represents the most comprehensive immunopeptidomic dataset available for any eukaryotic pathogen to date. Examination of the immunopeptidome data suggested the presence of a large number of coprecipitated and non-MHC-binding peptides. As part of the work, a pipeline to curate the datasets to remove these peptides was developed and used to generate a final list of 74 BoLA-I and 15 BoLA-DR-presented peptides. Together, the data demonstrated the utility of immunopeptidomics as a method to identify novel T-cell antigens for T. parva and the importance of careful curation and the application of high-quality immunoinformatics to parse the data generated.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
- Correspondence:
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Tara Sheldrake
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Christina Vrettou
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto 3900, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
| | - Soren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Ivan Morrison
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín CP1650, Argentina
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
3
|
Muleya W, Atuhaire DK, Mupila Z, Mbao V, Mayembe P, Kalenga S, Fandamu P, Namangala B, Salt J, Musoke AJ. Sequence Diversity of Tp1 and Tp2 Antigens and Population Genetic Analysis of Theileria parva in Unvaccinated Cattle in Zambia's Chongwe and Chisamba Districts. Pathogens 2022; 11:114. [PMID: 35215058 PMCID: PMC8879479 DOI: 10.3390/pathogens11020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
East Coast Fever (ECF), caused by Theileria parva, is a major constraint to improved livestock keeping in east and central Africa, including Zambia. To understand the dynamics and determine the candidates for immunization in Zambia's Chongwe and Chisamba districts, a combination of Tp1 and Tp2 gene sequencing and microsatellite analysis using nine markers was conducted from which an abundance of Muguga, Kiambu, Serengeti and Katete epitopes in the field samples was obtained. Phylogenetic analysis showed six (Tp1) and three (Tp2) clusters with an absence of geographical origin clustering. The majority of haplotypes were related to Muguga, Kiambu, Serengeti and Katete, and only a few were related to Chitongo. Both antigens showed purifying selection with an absence of positive selection sites. Furthermore, low to moderate genetic differentiation was observed among and within the populations, and when vaccine stocks were compared with field samples, Chongwe samples showed more similarity to Katete and less to Chitongo, while Chisamba samples showed similarity to both Katete and Chitongo and not to Muguga, Kiambu or Serengeti. We conclude that the use of Katete stock for immunization trials in both Chongwe and Chisamba districts might produce desirable protection against ECF.
Collapse
Affiliation(s)
- Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (W.M.); (Z.M.)
| | | | - Zachariah Mupila
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (W.M.); (Z.M.)
| | - Victor Mbao
- Eastern and Southern Africa Regional Office, International Development Research Centre, Nairobi 00200, Kenya;
| | - Purity Mayembe
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia; (P.M.); (S.K.); (P.F.)
| | - Sydney Kalenga
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia; (P.M.); (S.K.); (P.F.)
| | - Paul Fandamu
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia; (P.M.); (S.K.); (P.F.)
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK;
| | - Antony Jim Musoke
- LMK Medical Laboratories and Consultancies, Kampala P.O. Box 33686, Uganda;
| |
Collapse
|
4
|
Morrison WI, Aguado A, Sheldrake TA, Palmateer NC, Ifeonu OO, Tretina K, Parsons K, Fenoy E, Connelley T, Nielsen M, Silva JC. CD4 T Cell Responses to Theileria parva in Immune Cattle Recognize a Diverse Set of Parasite Antigens Presented on the Surface of Infected Lymphoblasts. THE JOURNAL OF IMMUNOLOGY 2021; 207:1965-1977. [PMID: 34507950 DOI: 10.4049/jimmunol.2100331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.
Collapse
Affiliation(s)
- W Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom;
| | - Adriana Aguado
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Tara A Sheldrake
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Nicholas C Palmateer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Olukemi O Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Kyle Tretina
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Keith Parsons
- Institute for Animal Health, Berkshire, United Kingdom
| | - Emilio Fenoy
- Biotechnological Research Institute, National University of San Martin, Buenos Aires, Argentina
| | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Morten Nielsen
- Biotechnological Research Institute, National University of San Martin, Buenos Aires, Argentina.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; and
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Allan FK, Jayaraman S, Paxton E, Sindoya E, Kibona T, Fyumagwa R, Mramba F, Torr SJ, Hemmink JD, Toye P, Lembo T, Handel I, Auty HK, Morrison WI, Morrison LJ. Antigenic Diversity in Theileria parva Populations From Sympatric Cattle and African Buffalo Analyzed Using Long Read Sequencing. Front Genet 2021; 12:684127. [PMID: 34335691 PMCID: PMC8320539 DOI: 10.3389/fgene.2021.684127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
East Coast fever (ECF) in cattle is caused by the Apicomplexan protozoan parasite Theileria parva, transmitted by the three-host tick Rhipicephalus appendiculatus. The African buffalo (Syncerus caffer) is the natural host for T. parva but does not suffer disease, whereas ECF is often fatal in cattle. The genetic relationship between T. parva populations circulating in cattle and buffalo is poorly understood, and has not been studied in sympatric buffalo and cattle. This study aimed to determine the genetic diversity of T. parva populations in cattle and buffalo, in an area where livestock co-exist with buffalo adjacent to the Serengeti National Park, Tanzania. Three T. parva antigens (Tp1, Tp4, and Tp16), known to be recognized by CD8+ and CD4+ T cells in immunized cattle, were used to characterize genetic diversity of T. parva in cattle (n = 126) and buffalo samples (n = 22). Long read (PacBio) sequencing was used to generate full or near-full length allelic sequences. Patterns of diversity were similar across all three antigens, with allelic diversity being significantly greater in buffalo-derived parasites compared to cattle-derived (e.g., for Tp1 median cattle allele count was 9, and 81.5 for buffalo), with very few alleles shared between species (8 of 651 alleles were shared for Tp1). Most alleles were unique to buffalo with a smaller proportion unique to cattle (412 buffalo unique vs. 231 cattle-unique for Tp1). There were indications of population substructuring, with one allelic cluster of Tp1 representing alleles found in both cattle and buffalo (including the TpM reference genome allele), and another containing predominantly only alleles deriving from buffalo. These data illustrate the complex interplay between T. parva populations in buffalo and cattle, revealing the significant genetic diversity in the buffalo T. parva population, the limited sharing of parasite genotypes between the host species, and highlight that a subpopulation of T. parva is maintained by transmission within cattle. The data indicate that fuller understanding of buffalo T. parva population dynamics is needed, as only a comprehensive appreciation of the population genetics of T. parva populations will enable assessment of buffalo-derived infection risk in cattle, and how this may impact upon control measures such as vaccination.
Collapse
Affiliation(s)
- Fiona K. Allan
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharth Jayaraman
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emmanuel Sindoya
- Ministry of Livestock and Fisheries, Serengeti District Livestock Office, Mugumu, Tanzania
| | - Tito Kibona
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | | | - Furaha Mramba
- Vector and Vector-Borne Diseases Research Institute, Tanga, Tanzania
| | - Stephen J. Torr
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Johanneke D. Hemmink
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Philip Toye
- International Livestock Research Institute, Nairobi, Kenya
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian Handel
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harriet K. Auty
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - W. Ivan Morrison
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Goh S, Kolakowski J, Holder A, Pfuhl M, Ngugi D, Ballingall K, Tombacz K, Werling D. Development of a Potential Yeast-Based Vaccine Platform for Theileria parva Infection in Cattle. Front Immunol 2021; 12:674484. [PMID: 34305904 PMCID: PMC8297500 DOI: 10.3389/fimmu.2021.674484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023] Open
Abstract
East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called "Infection and Treatment Method" (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain-specific, MHC class I-restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length Tp2 and Tp9 as well as fragments of Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNγ responses using PBMCs from ITM-immunized calves, while Tp2 and Tp9 induced IFNγ responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induced Tp2-specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen-specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cattle will further contribute to the development of a yeast-based vaccine for ECF.
Collapse
Affiliation(s)
- Shan Goh
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jeannine Kolakowski
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Angela Holder
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Mark Pfuhl
- Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Daniel Ngugi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Kata Tombacz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
7
|
Atuhaire DK, Muleya W, Mbao V, Niyongabo J, Nyabongo L, Nsanganiyumwami D, Salt J, Namangala B, Musoke AJ. Molecular characterization and population genetics of Theileria parva in Burundi's unvaccinated cattle: Towards the introduction of East Coast fever vaccine. PLoS One 2021; 16:e0251500. [PMID: 33999934 PMCID: PMC8128232 DOI: 10.1371/journal.pone.0251500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Theileria parva (T. parva) is a protozoan parasite that causes East Coast fever (ECF). The disease is endemic in Burundi and is a major constraint to livestock development. In this study, the parasite prevalence in cattle in six regions namely; Northern, Southern, Eastern, Western, Central and North Eastern was estimated. Furthermore, the sequence diversity of p67, Tp1 and Tp2 genes was assessed coupled with the population genetic structure of T. parva using five satellite markers. The prevalence of ECF was 30% (332/1109) on microscopy, 60% (860/1431) on ELISA and 79% (158/200) on p104 gene PCR. Phylogenetic analysis of p67 gene revealed that only allele 1 was present in the field samples. Furthermore, phylogenetic analysis of Tp1 and Tp2 showed that the majority of samples clustered with Muguga, Kiambu and Serengeti and shared similar epitopes. On the other hand, genetic analysis revealed that field samples shared only two alleles with Muguga Cocktail. The populations from the different regions indicated low genetic differentiation (FST = 0.047) coupled with linkage disequilibrium and non-panmixia. A low to moderate genetic differentiation (FST = 0.065) was also observed between samples and Muguga cocktail. In conclusion, the data presented revealed the presence of a parasite population that shared similar epitopes with Muguga Cocktail and was moderately genetically differentiated from it. Thus, use of Muguga Cocktail vaccine in Burundi is likely to confer protection against T. parva in field challenge trials.
Collapse
Affiliation(s)
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- * E-mail:
| | - Victor Mbao
- International Development Research Centre, Eastern and Southern Africa Regional Office, Nairobi, Kenya
| | - Joseph Niyongabo
- National Veterinary Research Laboratory, Directorate of Animal Health, Bujumbura, Burundi
| | - Lionel Nyabongo
- National Veterinary Research Laboratory, Directorate of Animal Health, Bujumbura, Burundi
| | | | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Pentlands Science Park, Bush Loan, Penicuik Edinburgh, Scotland
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | | |
Collapse
|
8
|
Lubembe DM, Odongo DO, Joubert F, Sibeko-Matjila KP. Limited diversity in the CD8+ antigen-coding loci in Theileria parva parasites from cattle from southern and eastern Africa. Vet Parasitol 2021; 291:109371. [PMID: 33621717 DOI: 10.1016/j.vetpar.2021.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/23/2021] [Indexed: 11/17/2022]
Abstract
Theileria parva infections in cattle causes huge economic losses in the affected African countries, directly impacting the livelihood of the poor small-holder farmers. The current immunization protocol using live sporozoites in eastern Africa, is among the control measures designed to limit T. parva infections in cattle. However, the ability of the immune protection induced by this immunization to protect against field parasites has been compromised by the diversity of the parasite involving the schizont antigen genes. Previous studies have reported on the antigenic diversity of T. parva parasites from southern and eastern Africa, however, similar reports on T. parva parasites particularly from cattle from southern Africa remains scanty, due to the self-limiting nature of Corridor disease. Thus, we evaluated the diversity of CD8+ T-cell regions of ten schizont antigen genes in T. parva parasites associated with Corridor disease and East Coast fever (ECF) from southern and eastern Africa respectively. Regions of schizont antigen (TpAg) genes containing the CD8+ T-cell epitopes (CTL determinants) were amplified from genomic DNA extracted from blood of T. parva positive samples, cloned and sequenced. The results revealed limited diversity between the two parasite groups from cattle from southern and eastern Africa, defying the widely accepted notion that antigen-encoding loci in cattle-derived parasites are conserved, while in buffalo-derived parasites, they are extensively variable. This suggests that only a sub-population of parasites is successfully transmitted from buffalo to cattle, resulting in the limited antigenic diversity in Corridor disease parasites. Tp4, Tp5, Tp7 and Tp8 showed limited to absence of diversity in both parasite groups, suggesting the need to further investigate their immunogenic properties for consideration as candidates for a subunit vaccine. Distinct and common variants of Tp2 were detected among the ECF parasites from eastern Africa indicating evidence of parasite mixing following immunization. This study provides additional information on the comparative diversity of TpAg genes in buffalo- and cattle-derived T. parva parasites from cattle from southern and eastern Africa.
Collapse
Affiliation(s)
- Donald M Lubembe
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, South Africa.
| | - David O Odongo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, South Africa
| | - Kgomotso P Sibeko-Matjila
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, South Africa
| |
Collapse
|
9
|
Atuhaire DK, Muleya W, Mbao V, Bazarusanga T, Gafarasi I, Salt J, Namangala B, Musoke AJ. Sequence diversity of cytotoxic T cell antigens and satellite marker analysis of Theileria parva informs the immunization against East Coast fever in Rwanda. Parasit Vectors 2020; 13:452. [PMID: 32894166 PMCID: PMC7487574 DOI: 10.1186/s13071-020-04322-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/30/2020] [Indexed: 11/21/2022] Open
Abstract
Background East Coast fever (ECF) caused by Theileria parva is endemic in Rwanda. In this study, the antigenic and genetic diversity of T. parva coupled with immunization and field challenge were undertaken to provide evidence for the introduction of ECF immunization in Rwanda. Methods Blood collected from cattle in the field was screened for T. parva using ELISA and PCR targeting the p104 gene. Tp1 and Tp2 gene sequences were generated from field samples and from Gikongoro and Nyakizu isolates. Furthermore, multilocus genotype data was generated using 5 satellite markers and an immunization challenge trial under field conditions using Muguga cocktail vaccine undertaken. Results Out of 120 samples, 44 and 20 were positive on ELISA and PCR, respectively. Antigenic diversity of the Tp1 and Tp2 gene sequences revealed an abundance of Muguga, Kiambu and Serengeti epitopes in the samples. A further three clusters were observed on both Tp1 and Tp2 phylogenetic trees; two clusters comprising of field samples and vaccine isolates and the third cluster comprising exclusively of Rwanda samples. Both antigens exhibited purifying selection with no positive selection sites. In addition, satellite marker analysis revealed that field samples possessed both shared alleles with Muguga cocktail on all loci and also a higher proportion of unique alleles. The Muguga cocktail (Muguga, Kiambu and Serengeti) genotype compared to other vaccine isolates, was the most represented in the field samples. Further low genetic sub-structuring (FST = 0.037) coupled with linkage disequilibrium between Muguga cocktail and the field samples was observed. Using the above data to guide a field immunization challenge trial comprising 41 immunized and 40 control animals resulted in 85% seroconversion in the immunized animals and an efficacy of vaccination of 81.7%, implying high protection against ECF. Conclusions Antigenic and genetic diversity analysis of T. parva facilitated the use of Muguga cocktail vaccine in field conditions. A protection level of 81.7% was achieved, demonstrating the importance of combining molecular tools with field trials to establish the suitability of implementation of immunization campaigns. Based on the information in this study, Muguga cocktail immunization in Rwanda has a potential to produce desirable results.![]()
Collapse
Affiliation(s)
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia.
| | - Victor Mbao
- International Development Research Centre, Eastern and Southern Africa Regional Office, Nairobi, Kenya
| | | | | | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Doherty Building, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, Scotland, UK
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Antony Jim Musoke
- LMK Medical laboratories and consultancies, P.O. Box 33686, Kampala, Uganda
| |
Collapse
|
10
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H. Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: A Review. Pathogens 2020; 9:E697. [PMID: 32854179 PMCID: PMC7558346 DOI: 10.3390/pathogens9090697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/29/2023] Open
Abstract
Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia. Additionally, jaundice, increases in hepatic enzymes, and variable leukocyte count changes are seen. Theileria annulata and Theileria parva induce an incomplete transformation of lymphoid and myeloid cell lineages, and these cells possess certain phenotypes of cancer cells. Pathogenic genotypes of Theileria orientalis have been recently associated with severe production losses in Southeast Asia and some parts of Europe. The infection and treatment method (ITM) is currently used in the control and prevention of T. parva infection, and recombinant vaccines are still under evaluation. The use of gene gun immunization against T. parva infection has been recently evaluated. This review, therefore, provides an overview of the clinicopathological and immunopathological profiles of Theileria-infected cattle and focus on DNA vaccines consisting of plasmid DNA with genes of interest, molecular adjuvants, and chitosan as the most promising next-generation vaccine against bovine theileriosis.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Nsukka 410001, Nigeria
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, Serdang 43400, Malaysia;
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mokrish Ajat
- Department of Veterinary Pre-clinical sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Zamri-Saad
- Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
11
|
Genetic Diversity and Sequence Polymorphism of Two Genes Encoding Theileria parva Antigens Recognized by CD8 + T Cells among Vaccinated and Unvaccinated Cattle in Malawi. Pathogens 2020; 9:pathogens9050334. [PMID: 32365795 PMCID: PMC7281522 DOI: 10.3390/pathogens9050334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/07/2023] Open
Abstract
East Coast fever (ECF) is an acute fatal tick-borne disease of cattle caused by Theileria parva. It causes major losses in exotic and crossbreed cattle, but this could be prevented by a vaccine of T. parva if the vaccine is selected properly based on information from molecular epidemiology studies. The Muguga cocktail (MC) vaccine (Muguga, Kiambu 5 and Serengeti-transformed strains) has been used on exotic and crossbreed cattle. A total of 254 T. parva samples from vaccinated and unvaccinated cattle were used to understand the genetic diversity of T. parva in Malawi using partial sequences of the Tp1 and Tp2 genes encoding T. parva CD8+ antigens, known to be immunodominant and current candidate antigens for a subunit vaccine. Single nucleotide polymorphisms were observed at 14 positions (3.65%) in Tp1 and 156 positions (33.12%) in Tp2, plus short deletions in Tp1, resulting in 6 and 10 amino acid variants in the Tp1 and Tp2 genes, respectively. Most sequences were either identical or similar to T. parva Muguga and Kiambu 5 strains. This may suggest the possible expansion of vaccine components into unvaccinated cattle, or that a very similar genotype already existed in Malawi. This study provides information that support the use of MC to control ECF in Malawi.
Collapse
|
12
|
Theileria parva: a parasite of African buffalo, which has adapted to infect and undergo transmission in cattle. Int J Parasitol 2020; 50:403-412. [PMID: 32032592 PMCID: PMC7294229 DOI: 10.1016/j.ijpara.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
Abstract
Theileria parva parasites show extensive genotypic diversity and undergo frequent genetic recombination during tick transmission. Theileria parva maintained in cattle is much less genotypically diverse than the buffalo-maintained population. Theileria parva transmitted from buffalo to cattle usually fails to differentiate to the tick-transmissible stages in cattle. These differences have resulted in the parasites in the two hosts being maintained largely as separate populations.
The tick-borne protozoan parasite Theileria parva causes an acute, often fatal disease in cattle throughout a large part of eastern and southern Africa. Infection of African buffalo (Syncerus caffer) is also widespread in this region but does not cause clinical disease in this species. This difference most likely reflects the evolutionary history of the parasites in these species, in that cattle were only introduced into Africa within the last 8000 years. In both hosts, T. parva establishes a carrier state, involving persistence of small numbers of parasites for many months following the acute phase of infection. This persistence is considered important for maintaining the parasite populations. Although cattle and buffalo parasites both produce severe disease when transmitted to cattle, the buffalo-derived parasites are usually not transmissible from infected cattle. Recent studies of the molecular and antigenic composition of T. parva, in addition to demonstrating heterogeneity in the populations in both host species, have revealed that infections in individual animals are genotypically mixed. The results of these studies have also shown that buffalo T. parva exhibit much greater genotypic diversity than the cattle population and indicate that cattle parasites represent a subpopulation of T. parva that has adapted to maintenance in cattle. The parasites in cattle and buffalo appear to be maintained largely as separate populations. This insight into the genotypic composition of T. parva populations has raised important questions on how host adaptation of the parasite has evolved and whether there is scope for further adaptation of buffalo-maintained populations to cattle.
Collapse
|
13
|
Amzati GS, Djikeng A, Odongo DO, Nimpaye H, Sibeko KP, Muhigwa JBB, Madder M, Kirschvink N, Marcotty T. Genetic and antigenic variation of the bovine tick-borne pathogen Theileria parva in the Great Lakes region of Central Africa. Parasit Vectors 2019; 12:588. [PMID: 31842995 PMCID: PMC6915983 DOI: 10.1186/s13071-019-3848-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigen-coding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. Results The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. Conclusions Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.
Collapse
Affiliation(s)
- Gaston S Amzati
- Research Unit of Veterinary Epidemiology and Biostatistics, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, PO Box 3323, Bukavu, Democratic Republic of the Congo. .,Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium. .,Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, PO Box 30709-00100, Nairobi, Kenya.
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, PO Box 30709-00100, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - David O Odongo
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, PO Box 30709-00100, Nairobi, Kenya.,School of Biological Sciences, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Herman Nimpaye
- Faculty of Medicine, University of Burundi, PO Box 1550, Bujumbura, Burundi
| | - Kgomotso P Sibeko
- Vector and Vector-Borne Disease Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P/Bag X04, Onderstepoort, Gauteng, 0110, South Africa
| | - Jean-Berckmans B Muhigwa
- Research Unit of Veterinary Epidemiology and Biostatistics, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, PO Box 3323, Bukavu, Democratic Republic of the Congo
| | - Maxime Madder
- Vector and Vector-Borne Disease Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P/Bag X04, Onderstepoort, Gauteng, 0110, South Africa
| | - Nathalie Kirschvink
- Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Tanguy Marcotty
- Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|
14
|
Kerario II, Chenyambuga SW, Mwega ED, Rukambile E, Simulundu E, Simuunza MC. Diversity of two Theileria parva CD8+ antigens in cattle and buffalo-derived parasites in Tanzania. Ticks Tick Borne Dis 2019; 10:1003-1017. [PMID: 31151920 DOI: 10.1016/j.ttbdis.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
Theileria parva is a tick-transmitted protozoan parasite that causes a disease called East Coast fever (ECF) in cattle. This important tick borne-disease (TBD) causes significant economic losses in cattle in many sub-Saharan countries, including Tanzania. Cattle immunization using Muguga cocktail has been recommended as an effective method for controlling ECF in pastoral farming systems in Tanzania. However, immunity provided through immunization is partially strain-specific. Therefore, the control of ECF in Tanzania is still a challenge due to inadequate epidemiological information. This study was conducted to assess genetic diversity of Tp1 and Tp2 genes from T. parva isolates that are recognized by CD8 + T-cells in cattle and buffalo. The Tp1 and Tp2 genes are currently under evaluation as candidates for inclusion in a subunit vaccine. A total of 130 blood samples collected from cattle which do not interact with buffalo (98), cattle co-grazing with buffalo (19) and buffalo (13) in Mara, Mbeya, Morogoro, Tanga, and Coast regions in Tanzania were used in this study. Genomic DNA was extracted from the blood samples, Tp1 and Tp2 genes were amplified using nested PCR and the PCR products were purified and sequenced. The partial sequencing of the Tp1 and Tp2 genes from T. parva isolates exhibited polymorphisms in both loci, including the epitope-containing regions. Results for sequence analysis showed that the overall nucleotide polymorphism (π) was 0.7% and 13.5% for Tp1 and Tp2, respectively. The Tajima's D and Fu's Fs test showed a negative value for both Tp1 and Tp2 genes, indicating deviations from neutrality due to a recent population expansion. The study further revealed a low to high level of genetic differentiations between populations and high genetic variability within populations. The study also revealed that most samples from the seven populations possessed several epitopes in antigens that were identical to those in the T. parva Muguga reference stock, which is the main component of the widely used live vaccine cocktail. Therefore, different strategic planning and cost-effective control measures should be implemented in order to reduce losses caused by ECF in the study areas.
Collapse
Affiliation(s)
- Isack I Kerario
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture P.O. Box 3004, Morogoro, Tanzania; Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia.
| | - Sebastian W Chenyambuga
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture P.O. Box 3004, Morogoro, Tanzania
| | - Elisa D Mwega
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture (SUA), P.O. Box 3019, Morogoro, Tanzania
| | - Elpidius Rukambile
- Tanzania Veterinary Laboratory Agency, P.O. Box 9254, Dar es Salaam, Tanzania
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Martin C Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| |
Collapse
|
15
|
Gene gun DNA immunization of cattle induces humoral and CD4 T-cell-mediated immune responses against the Theileria parva polymorphic immunodominant molecule. Vaccine 2019; 37:1546-1553. [PMID: 30782490 PMCID: PMC6411927 DOI: 10.1016/j.vaccine.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 11/22/2022]
Abstract
Theileria parva kills over one million cattle annually in sub-Saharan Africa. Parasite genetic complexity, cellular response immunodominance, and bovine MHC diversity have precluded traditional vaccine development. One potential solution is gene gun (GG) immunization, which enables simultaneous administration of one or more DNA-encoded antigens. Although promising in murine, porcine, and human vaccination trials, bovine GG immunization studies are limited. We utilized the model T. parva antigen, polymorphic immunodominant molecule (PIM) to test bovine GG immunization. GG immunization using a mammalian codon optimized PIM sequence elicited significant anti-PIM antibody and cell-mediated responses in 7/8 steers, but there was no difference between immunized and control animals following T. parva challenge. The results suggest immunization with PIM, as delivered here, is insufficient to protect cattle from T. parva. Nonetheless, the robust immune responses elicited against this model antigen suggest GG immunization is a promising vaccine platform for T. parva and other bovine pathogens.
Collapse
|
16
|
Kar PP, Srivastava A. Immuno-informatics Analysis to Identify Novel Vaccine Candidates and Design of a Multi-Epitope Based Vaccine Candidate Against Theileria parasites. Front Immunol 2018; 9:2213. [PMID: 30374343 PMCID: PMC6197074 DOI: 10.3389/fimmu.2018.02213] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Theileriosis poses a serious threat to ruminants in tropical and subtropical countries. It is a tick-borne disease, caused by an apicomplexan parasite, Theileria. The high disease burden in animals causes huge economic losses to marginal farmers. Further, with increasing cases of resistance to commonly used drugs, it is highly desirable to develop better and cost-effective vaccines against theileriosis. The only available vaccine, live attenuated parasite vaccine, has many drawbacks and hence is unsuitable for controlling this disease. Immuno-informatics has emerged as a useful tool in down selection of potential molecules for vaccine development. In this study, we have used an immuno-informatics driven genome-wide screening strategy to identify potential vaccine targets containing important and effective dominant immunogens against Theileria. The proteome of Theileria annulata was screened for proteins with probability of plasma membrane localization or GPI anchor. The proteins non-homologous to the host (bovine) were selected and their antigenicity was analyzed. The B-cell epitopes were identified in the selected proteins and mapped in the modeled structure of the proteins. A total of 19 linear epitopes in 12 proteins, exposed in the extracellular space and having the potential to induce protective antibodies were obtained. Additionally, CTL epitopes which are peptides with 9-mer core sequence, were also identified, modeled and docked with bovine MHC-I structures. The CTL epitopes showing high binding energy with the bovine MHC-I were further engineered in silico to design a putative multi-epitope vaccine candidate against Theileria parasites. The docking studies and molecular dynamics studies with the predicted multi-epitope vaccine candidate and modeled bovine TLR4 exhibited strong binding energy, suggesting that the complex is stable and the putative multi-epitope vaccine candidate can be a potentially good candidate for vaccine development.
Collapse
Affiliation(s)
- Prajna Parimita Kar
- Laboratory of Molecular Interactions, National Institute of Animal Biotechnology, Hyderabad, India
| | - Anand Srivastava
- Laboratory of Molecular Interactions, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
17
|
Svitek N, Saya R, Awino E, Munyao S, Muriuki R, Njoroge T, Pellé R, Ndiwa N, Poole J, Gilbert S, Nene V, Steinaa L. An Ad/MVA vectored Theileria parva antigen induces schizont-specific CD8 + central memory T cells and confers partial protection against a lethal challenge. NPJ Vaccines 2018; 3:35. [PMID: 30245859 PMCID: PMC6134044 DOI: 10.1038/s41541-018-0073-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/03/2023] Open
Abstract
The parasite Theileria parva is the causative agent of East Coast fever (ECF), one of the most serious cattle diseases in sub-Saharan Africa, and directly impacts smallholder farmers’ livelihoods. There is an efficient live-parasite vaccine, but issues with transmission of vaccine strains, need of a cold chain, and antibiotics limit its utilization. This has fostered research towards subunit vaccination. Cytotoxic T lymphocytes (CTL) are crucial in combating the infection by lysing T. parva-infected cells. Tp1 is an immunodominant CTL antigen, which induces Tp1-specific responses in 70–80% of cattle of the A18 or A18v haplotype during vaccination with the live vaccine. In this study, human adenovirus serotype 5 (HAd5) and modified vaccinia Ankara (MVA) were assessed for their ability to induce Tp1-specific immunity. Both viral vectors expressing the Tp1 antigen were inoculated in cattle by a heterologous prime-boost vaccination regimen. All 15 animals responded to Tp1 as determined by ELISpot. Of these, 14 reacted to the known Tp1 epitope, assayed by ELISpot and tetramer analyses, with CTL peaking 1-week post-MVA boost. Eleven animals developed CTL with specific cytotoxic activity towards peripheral blood mononuclear cells (PBMC) pulsed with the Tp1 epitope. Moreover, 36% of the animals with a Tp1 epitope-specific response survived a lethal challenge with T. parva 5 weeks post-MVA boost. Reduction of the parasitemia correlated with increased percentages of central memory lymphocytes in the Tp1 epitope-specific CD8+ populations. These results indicate that Tp1 is a promising antigen to include in a subunit vaccine and central memory cells are crucial for clearing the parasite. A vaccine expressing parasitic proteins offers more convenient East Coast fever prophylaxis. Current vaccination for the cattle disease, caused by the parasite Theileria parva and a detriment to sub-Saharan African farmers, involves inconvenient injection with live parasites before antibiotic treatment (ITM). A collaboration led by Nicholas Svitek, of the Kenyan International Livestock Research Institute, designed a candidate to provoke cellular immune responses against the parasitic antigen Tp1—an ITM vaccine candidate. In tests on cattle, 93% created Tp1-targeting T cells, and 33% survived a lethal dose of T. parva. The East Coast fever reduction seen in animals in this research outperformed a recent study and was able to generate the same immune memory cells that ITM inspires to provide long-lasting protection. Future research might integrate more antigens with this Tp1 vaccine to provide more comprehensive protection.
Collapse
Affiliation(s)
- Nicholas Svitek
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Rosemary Saya
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Elias Awino
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Stephen Munyao
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Robert Muriuki
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Thomas Njoroge
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Roger Pellé
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Nicholas Ndiwa
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Jane Poole
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Sarah Gilbert
- 2The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive Oxford, OX3 7DQ UK
| | - Vishvanath Nene
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| | - Lucilla Steinaa
- 1International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
| |
Collapse
|
18
|
Theileria parva antigens recognized by CD8+ T cells show varying degrees of diversity in buffalo-derived infected cell lines. Parasitology 2018; 145:1430-1439. [PMID: 29729680 PMCID: PMC6126638 DOI: 10.1017/s0031182018000264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The extent of sequence diversity among the genes encoding 10 antigens (Tp1–10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.
Collapse
|
19
|
Steinaa L, Svitek N, Awino E, Njoroge T, Saya R, Morrison I, Toye P. Immunization with one Theileria parva strain results in similar level of CTL strain-specificity and protection compared to immunization with the three-component Muguga cocktail in MHC-matched animals. BMC Vet Res 2018; 14:145. [PMID: 29716583 PMCID: PMC5930519 DOI: 10.1186/s12917-018-1460-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/16/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The tick-borne protozoan parasite Theileria parva causes a usually fatal cattle disease known as East Coast fever in sub-Saharan Africa, with devastating consequences for poor small-holder farmers. Immunity to T. parva, believed to be mediated by a cytotoxic T lymphocyte (CTL) response, is induced following natural infection and after vaccination with a live vaccine, known as the Infection and Treatment Method (ITM). The most commonly used version of ITM is a combination of parasites derived from three isolates (Muguga, Kiambu 5 and Serengeti-transformed), known as the "Muguga cocktail". The use of a vaccine comprising several strains is believed to be required to induce a broad immune response effective against field challenge. In this study we investigated whether immunization with the Muguga cocktail induces a broader CTL response than immunization with a single strain (Muguga). RESULTS Four MHC haplotype-matched pairs of cattle were immunized with either the trivalent Muguga cocktail or the single Muguga strain. CTL specificity was assessed on a panel of five different strains, and clonal responses to these strains were also assessed in one of the MHC-matched pairs. We did not find evidence for a broader CTL response in animals immunized with the Muguga cocktail compared to those immunized with the Muguga strain alone, in either the bulk or clonal CTL analyses. This was supported by an in vivo trial in which all vaccinated animals survived challenge with a lethal dose of the Muguga cocktail vaccine stabilate. CONCLUSION We did not observe any substantial differences in the immunity generated from animals immunized with either Muguga alone or the Muguga cocktail in the animals tested here, corroborating earlier results showing limited antigenic diversity in the Muguga cocktail. These results may warrant further field studies using single T. parva strains as future vaccine candidates.
Collapse
Affiliation(s)
- Lucilla Steinaa
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Nicholas Svitek
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Elias Awino
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Thomas Njoroge
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Rosemary Saya
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Ivan Morrison
- The Roslin Institute, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Philip Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya
| |
Collapse
|
20
|
Hemmink JD, Sitt T, Pelle R, de Klerk-Lorist LM, Shiels B, Toye PG, Morrison WI, Weir W. Ancient diversity and geographical sub-structuring in African buffalo Theileria parva populations revealed through metagenetic analysis of antigen-encoding loci. Int J Parasitol 2018; 48:287-296. [PMID: 29408266 PMCID: PMC5854372 DOI: 10.1016/j.ijpara.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 10/27/2022]
Abstract
An infection and treatment protocol involving infection with a mixture of three parasite isolates and simultaneous treatment with oxytetracycline is currently used to vaccinate cattle against Theileria parva. While vaccination results in high levels of protection in some regions, little or no protection is observed in areas where animals are challenged predominantly by parasites of buffalo origin. A previous study involving sequencing of two antigen-encoding genes from a series of parasite isolates indicated that this is associated with greater antigenic diversity in buffalo-derived T. parva. The current study set out to extend these analyses by applying high-throughput sequencing to ex vivo samples from naturally infected buffalo to determine the extent of diversity in a set of antigen-encoding genes. Samples from two populations of buffalo, one in Kenya and the other in South Africa, were examined to investigate the effect of geographical distance on the nature of sequence diversity. The results revealed a number of significant findings. First, there was a variable degree of nucleotide sequence diversity in all gene segments examined, with the percentage of polymorphic nucleotides ranging from 10% to 69%. Second, large numbers of allelic variants of each gene were found in individual animals, indicating multiple infection events. Third, despite the observed diversity in nucleotide sequences, several of the gene products had highly conserved amino acid sequences, and thus represent potential candidates for vaccine development. Fourth, although compelling evidence for population differentiation between the Kenyan and South African T. parva parasites was identified, analysis of molecular variance for each gene revealed that the majority of the underlying nucleotide sequence polymorphism was common to both areas, indicating that much of this aspect of genetic variation in the parasite population arose prior to geographic separation.
Collapse
Affiliation(s)
- Johanneke D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK; The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - Tatjana Sitt
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - Roger Pelle
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - Lin-Mari de Klerk-Lorist
- Department of Agriculture, Forestry and Fisheries (DAFF), National Department of Agriculture, PO Box 12, Skukuza, Kruger National Park, 1350, South Africa
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Henry Wellcome Building, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Philip G Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - W Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK.
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Henry Wellcome Building, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
21
|
Steinaa L, Svitek N, Awino E, Saya R, Toye P. Cytotoxic T lymphocytes from cattle sharing the same MHC class I haplotype and immunized with live Theileria parva sporozoites differ in antigenic specificity. BMC Res Notes 2018; 11:44. [PMID: 29343295 PMCID: PMC5773172 DOI: 10.1186/s13104-018-3145-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/09/2018] [Indexed: 12/04/2022] Open
Abstract
Objectives The objective of this study was to assess whether cytotoxic T cells (CTL) generated by the live vaccine, known as “ITM Muguga cocktail”, which is used for the cattle disease East Cost fever (ECF) in Sub-Saharan Africa, showed a broad reactivity against many different strains of the causative parasite Theileria parva. We also assessed whether immune responses were similar in cattle expressing the same MHC class I haplotypes. Results The antigenic specificity of CTL from MHC class I-matched cattle vaccinated with the Muguga cocktail were different. Three cattle of MHC class I haplotype A18, one A18/A19 and two haploidentical (A18v/A12) animals, showed differential recognition of autologous cells infected with a panel of T. parva isolates. This could have implications in the field where certain strains could break through the vaccine. Furthermore, neither of the haploidentical cattle recognized the CTL epitope (Tp1214–224), presented by the A18 haplotype, in contrast to the third animal, showing differences in immunodominance in animals of the same haplotype A18. This suggests that the CTL specificities following immunization with the Muguga cocktail can vary even between haploidentical individuals and that some parasite strains may break through immunity generated by the Muguga cocktail. Electronic supplementary material The online version of this article (10.1186/s13104-018-3145-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucilla Steinaa
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya.
| | - Nicholas Svitek
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Elias Awino
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Rosemary Saya
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Philip Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| |
Collapse
|
22
|
Genotyping of Theileria lestoquardi from sheep and goats in Sudan to support control of Malignant Ovine Theileriosis. Vet Parasitol 2017; 239:7-14. [PMID: 28495200 DOI: 10.1016/j.vetpar.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/25/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
Theileriosis, caused by parasitic protozoa of the genus Theileria parasites, are among the major tick-borne diseases of ruminant livestock. The largest economic losses are attributed in particular to those caused by the leukoproliferative species of Theileria: T. parva, T. annulata and T. lestoquardi. Theileria lestoquardi is transmitted by Hyalomma ticks and causes malignant ovine theileriosis (MOT), a disease that is particularly prevalent in Sudan. The disease is considered of a high economic importance in Sudan, where export of sheep is a major component of the national economy. A live vaccine based on a Sudanese isolate of T. lestoquardi (Atbara strain) was previously developed for the control of MOT in Sudan, but not yet deployed in the field. The present study aims to genetically characterize and compare samples of T. lestoquardi circulating in Sudan as well as the live vaccine isolate in order to understand vaccine breakthroughs and failure that may occur. Sheep and goats blood samples were collected from six regions in Sudan that are known to be endemic for T. lestoquardi infection or have experienced outbreaks of MOT. Blood samples infected with T. lestoquardi were identified by PCR or RLB. Genotyping was carried out by (1) sequencing the homologues of two T. parva CD8+ T cell antigen genes, Tp1 and Tp2, and (2) using a panel of seven micro- and mini-satellite markers. A total of 100 T. lestoquardi positive field samples and the T. lestoquardi (Atbara) vaccine were genotyped. The results showed that all samples had mixed genotypes, with several alleles identified at one or more loci. The gene diversity ranged from 0.7840 (TS8) to 0.2133 (TS12) with mean values of 0.5470. PCA revealed three clusters of the parasite in Sudan; interestingly one independent cluster was clearly seen, corresponding to the vaccine isolate. The T. lestoquardi Tp1 homologue showed higher homology with T. annulata than with T. parva sequences included the defined single CD8+ T cell target epitope region. The result indicates that multiple genotypes are a common feature of T. lestoquardi infection in Sudan. Both genotyping and the sequencing results clearly showed that the vaccine isolate is highly distinct from the field samples. This finding raised the question whether vaccination with the prepared lived vaccine will effectively protect animals against challenges by the field isolates of T. lestoquardi. The results of this work will inform on the best approach for controlling MOT in Sudan.
Collapse
|
23
|
Genes encoding two Theileria parva antigens recognized by CD8+ T-cells exhibit sequence diversity in South Sudanese cattle populations but the majority of alleles are similar to the Muguga component of the live vaccine cocktail. PLoS One 2017; 12:e0171426. [PMID: 28231338 PMCID: PMC5322890 DOI: 10.1371/journal.pone.0171426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
East Coast fever (ECF), caused by Theileria parva infection, is a frequently fatal disease of cattle in eastern, central and southern Africa, and an emerging disease in South Sudan. Immunization using the infection and treatment method (ITM) is increasingly being used for control in countries affected by ECF, but not yet in South Sudan. It has been reported that CD8+ T-cell lymphocytes specific for parasitized cells play a central role in the immunity induced by ITM and a number of T. parva antigens recognized by parasite-specific CD8+ T-cells have been identified. In this study we determined the sequence diversity among two of these antigens, Tp1 and Tp2, which are under evaluation as candidates for inclusion in a sub-unit vaccine. T. parva samples (n = 81) obtained from cattle in four geographical regions of South Sudan were studied for sequence polymorphism in partial sequences of the Tp1 and Tp2 genes. Eight positions (1.97%) in Tp1 and 78 positions (15.48%) in Tp2 were shown to be polymorphic, giving rise to four and 14 antigen variants in Tp1 and Tp2, respectively. The overall nucleotide diversity in the Tp1 and Tp2 genes was π = 1.65% and π = 4.76%, respectively. The parasites were sampled from regions approximately 300 km apart, but there was limited evidence for genetic differentiation between populations. Analyses of the sequences revealed limited numbers of amino acid polymorphisms both overall and in residues within the mapped CD8+ T-cell epitopes. Although novel epitopes were identified in the samples from South Sudan, a large number of the samples harboured several epitopes in both antigens that were similar to those in the T. parva Muguga reference stock, which is a key component in the widely used live vaccine cocktail.
Collapse
|
24
|
Nene V, Morrison WI. Approaches to vaccination against Theileria parva and Theileria annulata. Parasite Immunol 2016; 38:724-734. [PMID: 27647496 PMCID: PMC5299472 DOI: 10.1111/pim.12388] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022]
Abstract
Despite having different cell tropism, the pathogenesis and immunobiology of the diseases caused by Theileria parva and Theileria annulata are remarkably similar. Live vaccines have been available for both parasites for over 40 years, but although they provide strong protection, practical disadvantages have limited their widespread application. Efforts to develop alternative vaccines using defined parasite antigens have focused on the sporozoite and intracellular schizont stages of the parasites. Experimental vaccination studies using viral vectors expressing T. parva schizont antigens and T. parva and T. annulata sporozoite antigens incorporated in adjuvant have, in each case, demonstrated protection against parasite challenge in a proportion of vaccinated animals. Current work is investigating alternative antigen delivery systems in an attempt to improve the levels of protection. The genome architecture and protein-coding capacity of T. parva and T. annulata are remarkably similar. The major sporozoite surface antigen in both species and most of the schizont antigens are encoded by orthologous genes. The former have been shown to induce species cross-reactive neutralizing antibodies, and comparison of the schizont antigen orthologues has demonstrated that some of them display high levels of sequence conservation. Hence, advances in development of subunit vaccines against one parasite species are likely to be readily applicable to the other.
Collapse
Affiliation(s)
- V Nene
- The International Livestock Research Institute, Nairobi, Kenya
| | - W I Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
25
|
Connelley TK, Li X, MacHugh N, Colau D, Graham SP, van der Bruggen P, Taracha EL, Gill A, Morrison WI. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes. Immunology 2016; 149:172-85. [PMID: 27317384 PMCID: PMC5011678 DOI: 10.1111/imm.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.
Collapse
Affiliation(s)
- Timothy K. Connelley
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Xiaoying Li
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
- Present address: School of Life Sciences and TechnologyXinxiang Medical UniversityLaboratory Building Room 232XinxiangHenanCN 453003China
| | - Niall MacHugh
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Didier Colau
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Simon P. Graham
- The International Livestock Research InstituteNairobiKenya
- Present address: The Pirbright InstituteAsh RoadPirbrightGU24 0NFUK
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Evans L. Taracha
- The International Livestock Research InstituteNairobiKenya
- Present address: Institute of Primate ResearchPO Box 24481‐00502KarenKenya
| | - Andy Gill
- Division of NeurobiologyThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - William Ivan Morrison
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| |
Collapse
|
26
|
Identification of Theileria lestoquardi Antigens Recognized by CD8+ T Cells. PLoS One 2016; 11:e0162571. [PMID: 27611868 PMCID: PMC5017765 DOI: 10.1371/journal.pone.0162571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/24/2016] [Indexed: 11/19/2022] Open
Abstract
As part of an international effort to develop vaccines for Theileria lestoquardi, we undertook a limited screen to test T. lestoquardi orthologues of antigens recognised by CD8+ T lymphocyte responses against T. annulata and T. parva in cattle. Five MHC defined sheep were immunized by live T. lestoquardi infection and their CD8+ T lymphocyte responses determined. Thirteen T. lestoquardi orthologues of T. parva and T. annulata genes, previously shown to be targets of CD8+ T lymphocyte responses of immune cattle, were expressed in autologous fibroblasts and screened for T cell recognition using an IFNγ assay. Genes encoding T. lestoquardi antigens Tl8 (putative cysteine proteinase, 349 aa) or Tl9 (hypothetical secreted protein, 293 aa) were recognise by T cells from one animal that displayed a unique MHC class I genotype. Antigenic 9-mer peptide epitopes of Tl8 and Tl9 were identified through peptide scans using CD8+ T cells from the responding animal. These experiments identify the first T. lestoquardi antigens recognised by CD8+ T cell responses linked to specific MHC class I alleles.
Collapse
|
27
|
The biology of Theileria parva and control of East Coast fever – Current status and future trends. Ticks Tick Borne Dis 2016; 7:549-64. [DOI: 10.1016/j.ttbdis.2016.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
|
28
|
Jenkins C, Bogema DR. Factors associated with seroconversion to the major piroplasm surface protein of the bovine haemoparasite Theileria orientalis. Parasit Vectors 2016; 9:106. [PMID: 26912048 PMCID: PMC4766684 DOI: 10.1186/s13071-016-1395-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/20/2016] [Indexed: 11/19/2022] Open
Abstract
Background Bovine theileriosis caused by Theileria orientalis is an emerging disease of cattle in the Asia-Pacific region where it causes a significant economic burden to meat and milk production. While host immunological responses to the lymphocyte-transforming species of Theileria, T. parva and T. annulata, have been well studied, little is known about the immune response to this non-transforming species. Methods We developed a recombinant antigen ELISA based on the major piroplasm surface protein (MPSP) of T. orientalis and investigated whether seroconversion to the MPSP was associated with clinical factors (anaemia), parasite burden and parasite genotype. We also examined the dynamics of seroconversion in animals acutely infected with T. orientalis. Results In cattle testing qPCR positive for T. orientalis, seroconversion was more frequent in anaemic compared to normal cattle (P < 0.0001). The ELISA ratio (ER) was highly correlated with total parasite burden as measured by qPCR (r = 0.69; P < 0.0001); however when loads of individual genotypes of the parasite were examined, only the pathogenic Ikeda genotype was highly correlated with ER. Conversely, seroconversion was less frequently detected in the presence of benign T. orientalis genotypes. Temporal measurement of the serological response, parasite burden and packed cell volume (PCV) in acutely infected animals revealed that seroconversion to the MPSP occurs within 2-3 weeks of the initial qPCR detection of the parasite and coincides with a peak in infection intensity and a declining PCV. Conclusion Whether the serological response to the MPSP is immunoprotective against re-infection or recrudescence requires further investigation; however the MPSP represents a promising target for a subunit vaccine given that genetic variability within the MPSP results in differential pathogenicity of T. orientalis.
Collapse
Affiliation(s)
- Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia.
| | - Daniel R Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia. .,The ithree institute, University of Technology, Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
29
|
Schwartz JC, Hammond JA. The assembly and characterisation of two structurally distinct cattle MHC class I haplotypes point to the mechanisms driving diversity. Immunogenetics 2015; 67:539-44. [PMID: 26227296 PMCID: PMC4539362 DOI: 10.1007/s00251-015-0859-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
In cattle, there are six classical MHC class I genes that are variably present between different haplotypes. Almost all known haplotypes contain between one and three genes, with an allele of Gene 2 present on the vast majority. However, very little is known about the sequence and therefore structure and evolutionary history of this genomic region. To address this, we have refined the MHC class I region in the Hereford cattle genome assembly and sequenced a complete A14 haplotype from a homozygous Holstein. Comparison of the two haplotypes revealed extensive variation within the MHC class Ia region, but not within the flanking regions, with each gene contained within a conserved 63- to 68-kb sequence block. This variable region appears to have undergone block gene duplication and likely deletion at regular breakpoints, suggestive of a site-specific mechanism. Phylogenetic analysis using complete gene sequences provided evidence of allelic diversification via gene conversion, with breakpoints between each of the extracellular domains that were associated with high guanine-cytosine (GC) content. Advancing our knowledge of cattle MHC class I evolution will help inform investigations of cattle genetic diversity and disease resistance.
Collapse
Affiliation(s)
- John C Schwartz
- Livestock Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | | |
Collapse
|
30
|
Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol 2015; 31:306-14. [DOI: 10.1016/j.pt.2015.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/19/2022]
|
31
|
Svitek N, Awino E, Nene V, Steinaa L. BoLA-6*01301 and BoLA-6*01302, two allelic variants of the A18 haplotype, present the same epitope from the Tp1 antigen of Theileria parva. Vet Immunol Immunopathol 2015; 167:80-5. [PMID: 26139380 DOI: 10.1016/j.vetimm.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
We have recently shown that the BoLA-A18 variant haplotype (BoLA-6*01302) is more prevalent than the BoLA-A18 haplotype (BoLA-6*01301) in a sample of Holstein/Friesian cattle in Kenya. These MHC class I allelic variants differ by a single amino acid polymorphism (Glu97 to Leu97) in the peptide-binding groove. We have previously mapped an 11-mer peptide epitope from the Theileria parva antigen Tp1 (Tp1214-224) that is presented by BoLA-6*01301. Crystal structure data indicates that Glu97 in the MHC molecule plays a role in epitope binding through electro-static interaction with a lysine residue in position 5 of the epitope, which also functions as an additional anchor residue. In contrast to expectations, we demonstrate that the amino acid substitution in BoLA-6*01302 does not divert the CTL response away from Tp1214-224. The two MHC molecules exhibit similar affinity for the Tp1 epitope and can present the epitope to parasite-specific CTLs derived from either BoLA allelic variants. These data confirm that this BoLA polymorphism does not alter Tp1 epitope specificity and that both allelic variants can be used for Tp1 vaccine studies.
Collapse
Affiliation(s)
- N Svitek
- Vaccine Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya.
| | - E Awino
- Vaccine Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya.
| | - V Nene
- Vaccine Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya.
| | - L Steinaa
- Vaccine Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya.
| |
Collapse
|
32
|
Temporal dynamics and subpopulation analysis of Theileria orientalis genotypes in cattle. INFECTION GENETICS AND EVOLUTION 2015; 32:199-207. [DOI: 10.1016/j.meegid.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
|
33
|
Sitt T, Poole EJ, Ndambuki G, Mwaura S, Njoroge T, Omondi GP, Mutinda M, Mathenge J, Prettejohn G, Morrison WI, Toye P. Exposure of vaccinated and naive cattle to natural challenge from buffalo-derived Theileria parva. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:244-51. [PMID: 26005635 PMCID: PMC4437466 DOI: 10.1016/j.ijppaw.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/02/2022]
Abstract
The Muguga cocktail was tested in cattle in a buffalo-only location. Infection with buffalo-derived T. parva caused Corridor disease in cattle. At the conservancy, the cocktail did not protect cattle against Corridor disease. Efficacious vaccines can support integrative livestock/wildlife management.
Integrative management of wildlife and livestock requires a clear understanding of the diseases transmitted between the two populations. The tick-borne protozoan parasite Theileria parva causes two distinct diseases in cattle, East Coast fever and Corridor disease, following infection with parasites derived from cattle or buffalo, respectively. In this study, cattle were immunized with a live sporozoite vaccine containing three T. parva isolates (the Muguga cocktail), which has been used extensively and successfully in the field to protect against cattle-derived T. parva infection. The cattle were exposed in a natural field challenge site containing buffalo but no other cattle. The vaccine had no effect on the survival outcome in vaccinated animals compared to unvaccinated controls: nine out of the 12 cattle in each group succumbed to T. parva infection. The vaccine also had no effect on the clinical course of the disease. A combination of clinical and post mortem observations and laboratory analyses confirmed that the animals died of Corridor disease. The results clearly indicate that the Muguga cocktail vaccine does not provide protection against buffalo-derived T. parva at this site and highlight the need to evaluate the impact of the composition of challenge T. parva populations on vaccine success in areas where buffalo and cattle are present.
Collapse
Affiliation(s)
- Tatjana Sitt
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - E Jane Poole
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Gideon Ndambuki
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Stephen Mwaura
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Thomas Njoroge
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | | | - Matthew Mutinda
- Veterinary Services Department, Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - Joseph Mathenge
- Veterinary Services Department, Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - Giles Prettejohn
- Veterinary Services Department, Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - W Ivan Morrison
- The Roslin Institute, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Philip Toye
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| |
Collapse
|
34
|
Morrison WI, Connelley T, Hemmink JD, MacHugh ND. Understanding the Basis of Parasite Strain-Restricted Immunity toTheileria parva. Annu Rev Anim Biosci 2015; 3:397-418. [DOI: 10.1146/annurev-animal-022513-114152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- W. Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom;
| | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom;
| | | | - Niall D. MacHugh
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom;
| |
Collapse
|
35
|
Genetic and antigenic diversity of Theileria parva in cattle in Eastern and Southern zones of Tanzania. A study to support control of East Coast fever. Parasitology 2014; 142:698-705. [PMID: 25417727 DOI: 10.1017/s0031182014001784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study investigated the genetic and antigenic diversity of Theileria parva in cattle from the Eastern and Southern zones of Tanzania. Thirty-nine (62%) positive samples were genotyped using 14 mini- and microsatellite markers with coverage of all four T. parva chromosomes. Wright's F index (F(ST) = 0 × 094) indicated a high level of panmixis. Linkage equilibrium was observed in the two zones studied, suggesting existence of a panmyctic population. In addition, sequence analysis of CD8+ T-cell target antigen genes Tp1 revealed a single protein sequence in all samples analysed, which is also present in the T. parva Muguga strain, which is a component of the FAO1 vaccine. All Tp2 epitope sequences were identical to those in the T. parva Muguga strain, except for one variant of a Tp2 epitope, which is found in T. parva Kiambu 5 strain, also a component the FAO1 vaccine. Neighbour joining tree of the nucleotide sequences of Tp2 showed clustering according to geographical origin. Our results show low genetic and antigenic diversity of T. parva within the populations analysed. This has very important implications for the development of sustainable control measures for T. parva in Eastern and Southern zones of Tanzania, where East Coast fever is endemic.
Collapse
|
36
|
Sivakumar T, Hayashida K, Sugimoto C, Yokoyama N. Evolution and genetic diversity of Theileria. INFECTION GENETICS AND EVOLUTION 2014; 27:250-63. [PMID: 25102031 DOI: 10.1016/j.meegid.2014.07.013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan; Veterinary Research Institute, Peradeniya, Sri Lanka
| | - Kyoko Hayashida
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
37
|
Svitek N, Hansen AM, Steinaa L, Saya R, Awino E, Nielsen M, Buus S, Nene V. Use of "one-pot, mix-and-read" peptide-MHC class I tetramers and predictive algorithms to improve detection of cytotoxic T lymphocyte responses in cattle. Vet Res 2014; 45:50. [PMID: 24775445 PMCID: PMC4018993 DOI: 10.1186/1297-9716-45-50] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
Peptide-major histocompatibility complex (p-MHC) class I tetramer complexes have facilitated the early detection and functional characterisation of epitope specific CD8+ cytotoxic T lymphocytes (CTL). Here, we report on the generation of seven recombinant bovine leukocyte antigens (BoLA) and recombinant bovine β2-microglobulin from which p-MHC class I tetramers can be derived in ~48 h. We validated a set of p-MHC class I tetramers against a panel of CTL lines specific to seven epitopes on five different antigens of Theileria parva, a protozoan pathogen causing the lethal bovine disease East Coast fever. One of the p-MHC class I tetramers was tested in ex vivo assays and we detected T. parva specific CTL in peripheral blood of cattle at day 15-17 post-immunization with a live parasite vaccine. The algorithm NetMHCpan predicted alternative epitope sequences for some of the T. parva CTL epitopes. Using an ELISA assay to measure peptide-BoLA monomer formation and p-MHC class I tetramers of new specificity, we demonstrate that a predicted alternative epitope Tp229-37 rather than the previously reported Tp227-37 epitope is the correct Tp2 epitope presented by BoLA-6*04101. We also verified the prediction by NetMHCpan that the Tp587-95 epitope reported as BoLA-T5 restricted can also be presented by BoLA-1*02301, a molecule similar in sequence to BoLA-T5. In addition, Tp587-95 specific bovine CTL were simultaneously stained by Tp5-BoLA-1*02301 and Tp5-BoLA-T5 tetramers suggesting that one T cell receptor can bind to two different BoLA MHC class I molecules presenting the Tp587-95 epitope and that these BoLA molecules fall into a single functional supertype.
Collapse
Affiliation(s)
- Nicholas Svitek
- International Livestock Research Institute (ILRI), P,O, Box 30709, Nairobi 00100, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ellis SA, Hammond JA. The functional significance of cattle major histocompatibility complex class I genetic diversity. Annu Rev Anim Biosci 2013; 2:285-306. [PMID: 25384144 DOI: 10.1146/annurev-animal-022513-114234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current concerns about food security highlight the importance of maintaining productive and disease-resistant livestock populations. Major histocompatibility complex (MHC) class I genes have a central role in immunity. A high level of diversity in these genes allows populations to survive despite exposure to rapidly evolving pathogens. This review aims to describe the key features of MHC class I genetic diversity in cattle and to discuss their role in disease resistance. Discussion centers on data derived from the cattle genome sequence and studies addressing MHC class I gene expression and function. The impact of intensive selection on MHC diversity is also considered. A high level of complexity in MHC class I genes and functionally related gene families is revealed. This highlights the need for increased efforts to determine key genetic components that govern cattle immune responses to disease, which is increasingly important in the face of changing human and environmental demands.
Collapse
Affiliation(s)
- Shirley A Ellis
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom; ,
| | | |
Collapse
|
39
|
Hayashida K, Abe T, Weir W, Nakao R, Ito K, Kajino K, Suzuki Y, Jongejan F, Geysen D, Sugimoto C. Whole-genome sequencing of Theileria parva strains provides insight into parasite migration and diversification in the African continent. DNA Res 2013; 20:209-20. [PMID: 23404454 PMCID: PMC3686427 DOI: 10.1093/dnares/dst003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The disease caused by the apicomplexan protozoan parasite Theileria parva, known as East Coast fever or Corridor disease, is one of the most serious cattle diseases in Eastern, Central, and Southern Africa. We performed whole-genome sequencing of nine T. parva strains, including one of the vaccine strains (Kiambu 5), field isolates from Zambia, Uganda, Tanzania, or Rwanda, and two buffalo-derived strains. Comparison with the reference Muguga genome sequence revealed 34 814–121 545 single nucleotide polymorphisms (SNPs) that were more abundant in buffalo-derived strains. High-resolution phylogenetic trees were constructed with selected informative SNPs that allowed the investigation of possible complex recombination events among ancestors of the extant strains. We further analysed the dN/dS ratio (non-synonymous substitutions per non-synonymous site divided by synonymous substitutions per synonymous site) for 4011 coding genes to estimate potential selective pressure. Genes under possible positive selection were identified that may, in turn, assist in the identification of immunogenic proteins or vaccine candidates. This study elucidated the phylogeny of T. parva strains based on genome-wide SNPs analysis with prediction of possible past recombination events, providing insight into the migration, diversification, and evolution of this parasite species in the African continent.
Collapse
Affiliation(s)
- Kyoko Hayashida
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo-shi, Hokkaido 001-0020, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Codner GF, Birch J, Hammond JA, Ellis SA. Constraints on haplotype structure and variable gene frequencies suggest a functional hierarchy within cattle MHC class I. Immunogenetics 2012; 64:435-45. [DOI: 10.1007/s00251-012-0612-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
|
41
|
Cattle MHC nomenclature: is it possible to assign sequences to discrete class I genes? Immunogenetics 2012; 64:475-80. [PMID: 22419150 DOI: 10.1007/s00251-012-0611-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/02/2012] [Indexed: 12/12/2022]
Abstract
The cattle major histocompatibility complex (MHC) region contains a variable number of classical class I genes encoding polymorphic molecules involved in antigen presentation. Six classical class I genes have been described, but assigning sequences to these genes has proved problematic. We propose a refinement of the existing nomenclature, which currently names the 97 known classical class I sequences in a single series. Phylogenetic analysis of the 3' portion of the coding region allows segregation of these into six groups; thus, we have prefixed existing names with the appropriate number. Although it is clear that some of these groups correspond to discrete genes, it is currently not possible to state definitively that all do. However, the main groupings are consistent, and in conjunction with other evidence, we feel it is now appropriate to rename the sequences accordingly. Segregation of sequences into groups in this way will facilitate ongoing research and future use of the cattle MHC section of the Immuno Polymorphism Database.
Collapse
|
42
|
Cytotoxic T lymphocytes from cattle immunized against Theileria parva exhibit pronounced cross-reactivity among different strain-specific epitopes of the Tp1 antigen. Vet Immunol Immunopathol 2012; 145:571-81. [DOI: 10.1016/j.vetimm.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 11/16/2022]
|
43
|
Theileria annulata-transformed cell lines are efficient antigen-presenting cells for in vitro analysis of CD8 T cell responses to bovine herpesvirus-1. Vet Res 2011; 42:119. [PMID: 22182243 PMCID: PMC3284437 DOI: 10.1186/1297-9716-42-119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023] Open
Abstract
Continuously growing cell lines infected with the protozoan parasite Theileria annulata can readily be established by in vitro infection of leukocytes with the sporozoite stage of the parasite. The aim of the current study was to determine whether such transformed cell lines could be used as antigen presenting cells to analyse the antigenic specificity of bovine CD8 T cell responses to viral infections. Bovine herpes virus 1 (BHV-1), which is known to induce CD8 T cell responses, was used as a model. T. annulata- transformed cells were shown to express high levels of CD40 and CD80 and were susceptible to infection with BHV-1, vaccinia and canarypox viruses. The capacity of the cells to generate antigen-specific CD8 T cell lines was initially validated using a recombinant canarypox virus expressing a defined immunodominant T. parva antigen (Tp1). Autologous T. annulata-transformed cells infected with BHV-1 were then used successfully to generate specific CD8 T cell lines and clones from memory T cell populations of BHV-1-immune animals. These lines were BHV-1-specific and class I MHC-restricted. In contrast to previous studies, which reported recognition of the glycoproteins gB and gD, the CD8 T cell lines generated in this study did not recognise these glycoproteins. Given the ease with which T. annulata-transformed cell lines can be established and maintained in vitro and their susceptibility to infection with poxvirus vectors, these cell lines offer a convenient and efficient in vitro system to analyse the fine specificity of virus-specific CD8 T cell responses in cattle.
Collapse
|
44
|
Connelley TK, MacHugh ND, Pelle R, Weir W, Morrison WI. Escape from CD8+ T cell response by natural variants of an immunodominant epitope from Theileria parva is predominantly due to loss of TCR recognition. THE JOURNAL OF IMMUNOLOGY 2011; 187:5910-20. [PMID: 22058411 DOI: 10.4049/jimmunol.1102009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymorphism of immunodominant CD8(+) T cell epitopes can facilitate escape from immune recognition of pathogens, leading to strain-specific immunity. In this study, we examined the TCR β-chain (TRB) diversity of the CD8(+) T cell responses of cattle against two immunodominant epitopes from Theileria parva (Tp1(214-224) and Tp2(49-59)) and investigated the role of TCR recognition and MHC binding in determining differential recognition of a series of natural variants of the highly polymorphic Tp2(49-59) epitope by CD8(+) T cell clones of defined TRB genotype. Our results show that both Tp1(214-224) and Tp2(49-59) elicited CD8(+) T cell responses using diverse TRB repertoires that showed a high level of stability following repeated pathogenic challenge over a 3-y period. Analysis of single-alanine substituted versions of the Tp2(49-59) peptide demonstrated that Tp2(49-59)-specific clonotypes had a broad range of fine specificities for the epitope. Despite this diversity, all natural variants exhibited partial or total escape from immune recognition, which was predominantly due to abrogation of TCR recognition, with mutation resulting in loss of the lysine residue at P8, playing a particularly dominant role in escape. The levels of heterozygosity in individual Tp2(49-59) residues correlated closely with loss of immune recognition, suggesting that immune selection has contributed to epitope polymorphism.
Collapse
Affiliation(s)
- Timothy K Connelley
- The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Levy CS, Hopkins J, Russell GC, Dalziel RG. Novel virus-encoded microRNA molecules expressed by ovine herpesvirus 2-immortalized bovine T-cells. J Gen Virol 2011; 93:150-154. [PMID: 21957125 DOI: 10.1099/vir.0.037606-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A number of herpesviruses have now been shown to encode microRNAs (miRNAs) that have roles in control of both viral and cellular gene expression. Ovine herpesvirus 2 (OvHV-2) is the causative agent of sheep-associated malignant catarrhal fever, a fatal lymphoproliferative disease of cattle. Using massively parallel sequencing and Northern hybridization we have identified eight putative miRNAs encoded by OvHV-2 expressed in an OvHV-2-immortalized bovine lymphocyte cell line. These eight miRNAs are encoded in two areas of the OvHV-2 genome that contain no predicted protein coding regions and show no sequence similarity with other herpesvirus or cellular miRNAs. This represents the first report of the expression of virally encoded miRNAs in the genus Macavirus of herpesviruses.
Collapse
Affiliation(s)
- Claire S Levy
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Roslin, Midlothian EH25 9RG, UK
| | - John Hopkins
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Roslin, Midlothian EH25 9RG, UK
| | - George C Russell
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - Robert G Dalziel
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Roslin, Midlothian EH25 9RG, UK
| |
Collapse
|
46
|
Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite. PLoS One 2011; 6:e22011. [PMID: 21779365 PMCID: PMC3136500 DOI: 10.1371/journal.pone.0022011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/11/2011] [Indexed: 11/19/2022] Open
Abstract
During adaptive immune response, pathogen-specific CD8+ T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8+ T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8+ T cells of H-2a infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8+ T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8+ T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.
Collapse
|
47
|
Katzer F, Lizundia R, Ngugi D, Blake D, McKeever D. Construction of a genetic map for Theileria parva: identification of hotspots of recombination. Int J Parasitol 2011; 41:669-75. [PMID: 21310160 PMCID: PMC3084458 DOI: 10.1016/j.ijpara.2011.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/29/2022]
Abstract
The tick-borne protozoan parasite Theileria parva is the causal agent of East Coast Fever (ECF), a severe lymphoproliferative disease of cattle in eastern, central and southern Africa. The life cycle of T. parva is predominantly haploid, with a brief diploid stage occurring in the tick vector that involves meiotic recombination. Resolved genetic studies of T. parva are currently constrained by the lack of a genome-wide high-definition genetic map of the parasite. We undertook a genetic cross of two cloned isolates of T. parva to construct such a map from 35 recombinant progeny, using a genome-wide panel of 79 variable number of tandem repeat markers. Progeny were established by in vitro cloning of cattle lymphocytes after infection with sporozoites prepared from Rhipicephalus appendiculatus ticks fed on a calf undergoing a dual infection with the two clonal parental stocks. The genetic map was determined by assigning individual markers to the four chromosome genome, whose physical length is approximately 8309 kilobasepairs (Kb). Segregation analysis of the markers among the progeny revealed a total genetic size of 1683.8 centiMorgans (cM), covering a physical distance of 7737.62 Kb (∼93% of the genome). The average genome-wide recombination rate observed for T. parva was relatively high, at 0.22 cM Kb(-1) per meiotic generation. Recombination hot-spots and cold-spots were identified for each of the chromosomes. A panel of 27 loci encoding determinants previously identified as immunorelevant or likely to be under selection were positioned on the linkage map. We believe this to be the first genetic linkage map for T. parva. This resource, with the availability of the genome sequence of T. parva, will promote improved understanding of the pathogen by facilitating the use of genetic analysis for identification of loci responsible for variable phenotypic traits exhibited by individual parasite stocks.
Collapse
Affiliation(s)
- Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - Regina Lizundia
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Daniel Ngugi
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Damer Blake
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Declan McKeever
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
48
|
Pelle R, Graham SP, Njahira MN, Osaso J, Saya RM, Odongo DO, Toye PG, Spooner PR, Musoke AJ, Mwangi DM, Taracha ELN, Morrison WI, Weir W, Silva JC, Bishop RP. Two Theileria parva CD8 T cell antigen genes are more variable in buffalo than cattle parasites, but differ in pattern of sequence diversity. PLoS One 2011; 6:e19015. [PMID: 21559495 PMCID: PMC3084734 DOI: 10.1371/journal.pone.0019015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
Background Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8+ T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8+ T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8+ T-cell epitopes, and to analyse the sequences for evidence of selection. Methodology/Principal Findings Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. Conclusions/Significance The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.
Collapse
Affiliation(s)
- Roger Pelle
- International Livestock Research Institute, Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Patel EH, Lubembe DM, Gachanja J, Mwaura S, Spooner P, Toye P. Molecular characterization of live Theileria parva sporozoite vaccine stabilates reveals extensive genotypic diversity. Vet Parasitol 2011; 179:62-8. [PMID: 21367527 DOI: 10.1016/j.vetpar.2011.01.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/20/2011] [Accepted: 01/27/2011] [Indexed: 11/15/2022]
Abstract
The current Infection and Treatment Method of vaccination against East Coast fever comprises an inoculation of live Theileria parva sporozoites and simultaneous administration of oxytetracycline. Immunization with a combination of parasite types has been shown to provide broader protection than inoculation of individual strains. In this study, we used a high-throughput capillary electrophoresis system to determine the genotypic composition of the Muguga Cocktail, a widely used vaccine stabilate derived from three seed stabilates-Muguga, Serengeti-transformed and Kiambu 5. Five satellite markers were used to genotype the vaccine and reference stabilates from two commercial-scale preparations of the vaccine. In addition, 224 cloned cell lines established by infection of bovine lymphocytes with T. parva parasites from the component stabilates were genotyped. The results indicate that, for the recently prepared batch, there are at least eight genotypes in each of the Muguga and the Serengeti-transformed stabilates, while parasites from the Kiambu 5 stabilate showed no diversity at the five loci. The Serengeti-transformed stabilate contained parasites of the Kiambu 5 genotype and of two genotypes present in the Muguga stabilate, whereas there were no genotypes common to the Muguga and Kiambu 5 stabilates. When stabilates from the two vaccine batches were compared, no allelic variations were identified between the Muguga and Kiambu 5 parasites, while lack of sufficient clones prevented a full comparison of the Serengeti-transformed stabilates. The findings will facilitate examination of the extent to which the vaccine strains become resident in areas under vaccination, the identification of 'breakthrough' strains and the establishment of the quality assurance protocols to detect variations in the production of the vaccine. The cloned cell lines will be useful for further understanding the antigenic diversity of parasites in the vaccine.
Collapse
Affiliation(s)
- Ekta H Patel
- International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya.
| | | | | | | | | | | |
Collapse
|
50
|
Extensive polymorphism and evidence of immune selection in a highly dominant antigen recognized by bovine CD8 T cells specific for Theileria annulata. Infect Immun 2011; 79:2059-69. [PMID: 21300773 DOI: 10.1128/iai.01285-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although parasite strain-restricted CD8 T cell responses have been described for several protozoa, the precise role of antigenic variability in immunity is poorly understood. The tick-borne protozoan parasite Theileria annulata infects leukocytes and causes an acute, often fatal lymphoproliferative disease in cattle. Building on previous evidence of strain-restricted CD8 T cell responses to T. annulata, this study set out to identify and characterize the variability of the target antigens. Three antigens were identified by screening expressed parasite cDNAs with specific CD8 T cell lines. In cattle expressing the A10 class I major histocompatibility complex haplotype, A10-restricted CD8 T cell responses were shown to be focused entirely on a single dominant epitope in one of these antigens (Ta9). Sequencing of the Ta9 gene from field isolates of T. annulata demonstrated extensive sequence divergence, resulting in amino acid polymorphism within the A10-restricted epitope and a second A14-restricted epitope. Statistical analysis of the allelic sequences revealed evidence of positive selection for amino acid substitutions within the region encoding the CD8 T cell epitopes. Sequence differences in the A10-restricted epitope were shown to result in differential recognition by individual CD8 T cell clones, while clones also differed in their ability to recognize different alleles. Moreover, the representation of these clonal specificities within the responding CD8 T cell populations differed between animals. As well as providing an explanation for incomplete protection observed after heterologous parasite challenge of vaccinated cattle, these results have important implications for the choice of antigens for the development of novel subunit vaccines.
Collapse
|