1
|
White E, Papagno L, Samri A, Sugata K, Hejblum B, Henry AR, Rogan DC, Darko S, Recordon-Pinson P, Dudoit Y, Llewellyn-Lacey S, Chakrabarti LA, Buseyne F, Migueles SA, Price DA, Andreola MA, Satou Y, Thiebaut R, Katlama C, Autran B, Douek DC, Appay V. Clonal succession after prolonged antiretroviral therapy rejuvenates CD8 + T cell responses against HIV-1. Nat Immunol 2024; 25:1555-1564. [PMID: 39179934 DOI: 10.1038/s41590-024-01931-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/15/2024] [Indexed: 08/26/2024]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8+ T cells has nonetheless remained unknown. Here, we used single-cell technologies to address this issue in a cohort of aging individuals infected early during the pandemic and subsequently treated with continuous ART. Our data showed that long-term ART was associated with a process of clonal succession, which effectively rejuvenated HIV-1-specific CD8+ T cell populations in the face of immune senescence. Tracking individual transcriptomes further revealed that initially dominant CD8+ T cell clonotypes displayed signatures of exhaustion and terminal differentiation, whereas newly dominant CD8+ T cell clonotypes displayed signatures of early differentiation and stemness associated with natural control of viral replication. These findings reveal a degree of immune resilience that could inform adjunctive treatments for HIV-1.
Collapse
Affiliation(s)
- Eoghann White
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Laura Papagno
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
| | - Assia Samri
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Boris Hejblum
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Recordon-Pinson
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yasmine Dudoit
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Lisa A Chakrabarti
- CIVIC Group, Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Florence Buseyne
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Marie-Aline Andreola
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rodolphe Thiebaut
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Christine Katlama
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Autran
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Appay
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France.
| |
Collapse
|
2
|
Johansson E, Nazziwa J, Freyhult E, Hong MG, Lindman J, Neptin M, Karlson S, Rezeli M, Biague AJ, Medstrand P, Månsson F, Norrgren H, Esbjörnsson J, Jansson M. HIV-2 mediated effects on target and bystander cells induce plasma proteome remodeling. iScience 2024; 27:109344. [PMID: 38500818 PMCID: PMC10945182 DOI: 10.1016/j.isci.2024.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Despite low or undetectable plasma viral load, people living with HIV-2 (PLWH2) typically progress toward AIDS. The driving forces behind HIV-2 disease progression and the role of viremia are still not known, but low-level replication in tissues is believed to play a role. To investigate the impact of viremic and aviremic HIV-2 infection on target and bystander cell pathology, we used data-independent acquisition mass spectrometry to determine plasma signatures of tissue and cell type engagement. Proteins derived from target and bystander cells in multiple tissues, such as the gastrointestinal tract and brain, were detected at elevated levels in plasma of PLWH2, compared with HIV negative controls. Moreover, viremic HIV-2 infection appeared to induce enhanced release of proteins from a broader range of tissues compared to aviremic HIV-2 infection. This study expands the knowledge on the link between plasma proteome remodeling and the pathological cell engagement in tissues during HIV-2 infection.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jacob Lindman
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Neptin
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Sara Karlson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Melinda Rezeli
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | | | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marianne Jansson
- Lund University Virus Centre, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - for the SWEGUB CORE group
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund, Sweden
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- BioMS – Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
- National Public Health Laboratory, Bissau, Guinea-Bissau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Cabral-Piccin MP, Papagno L, Lahaye X, Perdomo-Celis F, Volant S, White E, Monceaux V, Llewellyn-Lacey S, Fromentin R, Price DA, Chomont N, Manel N, Saez-Cirion A, Appay V. Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8 + T cells in HIV infection. EBioMedicine 2023; 91:104557. [PMID: 37058769 PMCID: PMC10130611 DOI: 10.1016/j.ebiom.2023.104557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND CD8+ T cells equipped with a full arsenal of antiviral effector functions are critical for effective immune control of HIV-1. It has nonetheless remained unclear how best to elicit such potent cellular immune responses in the context of immunotherapy or vaccination. HIV-2 has been associated with milder disease manifestations and more commonly elicits functionally replete virus-specific CD8+ T cell responses compared with HIV-1. We aimed to learn from this immunological dichotomy and to develop informed strategies that could enhance the induction of robust CD8+ T cell responses against HIV-1. METHODS We developed an unbiased in vitro system to compare the de novo induction of antigen-specific CD8+ T cell responses after exposure to HIV-1 or HIV-2. The functional properties of primed CD8+ T cells were assessed using flow cytometry and molecular analyses of gene transcription. FINDINGS HIV-2 primed functionally optimal antigen-specific CD8+ T cells with enhanced survival properties more effectively than HIV-1. This superior induction process was dependent on type I interferons (IFNs) and could be mimicked via the adjuvant delivery of cyclic GMP-AMP (cGAMP), a known agonist of the stimulator of interferon genes (STING). CD8+ T cells elicited in the presence of cGAMP were polyfunctional and highly sensitive to antigen stimulation, even after priming from people living with HIV-1. INTERPRETATION HIV-2 primes CD8+ T cells with potent antiviral functionality by activating the cyclic GMP-AMP synthase (cGAS)/STING pathway, which results in the production of type I IFNs. This process may be amenable to therapeutic development via the use of cGAMP or other STING agonists to bolster CD8+ T cell-mediated immunity against HIV-1. FUNDING This work was funded by INSERM, the Institut Curie, and the University of Bordeaux (Senior IdEx Chair) and by grants from Sidaction (17-1-AAE-11097, 17-1-FJC-11199, VIH2016126002, 20-2-AEQ-12822-2, and 22-2-AEQ-13411), the Agence Nationale de la Recherche sur le SIDA (ECTZ36691, ECTZ25472, ECTZ71745, and ECTZ118797), and the Fondation pour la Recherche Médicale (EQ U202103012774). D.A.P. was supported by a Wellcome Trust Senior Investigator Award (100326/Z/12/Z).
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Xavier Lahaye
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France
| | | | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique, 75015, Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nicolas Manel
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France.
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015, Paris, France.
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
4
|
HIV-2 Neutralization Sensitivity in Relation to Co-Receptor Entry Pathways and Env Motifs. Int J Mol Sci 2022; 23:ijms23094766. [PMID: 35563157 PMCID: PMC9101540 DOI: 10.3390/ijms23094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
HIV-2, compared to HIV-1, elicits potent and broadly neutralizing antibodies, and uses a broad range of co-receptors. However, both sensitivity to neutralization and breadth of co-receptor use varies between HIV-2 isolates, and the molecular background is still not fully understood. Thus, in the current study, we have deciphered relationships between HIV-2 neutralization sensitivity, co-receptor use and viral envelope glycoprotein (Env) molecular motifs. A panel of primary HIV-2 isolates, with predefined use of co-receptors, was assessed for neutralization sensitivity using a set of HIV-2 Env-directed monoclonal antibodies and co-receptor indicator cell lines. Neutralization sensitivity of the isolates was analysed in relation target cell co-receptor expression, in addition to amino acid motifs and predicted structures of Env regions. Results showed that HIV-2 isolates were more resistant to neutralizing antibodies when entering target cells via the alternative co-receptor GPR15, as compared to CCR5. A similar pattern was noted for isolates using the alternative co-receptor CXCR6. Sensitivity to neutralizing antibodies appeared also to be linked to specific Env motifs in V1/V2 and C3 regions. Our findings suggest that HIV-2 sensitivity to neutralization depends both on which co-receptor is used for cell entry and on specific Env motifs. This study highlights the multifactorial mechanisms behind HIV-2 neutralization sensitivity.
Collapse
|
5
|
Scharf L, Pedersen CB, Johansson E, Lindman J, Olsen LR, Buggert M, Wilhelmson S, Månsson F, Esbjörnsson J, Biague A, Medstrand P, Norrgren H, Karlsson AC, Jansson M. Inverted CD8 T-Cell Exhaustion and Co-Stimulation Marker Balance Differentiate Aviremic HIV-2-Infected From Seronegative Individuals. Front Immunol 2021; 12:744530. [PMID: 34712231 PMCID: PMC8545800 DOI: 10.3389/fimmu.2021.744530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-2 is less pathogenic compared to HIV-1. Still, disease progression may develop in aviremic HIV-2 infection, but the driving forces and mechanisms behind such development are unclear. Here, we aimed to reveal the immunophenotypic pattern associated with CD8 T-cell pathology in HIV-2 infection, in relation to viremia and markers of disease progression. The relationships between pathological differences of the CD8 T-cell memory population and viremia were analyzed in blood samples obtained from an occupational cohort in Guinea-Bissau, including HIV-2 viremic and aviremic individuals. For comparison, samples from HIV-1- or dually HIV-1/2-infected and seronegative individuals were obtained from the same cohort. CD8 T-cell exhaustion was evaluated by the combined expression patterns of activation, stimulatory and inhibitory immune checkpoint markers analyzed using multicolor flow cytometry and advanced bioinformatics. Unsupervised multidimensional clustering analysis identified a cluster of late differentiated CD8 T-cells expressing activation (CD38+, HLA-DRint/high), co-stimulatory (CD226+/-), and immune inhibitory (2B4+, PD-1high, TIGIThigh) markers that distinguished aviremic from viremic HIV-2, and treated from untreated HIV-1-infected individuals. This CD8 T-cell population displayed close correlations to CD4%, viremia, and plasma levels of IP-10, sCD14 and beta-2 microglobulin in HIV-2 infection. Detailed analysis revealed that aviremic HIV-2-infected individuals had higher frequencies of exhausted TIGIT+ CD8 T-cell populations lacking CD226, while reduced percentage of stimulation-receptive TIGIT-CD226+ CD8 T-cells, compared to seronegative individuals. Our results suggest that HIV-2 infection, independent of viremia, skews CD8 T-cells towards exhaustion and reduced co-stimulation readiness. Further knowledge on CD8 T-cell phenotypes might provide help in therapy monitoring and identification of immunotherapy targets.
Collapse
Affiliation(s)
- Lydia Scharf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina B Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Johansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jacob Lindman
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lars R Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sten Wilhelmson
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, Lund, Sweden
| | | | - Antonio Biague
- National Laboratory for Public Health, Bissau, Guinea-Bissau
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Annika C Karlsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
6
|
Moysi E, Darko S, Gea-Mallorquí E, Petrovas C, Almeida JR, Wolinsky D, Peng Y, Jaye A, Stewart-Jones G, Douek DC, Koup RA, Dong T, Rowland-Jones S. Clonotypic architecture of a Gag-specific CD8+ T-cell response in chronic human HIV-2 infection. Eur J Immunol 2021; 51:2485-2500. [PMID: 34369597 DOI: 10.1002/eji.202048931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
The dynamics of T-cell receptor (TCR) selection in chronic HIV-1 infection, and its association with clinical outcome, is well documented for an array of MHC-peptide complexes and disease stages. However, the factors that may contribute to the selection and expansion of CD8+ T-cells in chronic HIV-2 infection, especially at clonal level remain unclear. To address this question, we undertook a detailed molecular characterization of the clonotypic architecture of an HLA-B*3501 restricted Gag -specific CD8+ T-cell response in donors chronically infected with HIV-2 using a combination of flow cytometry, tetramer-specific CD8+ TCR clonotyping and in vitro assays. We show that the response to the NY9 epitope is hierarchical and narrow in terms of T-cell receptor alpha (TCRA) and beta (TCRB) gene usage yet clonotypically diverse. Furthermore, clonotypic dominance in shared origin cytotoxic T lymphocyte (CTL) clones was associated with a greater magnitude of cytokine production and antigen sensitivity at limiting antigen dilution as well as enhanced cross-reactivity for known HIV-2 variants. Hence, our data suggest that effector mobilization and expansion in human chronic HIV-2 infection may be linked to the qualitative features of specific CD8+ T-cell clonotypes, which could have implications for viral control and disease outcome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jorge R Almeida
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - David Wolinsky
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Assan Jaye
- MRC Laboratories, The Gambia, PO Box 273, West Africa
| | - Guillaume Stewart-Jones
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
7
|
Esbjörnsson J, Jansson M, Jespersen S, Månsson F, Hønge BL, Lindman J, Medina C, da Silva ZJ, Norrgren H, Medstrand P, Rowland-Jones SL, Wejse C. HIV-2 as a model to identify a functional HIV cure. AIDS Res Ther 2019; 16:24. [PMID: 31484562 PMCID: PMC6727498 DOI: 10.1186/s12981-019-0239-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Two HIV virus types exist: HIV-1 is pandemic and aggressive, whereas HIV-2 is confined mainly to West Africa and less pathogenic. Despite the fact that it has been almost 40 years since the discovery of AIDS, there is still no cure or vaccine against HIV. Consequently, the concepts of functional vaccines and cures that aim to limit HIV disease progression and spread by persistent control of viral replication without life-long treatment have been suggested as more feasible options to control the HIV pandemic. To identify virus-host mechanisms that could be targeted for functional cure development, researchers have focused on a small fraction of HIV-1 infected individuals that control their infection spontaneously, so-called elite controllers. However, these efforts have not been able to unravel the key mechanisms of the infection control. This is partly due to lack in statistical power since only 0.15% of HIV-1 infected individuals are natural elite controllers. The proportion of long-term viral control is larger in HIV-2 infection compared with HIV-1 infection. We therefore present the idea of using HIV-2 as a model for finding a functional cure against HIV. Understanding the key differences between HIV-1 and HIV-2 infections, and the cross-reactive effects in HIV-1/HIV-2 dual-infection could provide novel insights in developing functional HIV cures and vaccines.
Collapse
|
8
|
T-cell and B-cell perturbations identify distinct differences in HIV-2 compared with HIV-1-induced immunodeficiency. AIDS 2019; 33:1131-1141. [PMID: 30845070 DOI: 10.1097/qad.0000000000002184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND For unknown reasons, HIV-2 is less pathogenic than HIV-1, and HIV-2-induced immunodeficiency may be different from that caused by HIV-1. Previous immunological studies have hinted at possible shifts in both T-cell and B-cell subsets, which we aimed to characterize further. METHODS From an HIV clinic in Guinea-Bissau, 63 HIV-2, 83 HIV-1, and 26 HIV-negative participants were included. All HIV-infected participants were ART-naive. The following cell subsets were analysed by flow cytometry; T cells (maturation and activation), regulatory T cells, and B cells (maturation and activation). RESULTS After standardizing for sex, age, and CD4 T-cell count HIV-2 had 0.938 log10 copies/ml lower HIV RNA levels than the HIV-1-infected patients. Whereas T-cell maturation and regulatory T-cell profiles were similar between patients, HIV-2-infected patients had higher proportions of CD8CD28 and lower proportions of CD8PD-1+ T cells than HIV-1-infected patients. This finding was independent of HIV RNA levels. HIV-2 was also associated with a more preserved proportion of naive B cells. CONCLUSION HIV-2 is characterized by lower viral load, and lower T-cell activation, which may account for the slower disease progression.
Collapse
|
9
|
Boswell MT, Rowland-Jones SL. Delayed disease progression in HIV-2: the importance of TRIM5α and the retroviral capsid. Clin Exp Immunol 2019; 196:305-317. [PMID: 30773620 DOI: 10.1111/cei.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-2 is thought to have entered the human population in the 1930s through cross-species transmission of SIV from sooty mangabeys in West Africa. Unlike HIV-1, HIV-2 has not led to a global pandemic, and recent data suggest that HIV-2 prevalence is declining in some West African states where it was formerly endemic. Although many early isolates of HIV-2 were derived from patients presenting with AIDS-defining illnesses, it was noted that a much larger proportion of HIV-2-infected subjects behaved as long-term non-progressors (LTNP) than their HIV-1-infected counterparts. Many HIV-2-infected adults are asymptomatic, maintaining an undetectable viral load for over a decade. However, despite lower viral loads, HIV-2 progresses to clinical AIDS without therapeutic intervention in most patients. In addition, successful treatment with anti-retroviral therapy (ART) is more challenging than for HIV-1. HIV-2 is significantly more sensitive to restriction by host restriction factor tripartite motif TRIM5α than HIV-1, and this difference in sensitivity is linked to differences in capsid structure. In this review we discuss the determinants of HIV-2 disease progression and focus on the important interactions between TRIM5α and HIV-2 capsid in long-term viral control.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
HLA-associated polymorphisms in the HIV-2 capsid highlight key differences between HIV-1 and HIV-2 immune adaptation. AIDS 2018; 32:709-714. [PMID: 29369160 PMCID: PMC5895130 DOI: 10.1097/qad.0000000000001753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV-1 frequently adapts in response to immune pressure from cytotoxic T-lymphocytes (CTL). Many HIV-2 infected individuals have robust capsid-specific CTL responses associated with viral control. Despite this CTL pressure, adaptive changes in this key immunogenic HIV-2 protein have not previously been described. We sought to compare selective pressure on HIV-1 and HIV-2 capsids and identify HLA-associated viral polymorphisms in HIV-2. DESIGN AND METHODS Bioinformatic algorithms to identify sites under positive and negative selective pressure and a statistical model of evolution to identify HLA-associated polymorphisms in HIV-2 was applied to sequences from a community cohort in Guinea-Bissau. IFN-γ ELISpots were used to compare T-cell responses to wild-type and variant epitopes. RESULTS We identified greater purifying selection and less sites under positive selective pressure in HIV-2 compared with HIV-1. Five HIV-2 codons with HLA-associated polymorphisms were detected all within or around known or predicted CTL epitopes. One site was within the HLA-B58 SuperType (ST)-restricted epitope (TSTVEEQIQW), the HIV-2 equivalent of the HIV-1 TW10 epitope. In contrast to HIV-1, where a T→N mutation at position 3 is associated with resulting loss of CTL control, an E→D mutation at position 5 was observed in HIV-2. Robust CTL responses to the variant HIV-2 epitope were seen, suggesting that HIV-2 adaptation may be at the level of T-cell receptor recognition. CONCLUSION Greater constraints on evolution may exist in HIV-2, resulting in more purifying selection and different immune adaptation pathways in HIV-1 and HIV-2 capsids. This may allow CTL responses to persist in HIV-2.
Collapse
|
11
|
Angin M, Wong G, Papagno L, Versmisse P, David A, Bayard C, Charmeteau-De Muylder B, Besseghir A, Thiébaut R, Boufassa F, Pancino G, Sauce D, Lambotte O, Brun-Vézinet F, Matheron S, Rowland-Jones SL, Cheynier R, Sáez-Cirión A, Appay V. Preservation of Lymphopoietic Potential and Virus Suppressive Capacity by CD8+ T Cells in HIV-2-Infected Controllers. THE JOURNAL OF IMMUNOLOGY 2016; 197:2787-95. [PMID: 27566819 DOI: 10.4049/jimmunol.1600693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022]
Abstract
Compared with HIV-1, HIV-2 infection is characterized by a larger proportion of slow or nonprogressors. A better understanding of HIV-2 pathogenesis should open new therapeutic avenues to establish control of HIV-1 replication in infected patients. In this study, we studied the production of CD8(+) T cells and their capacity for viral control in HIV-2 controllers from the French ANRS CO5 HIV-2 cohort. HIV-2 controllers display a robust capacity to support long-term renewal of the CD8(+) T cell compartment by preserving immune resources, including hematopoietic progenitors and thymic activity, which could contribute to the long-term maintenance of the CD8(+) T cell response and the avoidance of premature immune aging. Our data support the presence of HIV-2 Gag-specific CD8(+) T cells that display an early memory differentiation phenotype and robust effector potential in HIV-2 controllers. Accordingly, to our knowledge, we show for the first time that HIV-2 controllers possess CD8(+) T cells that show an unusually strong capacity to suppress HIV-2 infection in autologous CD4(+) T cells ex vivo, an ability that likely depends on the preservation of host immune resources. This effective and durable antiviral response probably participates in a virtuous circle, during which controlled viral replication permits the preservation of potent immune functions, thus preventing HIV-2 disease progression.
Collapse
Affiliation(s)
- Mathieu Angin
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Glenn Wong
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France; Nuffield Department of Medicine, Headington, Oxford OX3 7FZ, United Kingdom
| | - Laura Papagno
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France
| | - Pierre Versmisse
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Annie David
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Charles Bayard
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France
| | - Bénédicte Charmeteau-De Muylder
- INSERM U1016, Institut Cochin, Cytokines and Viral Infections Team, Paris 75014, France; CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amel Besseghir
- Centre de Méthodologie et de Gestion des Essais Cliniques de l'INSERM U1219, Virus de l'Immunodéficience Humaine, Hépatites Virales et Comorbidités, Épidémiologie Clinique et Santé Publique, Bordeaux 33076, France
| | - Rodolphe Thiébaut
- Centre de Méthodologie et de Gestion des Essais Cliniques de l'INSERM U1219, Virus de l'Immunodéficience Humaine, Hépatites Virales et Comorbidités, Épidémiologie Clinique et Santé Publique, Bordeaux 33076, France
| | - Faroudy Boufassa
- INSERM U1018, Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris Sud, Le Kremlin Bicêtre 94270, France
| | - Gianfranco Pancino
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France
| | - Delphine Sauce
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France
| | - Olivier Lambotte
- INSERM UMR 1184, Immunologie des Maladies Virales et Autoimmunes, Le Kremlin Bicêtre 94270, France; Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne, Hôpitaux Universitaires, Le Kremlin Bicêtre 94270, France; Université Paris Sud, Le Kremlin Bicêtre 94270, France
| | - Françoise Brun-Vézinet
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Virologie, Hôpital Bichat, Paris 75018, France
| | - Sophie Matheron
- INSERM UMR 1137, Infections, Antimicrobiens, Modélisation, Evolution, Université Paris Diderot, Sorbonne Paris Cité, Paris 75018, France; and Assistance Publique-Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, Paris 75018, France
| | | | - Rémi Cheynier
- INSERM U1016, Institut Cochin, Cytokines and Viral Infections Team, Paris 75014, France; CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris 75015, France;
| | - Victor Appay
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Paris 75005, France;
| | | |
Collapse
|
12
|
TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr Opin Virol 2016; 16:77-85. [PMID: 26874617 DOI: 10.1016/j.coviro.2016.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/02/2023]
Abstract
Because of the enormous complexity and breadth of the overall HIV-specific CD8(+) T-cell response, invaluable information regarding important aspects of T-cell efficacy against HIV can be sourced from studies performed on individual clonotypes. Data gathered from ex vivo and in vitro analyses of T-cell responses and viral evolution bring us one step closer towards deciphering the correlates of protection against HIV. HIV-responsive CD8(+) T-cell populations are characterized by specific clonotypic immunodominance patterns and public TCRs. The TCR endows T-cells with two key features, important for the effective control of HIV: avidity and crossreactivity. While TCR avidity is a major determinant of CD8(+) T-cell functional efficacy against the virus, crossreactivity towards wildtype and mutant viral epitopes is crucial for adaptation to HIV evolution. The properties of CD4(+) T-cell responses in HIV controllers appear also to be shaped by high avidity public TCR clonotypes. The molecular nature of the TCR, together with the clonotypic composition of the HIV-specific T-cell response, emerge as major determinants of anti-viral efficacy.
Collapse
|
13
|
Abstract
HIV type 1 (HIV-1) has a very narrow host range that is limited to humans and chimpanzees. HIV-1 cannot replicate well in Old World monkey cells such as rhesus and cynomolgus monkeys. Tripartite motif (TRIM)5α is a key molecule that confers potent resistance against HIV-1 infection and is composed of really interesting new gene, B-box2, coiled-coil and PRYSPRY domains. Interaction between TRIM5α PRYSPRY domains and HIV-1 capsid core triggers the anti-HIV-1 activity of TRIM5α. Analysis of natural HIV variants and extensive mutational experiments has revealed the presence of critical amino acid residues in both the PRYSPRY domain and HIV capsid for potent HIV suppression by TRIM5α. Genetic manipulation of the human TRIM5 gene could establish human cells totally resistant to HIV-1, which may lead to a cure for HIV-1 infection in the future.
Collapse
|
14
|
Holst PJ, Jensen BAH, Ragonnaud E, Thomsen AR, Christensen JP. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection. PLoS One 2015; 10:e0117242. [PMID: 25679375 PMCID: PMC4334508 DOI: 10.1371/journal.pone.0117242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.
Collapse
Affiliation(s)
- Peter J. Holst
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Benjamin A. H. Jensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Emeline Ragonnaud
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan R. Thomsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Jan P. Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| |
Collapse
|
15
|
|
16
|
Mačinković IS, Abughren M, Mrkic I, Grozdanović MM, Prodanović R, Gavrović-Jankulović M. Employment of colorimetric enzyme assay for monitoring expression and solubility of GST fusion proteins targeted to inclusion bodies. J Biotechnol 2013; 168:506-10. [PMID: 24100211 DOI: 10.1016/j.jbiotec.2013.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 09/25/2013] [Indexed: 11/29/2022]
Abstract
High levels of recombinant protein expression can lead to the formation of insoluble inclusion bodies. These complex aggregates are commonly solubilized in strong denaturants, such as 6-8M urea, although, if possible, solubilization under milder conditions could facilitate subsequent refolding and purification of bioactive proteins. Commercially available GST-tag assays are designed for quantitative measurement of GST activity under native conditions. GST fusion proteins accumulated in inclusion bodies are considered to be undetectable by such assays. In this work, solubilization of recombinantly produced proteins was performed in 4M urea. The activity of rGST was assayed in 2M urea and it was shown that rGST preserves 85% of its activity under such denaturing conditions. A colorimetric GST activity assay with 1-chloro-2, 4-dinitrobenzene (CDNB) was examined for use in rapid detection of expression targeted to inclusion bodies and for the identification of inclusion body proteins which can be solubilized in low concentrations of chaotropic agents. Applicability of the assay was evaluated by tracking protein expression of two GST-fused allergens of biopharmaceutical value in E. coli, GST-Der p 2 and GST-Mus a 5, both targeted to inclusion bodies.
Collapse
Affiliation(s)
- Igor S Mačinković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia; Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Correlates of T-cell-mediated viral control and phenotype of CD8(+) T cells in HIV-2, a naturally contained human retroviral infection. Blood 2013; 121:4330-9. [PMID: 23558015 DOI: 10.1182/blood-2012-12-472787] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While a significant proportion of HIV-2-infected individuals are asymptomatic and maintain undetectable viral loads (controllers), 15% to 20% progress to AIDS and are predicted by detectable viremia. Identifying immune correlates that distinguish these 2 groups should provide insights into how a potentially pathogenic retrovirus can be naturally controlled. We performed a detailed study of HIV-2-specific cellular responses in a unique community cohort in Guinea-Bissau followed for over 2 decades. T-cell responses were compared between controllers (n = 33) and viremic subjects (n = 27) using overlapping peptides, major histocompatibility complex class I tetramers, and multiparameter flow cytometry. HIV-2 viral control was significantly associated with a high-magnitude, polyfunctional Gag-specific CD8(+) T-cell response but not with greater perforin upregulation. This potentially protective HIV-2-specific response is surprisingly narrow. HIV-2 Gag-specific CD8(+) T cells are at an earlier stage of differentiation than cytomegalovirus-specific CD8(+) T-cells, do not contain high levels of cytolytic markers, and exhibit low levels of activation and proliferation, representing distinct properties from CD8(+) T cells associated with HIV-1 control. These data reveal the potential T-cell correlates of HIV-2 control and the detailed phenotype of virus-specific CD8(+) T cells in a naturally contained retroviral infection.
Collapse
|
18
|
Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 2013; 23:221-40. [PMID: 23444290 DOI: 10.1002/rmv.1739] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 12/18/2022]
Abstract
HIV-1 and HIV-2 share many similarities including their basic gene arrangement, modes of transmission, intracellular replication pathways and clinical consequences: both result in AIDS. However, HIV-2 is characterised by lower transmissibility and reduced likelihood of progression to AIDS. The underlying mechanistic differences between these two infections illuminate broader issues of retroviral pathogenesis, which remain incompletely understood. Comparisons between these two infections from epidemiological, clinical, virologic and immunologic viewpoints provide a basis for hypothesis generation and testing in this 'natural experiment' in viral pathogenesis. In terms of epidemiology, HIV-2 remains largely confined to West Africa, whereas HIV-1 extends worldwide. Clinically, HIV-2 infected individuals seem to dichotomise, most remaining long-term non-progressors, whereas most HIV-1 infected individuals progress. When clinical progression occurs, both diseases demonstrate very similar pathological processes, although progression in HIV-2 occurs at higher CD4 counts. Plasma viral loads are consistently lower in HIV-2, as are average levels of immune activation. Significant differences exist between the two infections in all components of the immune system. For example, cellular responses to HIV-2 tend to be more polyfunctional and produce more IL-2; humoral responses appear broader with lower magnitude intratype neutralisation responses; innate responses appear more robust, possibly through differential effects of tripartite motif protein isoform 5 alpha. Overall, the immune response to HIV-2 appears more protective against disease progression suggesting that pivotal immune factors limit viral pathology. If such immune responses could be replicated or induced in HIV-1 infected patients, they might extend survival and reduce requirements for antiretroviral therapy.
Collapse
|
19
|
PD-1 and its ligand PD-L1 are progressively up-regulated on CD4 and CD8 T-cells in HIV-2 infection irrespective of the presence of viremia. AIDS 2012; 26:1065-71. [PMID: 22441249 DOI: 10.1097/qad.0b013e32835374db] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Hyper-immune activation is a main determinant of HIV disease progression, potentially counter-acted by T-cell inhibitory pathways. Here we investigated, for the first time, inhibitory molecules in HIV-2 infection, a naturally occurring attenuated form of HIV disease, associated with reduced viremia and very slow rates of CD4 T-cell decline. DESIGN Programmed death (PD)-1/PD-L1, an important pathway in limiting immunopathology, and its possible relationship with T-cell immunoglobulin and mucin-domain containing molecule-3 (TIM-3), a recently identified inhibitory molecule, were studied in untreated HIV-2 and HIV-1 cohorts, matched for degree of CD4 T-cell depletion, and noninfected individuals. METHODS Flow cytometric analysis of T-cell expression of PD-1, PD-L1 and TIM-3, combined with markers of cell differentiation, activation, cycling and survival. Statistical analysis was performed using ANOVA, Mann-Whitney/Wilcoxon tests, Spearman's correlations, multiple linear regressions and canonical correlation analysis. RESULTS T-cell expression of PD-1 and PD-L1 was tightly associated and directly correlated with CD4 T-cell depletion and immune activation in HIV-2 infection. No such correlation was found for PD-L1 expression in HIV-1-positive patients. Central memory and intermediate memory cells, rather than terminally differentiated T-cells, expressed the highest levels of both PD-1 and PD-L1 molecules. Conversely, TIM-3 expression was independent of T-cell differentiation and dissociated from cell cycling, suggesting distinct induction mechanisms. Importantly, in contrast with HIV-1, no significant increases in TIM-3 expression were found in the HIV-2 cohort. CONCLUSIONS Our data suggest that PD-1/PD-L1 molecules, rather than markers of T-cell exhaustion, may act as modulators of T-cell immune activation, contributing to the slower course of HIV-2 infection. These data have implications for the design of antiretroviral therapy-complementary immune-based strategies.
Collapse
|
20
|
Nakayama EE, Shioda T. Role of Human TRIM5α in Intrinsic Immunity. Front Microbiol 2012; 3:97. [PMID: 22435067 PMCID: PMC3304089 DOI: 10.3389/fmicb.2012.00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/28/2012] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) has a very narrow host range. HIV type 1 (HIV-1) does not infect Old World monkeys, such as the rhesus monkey (Rh). Rh TRIM5α was identified as a factor that confers resistance, intrinsic immunity, to HIV-1 infection. Unfortunately, human TRIM5α is almost powerless to restrict HIV-1. However, human TRIM5α potently restricts N-tropic murine leukemia viruses (MLV) but not B-tropic MLV, indicating that human TRIM5α represents the restriction factor previously designated as Ref1. African green monkey TRIM5α represents another restriction factor previously designated as Lv1, which restricts both HIV-1 and simian immunodeficiency virus isolated from macaque (SIVmac) infection. TRIM5 is a member of the tripartite motif family containing RING, B-box2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase, and TRIM5α is thought to degrade viral core via ubiquitin–proteasome-dependent and -independent pathways. The alpha isoform of TRIM5 has an additional C-terminal PRYSPRY domain, which is a determinant of species-specific retrovirus restriction by TRIM5α. On the other hand, the target regions of viral capsid protein (CA) are scattered on the surface of core. A single amino acid difference in the surface-exposed loop between α-helices 6 and 7 (L6/7) of HIV type 2 (HIV-2) CA affects viral sensitivity to human TRIM5α and was also shown to be associated with viral load in West African HIV-2 patients, indicating that human TRIM5α is a critical modulator of HIV-2 replication in vivo. Interestingly, L6/7 of CA corresponds to the MLV determinant of sensitivity to mouse factor Fv1, which potently restricts N-tropic MLV. In addition, human genetic polymorphisms also affect antiviral activity of human TRIM5α. Recently, human TRIM5α was shown to activate signaling pathways that lead to activation of NF-κB and AP-1 by interacting with TAK1 complex. TRIM5α is thus involved in control of viral infection in multiple ways.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka, Japan
| | | |
Collapse
|
21
|
Potent autologous and heterologous neutralizing antibody responses occur in HIV-2 infection across a broad range of infection outcomes. J Virol 2011; 86:930-46. [PMID: 22072758 DOI: 10.1128/jvi.06126-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Few studies have explored the role of neutralizing antibody (NAb) responses in controlling HIV-2 viremia and disease progression. Using a TZM-bl neutralization assay, we assessed heterologous and autologous NAb responses from a community cohort of HIV-2-infected individuals with a broad range of disease outcomes in rural Guinea-Bissau. All subjects (n = 40) displayed exceptionally high heterologous NAb titers (50% inhibitory plasma dilution or 50% inhibitory concentration [IC(50)], 1:7,000 to 1:1,000,000) against 5 novel primary HIV-2 envelopes and HIV-2 7312A, whereas ROD A and 3 primary envelopes were relatively resistant to neutralization. Most individuals also showed high autologous NAb against contemporaneous envelopes (78% of plasma-envelope combinations in 69 envelopes from 21 subjects), with IC(50)s above 1:10,000. No association between heterologous or autologous NAb titer and greater control of HIV-2 was found. A subset of envelopes was found to be more resistant to neutralization (by plasma and HIV-2 monoclonal antibodies). These envelopes were isolated from individuals with greater intrapatient sequence diversity and were associated with changes in potential N-linked glycosylation sites but not CD4 independence or CXCR4 use. Plasma collected from up to 15 years previously was able to potently neutralize recent autologous envelopes, suggesting a lack of escape from NAb and the persistence of neutralization-sensitive variants over time, despite significant NAb pressure. We conclude that despite the presence of broad and potent NAb responses in HIV-2-infected individuals, these are not the primary forces behind the dichotomous outcomes observed but reveal a limited capacity for adaptive selection and escape from host immunity in HIV-2 infection.
Collapse
|
22
|
Antigen sensitivity and T-cell receptor avidity as critical determinants of HIV control. Curr Opin HIV AIDS 2011; 6:157-62. [PMID: 21399498 DOI: 10.1097/coh.0b013e3283453dfd] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Induction of highly effective T cells capable of performing elite control of HIV replication represents a major goal of vaccinology. Here, we review the recent evidence supporting the central role of antigen sensitivity and T-cell receptor (TCR) avidity in determining anti-HIV T-cell efficacy. We discuss why the modulation of these factors represents an interesting approach for the rational design of HIV vaccines. RECENT FINDINGS The qualitative attributes of T-cell efficacy against HIV are closely related to the sensitivity of the cells for their cognate antigen, which appears essential to control viral replication in HIV-infected patients and is in turn strongly influenced by TCR avidity. High antigen sensitivity and TCR avidity present also potential caveats, notably T-cell clonal exhaustion and rapid emergence of escape variants. SUMMARY The central role of antigen sensitivity and TCR avidity in determining the quality of T-cell responses against HIV represents a new development in our understanding of the immune control of HIV, and the quest for an effective vaccine. Strategies to improve T-cell efficacy in vaccination approaches may rely on selecting T cells with high antigen sensitivity during priming.
Collapse
|
23
|
Hodges-Mameletzis I, De Bree GJ, Rowland-Jones SL. An underestimated lentivirus model: what can HIV-2 research contribute to the development of an effective HIV-1 vaccine? Expert Rev Anti Infect Ther 2011; 9:195-206. [PMID: 21342067 DOI: 10.1586/eri.10.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of an HIV-1 vaccine that would be effective against all existing subtypes and circulating recombinant forms remains one of the great scientific and public health challenges of our generation. One of the major barriers to HIV-1 vaccine development is a lack of understanding of the correlates of protective immunity against the virus. In this context, research has focused on the rare phenomenon of spontaneous control of HIV-1 infection, in groups referred to as 'long-term nonprogressors' and 'elite controllers', together with models of nonprogressive sooty mangabey simian immunodeficiency (SIV) infection in African nonhuman primate hosts such as sooty mangabeys and African green monkeys, in which the majority of animals tolerate high levels of viral replication without development of immunodeficiency or disease. Much less attention has been given to humans infected with the nonpandemic strain HIV-2, derived from the SIV in West Africa, most of whom behave as long-term nonprogressors or viral controllers, while a minority develop disease clinically indistinguishable from AIDS caused by HIV-1. This apparent dichotomous outcome is, based on the evidence accumulated to date, more clearly related to the host immune response than the good clinical outcome of HIV-1 controllers. We propose that complementing research into HIV-1 controllers and nonpathogenic SIV models with the prioritization of HIV-2 research could enhance the HIV-1 vaccine research effort. The absence of disease progression or detectable plasma viral replication in the presence of an effective immune response in most patients living with HIV-2 represents an opportunity to unravel the virus' evolutionary adaptation in human hosts and to establish the correlates of such a protective response.
Collapse
|