1
|
Moorman CD, Yu S, Briseno CG, Phee H, Sahoo A, Ramrakhiani A, Chaudhry A. CAR-T cells and CAR-Tregs targeting conventional type-1 dendritic cell suppress experimental autoimmune encephalomyelitis. Front Immunol 2023; 14:1235222. [PMID: 37965348 PMCID: PMC10641730 DOI: 10.3389/fimmu.2023.1235222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Conventional type 1 dendritic cells (DC1) contribute to the development of pathogenic T helper type 1 (Th1) cells in part via the production of the proinflammatory cytokine interleukin-12. Thus, depletion of DC1 has the potential to dampen autoimmune responses. Here, we developed X-C motif chemokine receptor 1 (XCR1)-specific chimeric antigen receptor (CAR)-T cells and CAR-Tregs that specifically targeted DC1. XCR1 CAR-T cells were successfully generated as CD4+ and CD8+ T cells, expressed XCR1 CAR efficiently, and induced XCR1-dependent activation, cytokine production and proliferation. XCR1 CAR-T cells selectively depleted DC1 when transferred into RAG2-/- mice with a compensatory increase in conventional type 2 DC (DC2) and plasmacytoid DC (pDC). XCR1 CAR-T cell-mediated depletion of DC1 modestly suppressed the onset of Th1-driven experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Diphtheria toxin-mediated DC1 depletion in XCR1-diphtheria toxin receptor mice also suppressed EAE, suggesting that DC1 depletion was responsible for EAE suppression. XCR1 CAR-Tregs were successfully generated and suppressed effector T cells in the presence of XCR1+ cells. Therapeutic treatment with XCR1 CAR-Tregs suppressed Th1-driven EAE. Therefore, we conclude that depletion of DC1 with XCR1 CAR-T cells or immune suppression with XCR1 CAR-Tregs can modestly suppress Th1-driven EAE.
Collapse
Affiliation(s)
- Cody D. Moorman
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | | | | | | | | | | | |
Collapse
|
2
|
Han X, Wei Q, Xu RX, Wang S, Liu XY, Guo C, Gao Q, Zhou X, Chen LP, Li ZF. Minocycline induces tolerance to dendritic cell production probably by targeting the SOCS1/ TLR4/NF-κB signaling pathway. Transpl Immunol 2023; 79:101856. [PMID: 37196867 DOI: 10.1016/j.trim.2023.101856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in maintaining peripheral immune tolerance. The use of tolerogenic DCs (tolDCs), i.e., semi-mature DCs that express co-stimulatory molecules but not pro-inflammatory cytokines, has been proposed. However, the mechanism of tolDCs induced by minocycline is still unclear. Our previous bioinformatics analyses based on multiple databases suggested that the suppressor of cytokine signaling 1/Toll-like receptor 4/NF-κB (SOCS1/TLR4/NF-κB) signal pathway was associated with DCs maturation. Thus, we studied whether minocycline could induce DC tolerance through this pathway. METHODS A search for potential targets was carried out through public databases, and pathway analysis was performed on these potential targets to obtain pathways relevant to the experiment. Flow cytometry was used to detect the expression of DC surface markers CD11c, CD86, and CD80, and major histocompatibility complex II. The secretion of interleukin (IL)-12p70, tumor necrosis factor alpha (TNF- α), and IL-10 in the DC supernatant was detected by enzyme-linked immunoassay. The ability of three groups (Ctrl-DCs, Mino-DCs, and LPS-DCs) of DCs to stimulate allogeneic CD4+ T cells was analyzed using a mixed lymphocyte reaction assay. Western blotting was used to detect the expression of TLR4, NF-κB-p65, NF-κB-p-p65, IκB-α, and SOCS1 proteins. RESULTS The hub gene plays a vital role in biological processes; in related pathways, the regulation of other genes is often affected by it. The SOCS1/TLR4/NF-κB signaling pathway was further validated by searching for potential targets through public databases to obtain relevant pathways. The minocycline-induced tolDCs showed characteristics of semi-mature DCs. Moreover, the IL-12p70 and TNF-α levels in the minocycline-stimulated DC group (Mino-DC group) were lower than those in the lipopolysaccharide (LPS)-DC group, and the IL-10 levels were higher in the Mino-DC group than in the LPS-DC and control DC groups. In addition, the Mino-DC group had decreased protein expression levels of TLR4 and NF-κB-p65 and upregulated protein levels of NF-κB-p-p65, IκB-α, and SOCS1 compared with the other groups. CONCLUSION The results of this study indicate that minocycline could improve the tolerance of DCs probably by blocking the SOCS1/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xu Han
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qiao Wei
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Rui-Xue Xu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Shi Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xue-Yu Liu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Cong Guo
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qian Gao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xuan Zhou
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Li-Ping Chen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Zhen-Fei Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| |
Collapse
|
3
|
Keller CW, Adamopoulos IE, Lünemann JD. Autophagy pathways in autoimmune diseases. J Autoimmun 2023; 136:103030. [PMID: 37001435 PMCID: PMC10709713 DOI: 10.1016/j.jaut.2023.103030] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Autophagy comprises a growing range of cellular pathways, which occupy central roles in response to energy deprivation, organelle turnover and proteostasis. Over the years, autophagy has been increasingly linked to governing several aspects of immunity, including host defence against various pathogens, unconventional secretion of cytokines and antigen presentation. While canonical autophagy-mediated antigen processing in thymic epithelial cells supports the generation of a self-tolerant CD4+ T cell repertoire, mounting evidence suggests that deregulated autophagy pathways contribute to or sustain autoimmune responses. In animal models of multiple sclerosis (MS), non-canonical autophagy pathways such as microtubule-associated protein 1 A/1 B-light chain 3 (LC3)-associated phagocytosis can contribute to major histocompatibility complex (MHC) class II presentation of autoantigen, thereby amplifying autoreactive CD4+ T cell responses. In systemic lupus erythematosus (SLE), increased type 1 interferon production is linked to excessive autophagy in plasmacytoid dendritic cells (DCs). In rheumatoid arthritis (RA), autophagy proteins contribute to pathological citrullination of autoantigen. Immunotherapies effective in autoimmune diseases modulate autophagy functions, and strategies harnessing autophagy pathways to restrain autoimmune responses have been developed. This review illustrates recent insights in how autophagy, distinct autophagy pathways and autophagy protein functions intersect with the evolution and progression of autoimmune diseases, focusing on MS, SLE and RA.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, 48149, Germany
| | - Iannis E Adamopoulos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, 48149, Germany.
| |
Collapse
|
4
|
High K + intake alleviates experimental autoimmune encephalomyelitis (EAE) and increases T regulatory cells. Cell Immunol 2022; 382:104637. [PMID: 36343517 DOI: 10.1016/j.cellimm.2022.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis is believed to be triggered by the interplay between the environmental and genetic factors. In contrast to the Paleolithic diet, the modern Western diet is high in Na+ and low in K+. The present study was undertaken to determine whether high K+ intake alleviated experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Treatment of C57BL/6 or SJL mice for 7 days with a 5 % K+ diet prior to induction of EAE and maintaining mice on the diet until the end of experiments delayed the onset, reduced the peak, and accelerated the recovery of EAE in both strains compared with mice on a control diet (0.7 % K+), whereas feeding C57BL/6 mice with a 0.1 % K+ diet did the opposite. High K+ intake increased the splenic Treg cell frequency in the pretreatment and peak EAE. Thus, high K+ intake attenuates EAE, possibly by increasing the Treg cells.
Collapse
|
5
|
Guindi C, Khan FU, Cloutier A, Khongorzul P, Raki AA, Gaudreau S, McDonald PP, Gris D, Amrani A. Inhibition of PI3K/C/EBPβ axis in tolerogenic bone marrow-derived dendritic cells of NOD mice promotes Th17 differentiation and diabetes development. Transl Res 2022; 255:37-49. [PMID: 36400308 DOI: 10.1016/j.trsl.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) are key regulators of the adaptive immune response. Tolerogenic dendritic cells play a crucial role in inducing and maintaining immune tolerance in autoimmune diseases such as type 1 diabetes in humans as well as in the NOD mouse model. We previously reported that bone marrow-derived DCs (BM.DCs) from NOD mice, generated with a low dose of GM-CSF (GM/DCs), induce Treg differentiation and are able to protect NOD mice from diabetes. We had also found that the p38 MAPK/C/EBPβ axis is involved in regulating the phenotype, as well as the production of IL-10 and IL-12p70, by tolerogenic GM/DCs. Here, we report that the inhibition of the PI3K signaling switched the cytokine profile of GM/DCs toward Th17-promoting cytokines without affecting their phenotype. PI3K inhibition abrogated the production of IL-10 by GM/DCs, whereas it enhanced their production of IL-23 and TGFβ. Inhibition of PI3K signaling in tolerogenic GM/DCs also induced naive CD4+ T cells differentiation toward Th17 cells. Mechanistically, PI3K inhibition increased the DNA-binding activity of C/EBPβ through a GSK3-dependent pathway, which is important to maintain the semimature phenotype of tolerogenic GM/DCs. Furthermore, analysis of C/EBPβ-/- GM/DCs demonstrated that C/EBPβ is required for IL-23 production. Of physiological relevance, the level of protection from diabetes following transfusion of GM/DCs into young NOD mice was significantly reduced when NOD mice were transfused with GM/DCs pretreated with a PI3K inhibitor. Our data suggest that PI3K/C/EBPβ signaling is important in controlling tolerogenic function of GM/DCs by limiting their Th17-promoting cytokines.
Collapse
Affiliation(s)
- Chantal Guindi
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Farhan Ullah Khan
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Alexandre Cloutier
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Puregmaa Khongorzul
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Ahmed Aziz Raki
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Simon Gaudreau
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Patrick P McDonald
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Denis Gris
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Abdelaziz Amrani
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada.
| |
Collapse
|
6
|
Triantafyllakou I, Clemente N, Khetavat RK, Dianzani U, Tselios T. Development of PLGA Nanoparticles with a Glycosylated Myelin Oligodendrocyte Glycoprotein Epitope (MOG 35-55) against Experimental Autoimmune Encephalomyelitis (EAE). Mol Pharm 2022; 19:3795-3805. [PMID: 36098508 DOI: 10.1021/acs.molpharmaceut.2c00277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in young adults, with early clinical symptoms seen in the central nervous system (CNS) myelin sheaths due to an attack caused by the patient's immune system. Activation of the immune system is mediated by the induction of an antigen-specific immune response involving the interaction of multiple T-cell types with antigen-presenting cells (APCs), such as dendritic cells (DCs). Antigen-specific therapeutic approaches focus on immune cells and autoantigens involved in the onset of disease symptoms, which are the main components of myelin proteins. The ability of such therapeutics to bind strongly to DCs could lead to immune system tolerance to the disease. Many modern approaches are based on peptide-based research, as, in recent years, they have been of particular interest in the development of new pharmaceuticals. The characteristics of peptides, such as short lifespan in the body and rapid hydrolysis, can be overcome by their entrapment in nanospheres, providing better pharmacokinetics and bioavailability. The present study describes the development of polymeric nanoparticles with encapsulated myelin peptide analogues involved in the development of MS, along with their biological evaluation as inhibitors of MS development and progression. In particular, particles of poly(lactic-co-glycolic) acid (PLGA) loaded with peptides based on mouse/rat (rMOG) epitope 35-55 of myelin oligodendrocyte glycoprotein (MOG) conjugated with saccharide residues were developed. More specifically, the MOG35-55 peptide was conjugated with glucosamine to promote the interaction with mannose receptors (MRs) expressed by DCs. In addition, a study of slow release (dissolution) and quantification on both initially encapsulated peptide and daily release in saline in vitro was performed, followed by an evaluation of in vivo activity of the formulation on mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS, using both prophylactic and therapeutic protocols. Our results showed that the therapeutic protocol was effective in reducing EAE clinical scores and inflammation of the central nervous system and could be an alternative and promising approach against MS inducing tolerance against the disease.
Collapse
Affiliation(s)
- Iro Triantafyllakou
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece.,Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nausicaa Clemente
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ravi Kumar Khetavat
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece
| |
Collapse
|
7
|
Packialakshmi B, Hira S, Lund K, Zhang AH, Halterman J, Feng Y, Scott DW, Lees JR, Zhou X. NFAT5 contributes to the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and decrease of T regulatory cells in female mice. Cell Immunol 2022; 375:104515. [DOI: 10.1016/j.cellimm.2022.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
|
8
|
Induction of antigen-specific tolerance by nanobody-antigen adducts that target class-II major histocompatibility complexes. Nat Biomed Eng 2021; 5:1389-1401. [PMID: 34127819 DOI: 10.1038/s41551-021-00738-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
The association of autoimmune diseases with particular allellic products of the class-II major histocompatibility complex (MHCII) region implicates the presentation of the offending self-antigens to T cells. Because antigen-presenting cells are tolerogenic when they encounter an antigen under non-inflammatory conditions, the manipulation of antigen presentation may induce antigen-specific tolerance. Here, we show that, in mouse models of experimental autoimmune encephalomyelitis, type 1 diabetes and rheumatoid arthritis, the systemic administration of a single dose of nanobodies that recognize MHCII molecules and conjugated to the relevant self-antigen under non-inflammatory conditions confers long-lasting protection against these diseases. Moreover, co-administration of a nanobody-antigen adduct and the glucocorticoid dexamethasone, conjugated to the nanobody via a cleavable linker, halted the progression of established experimental autoimmune encephalomyelitis in symptomatic mice and alleviated their symptoms. This approach may represent a means of treating autoimmune conditions.
Collapse
|
9
|
Yang G, Song W, Xu J, Postoak JL, Cheng F, Martinez J, Zhang J, Wu L, Van Kaer L. Pik3c3 deficiency in myeloid cells imparts partial resistance to experimental autoimmune encephalomyelitis associated with reduced IL-1β production. Cell Mol Immunol 2021; 18:2024-2039. [PMID: 33235386 PMCID: PMC8322046 DOI: 10.1038/s41423-020-00589-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
The PIK3C3/VPS34 subunit of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex plays a role in both canonical and noncanonical autophagy, key processes that control immune-cell responsiveness to a variety of stimuli. Our previous studies found that PIK3C3 is a critical regulator that controls the development, homeostasis, and function of dendritic and T cells. In this study, we investigated the role of PIK3C3 in myeloid cell biology using myeloid cell-specific Pik3c3-deficient mice. We found that Pik3c3-deficient macrophages express increased surface levels of major histocompatibility complex (MHC) class I and class II molecules. In addition, myeloid cell-specific Pik3c3 ablation in mice caused a partial impairment in the homeostatic maintenance of macrophages expressing the apoptotic cell uptake receptor TIM-4. Pik3c3 deficiency caused phenotypic changes in myeloid cells that were dependent on the early machinery (initiation/nucleation) of the classical autophagy pathway. Consequently, myeloid cell-specific Pik3c3-deficient animals showed significantly reduced severity of experimental autoimmune encephalomyelitis (EAE), a primarily CD4+ T-cell-mediated mouse model of multiple sclerosis (MS). This disease protection was associated with reduced accumulation of myelin-specific CD4+ T cells in the central nervous system and decreased myeloid cell IL-1β production. Further, administration of SAR405, a selective PIK3C3 inhibitor, delayed disease progression. Collectively, our studies establish PIK3C3 as an important regulator of macrophage functions and myeloid cell-mediated regulation of EAE. Our findings also have important implications for the development of small-molecule inhibitors of PIK3C3 as therapeutic modulators of MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - J Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Luu T, Cheung JF, Baccon J, Waldner H. Priming of myelin-specific T cells in the absence of dendritic cells results in accelerated development of Experimental Autoimmune Encephalomyelitis. PLoS One 2021; 16:e0250340. [PMID: 33891644 PMCID: PMC8064509 DOI: 10.1371/journal.pone.0250340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis (MS). Inflammatory CD4+ T cell responses directed against CNS antigens, including myelin proteolipid protein (PLP), are key mediators of EAE. Dendritic cells (DCs) are critical for the induction of T cell responses against infectious agents. However, the importance of DCs in priming self-reactive CD4+ T cells in autoimmune disease such as MS has been unclear. To determine the requirement of DCs in PLP-specific CD4+ T cell responses and EAE, we genetically deleted CD11c+ DCs in PLP T cell receptor (TCR) transgenic SJL mice constitutively. DC deficiency did not impair the development, selection or the pathogenic function of PLP-specific CD4+ T cells in these mice, and resulted in accelerated spontaneous EAE compared to DC sufficient controls. In addition, using a genetic approach to ablate DCs conditionally in SJL mice, we show that CD11c+ DCs were dispensable for presenting exogenous or endogenous myelin antigen to PLP-specific T cells and for promoting pro-inflammatory T cell responses and severe EAE. Our findings demonstrate that constitutive or conditional ablation of CD11c+ DCs diminished self-tolerance to PLP autoantigen. They further show that in the absence of DCs, non-DCs can efficiently present CNS myelin antigens such as PLP to self-reactive T cells, resulting in accelerated onset of spontaneous or induced EAE.
Collapse
Affiliation(s)
- Thaiphi Luu
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Julie F. Cheung
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jennifer Baccon
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hanspeter Waldner
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Keller CW, Kotur MB, Mundt S, Dokalis N, Ligeon LA, Shah AM, Prinz M, Becher B, Münz C, Lünemann JD. CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Autophagy 2020; 17:1244-1258. [PMID: 32401602 DOI: 10.1080/15548627.2020.1756678] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Whereas central nervous system (CNS) homeostasis is highly dependent on tissue surveillance by immune cells, dysregulated entry of leukocytes during autoimmune neuroinflammation causes severe immunopathology and neurological deficits. To invade the CNS parenchyma, encephalitogenic T helper (TH) cells must encounter their cognate antigen(s) presented by local major histocompatibility complex (MHC) class II-expressing antigen-presenting cells (APCs). The precise mechanisms by which CNS-associated APCs facilitate autoimmune T cell reactivation remain largely unknown. We previously showed that mice with conditional deletion of the gene encoding the essential autophagy protein ATG5 in dendritic cells (DCs) are resistant to EAE development. Here, we report that the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2, also known as CYBB/NOX2, in conventional DCs (cDCs) regulates endocytosed MOG (myelin oligodendrocyte protein) antigen processing and supports MOG-antigen presentation to CD4+ T cells through LC3-associated phagocytosis (LAP). Genetic ablation of Cybb in cDCs is sufficient to restrain encephalitogenic TH cell recruitment into the CNS and to ameliorate clinical disease development upon the adoptive transfer of MOG-specific CD4+ T cells. These data indicate that CYBB-regulated MOG-antigen processing and LAP in cDCs licenses encephalitogenic TH cells to initiate and sustain autoimmune neuroinflammation.Abbreviations: Ag: antigen; APC: antigen-presenting cell; AT: adoptive transfer; ATG/Atg: autophagy-related; BAMs: border-associated macrophages; BMDC: bone marrow-derived DC; CD: cluster of differentiation; CNS: central nervous system; CSF2/GM-CSF: colony stimulating factor 2 (granulocyte-macrophage); CYBB/NOX2/gp91phox: cytochrome b-245, beta polypeptide; DC: dendritic cell; EAE: experimental autoimmune encephalomyelitis; fl: floxed; FOXP3: forkhead box P3; GFP: green fluorescent protein; H2-Ab: histocompatibility 2, class II antigen A, beta 1; IFN: interferon; IL: interleukin; ITGAX/CD11c: integrin subunit alpha X; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: median fluorescence intensity; MG: microglia; MHCII: major histocompatibility complex class II; MOG: myelin oligodendrocyte glycoprotein; MS: multiple sclerosis; NADPH: nicotinamide adenine dinucleotide phosphate; ODC: oligodendroglial cell; OVA: ovalbumin; pDC: plasmacytoid DC; Ptd-L-Ser: phosphatidylserine; PTPRC: protein tyrosine phosphatase, receptor type, C; ROS: reactive oxygen species; SLE: systemic lupus erythematosus; TH cells: T helper cells; TLR: toll-like receptor; ZBTB46: zinc finger and BTB domain containing 46.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Monika B Kotur
- Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laure-Anne Ligeon
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg; Signalling Research Centres BIOSS and CIBSS, Center for Basics in NeuroModulation (Neuromodulbasics), University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Laboratory of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christian Münz
- Laboratory of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.,Laboratory of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner. mBio 2020; 11:mBio.03394-19. [PMID: 32265335 PMCID: PMC7157782 DOI: 10.1128/mbio.03394-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund's adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.
Collapse
|
13
|
Giles DA, Duncker PC, Wilkinson NM, Washnock-Schmid JM, Segal BM. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J Clin Invest 2018; 128:5322-5334. [PMID: 30226829 DOI: 10.1172/jci123708] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS), induced by the adoptive transfer of myelin-reactive CD4+ T cells into naive syngeneic mice. It is widely used as a rodent model of multiple sclerosis (MS). The development of EAE lesions is initiated when transferred CD4+ T cells access the CNS and are reactivated by local antigen-presenting cells (APCs) bearing endogenous myelin peptide/MHC class II complexes. The identity of the CNS-resident, lesion-initiating APCs is widely debated. Here we demonstrate that classical dendritic cells (cDCs) normally reside in the meninges, brain, and spinal cord in the steady state. These cells are unique among candidate CNS APCs in their ability to stimulate naive, as well as effector, myelin-specific T cells to proliferate and produce proinflammatory cytokines directly ex vivo. cDCs expanded in the meninges and CNS parenchyma in association with disease progression. Selective depletion of cDCs led to a decrease in the number of myelin-primed donor T cells in the CNS and reduced the incidence of clinical EAE by half. Based on our findings, we propose that cDCs, and the factors that regulate them, be further investigated as potential therapeutic targets in MS.
Collapse
Affiliation(s)
- David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology.,Graduate Program in Immunology, and.,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick C Duncker
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology.,Graduate Program in Immunology, and
| | | | | | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology.,Graduate Program in Immunology, and.,Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Manches O, Muniz LR, Bhardwaj N. Dendritic Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4 + T cell pathogenicity during CNS inflammation. Proc Natl Acad Sci U S A 2017; 114:E11228-E11237. [PMID: 29233943 DOI: 10.1073/pnas.1713664114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although reactivation and accumulation of autoreactive CD4+ T cells within the CNS are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), the mechanisms of how these cells recognize their target organ and induce sustained inflammation are incompletely understood. Here, we report that mice with conditional deletion of the essential autophagy protein ATG5 in classical dendritic cells (DCs), which are present at low frequencies in the nondiseased CNS, are completely resistant to EAE development following adoptive transfer of myelin-specific T cells and show substantially reduced in situ CD4+ T cell accumulation during the effector phase of the disease. Endogenous myelin peptide presentation to CD4+ T cells following phagocytosis of injured, phosphatidylserine-exposing oligodendroglial cells is abrogated in the absence of ATG5. Pharmacological inhibition of ATG-dependent phagocytosis by the cardiac glycoside neriifolin, an inhibitor of the Na+, K+-ATPase, delays the onset and reduces the clinical severity of EAE induced by myelin-specific CD4+ T cells. These findings link phagocytosis of injured oligodendrocytes, a pathological hallmark of MS lesions and during EAE, with myelin antigen processing and T cell pathogenicity, and identify ATG-dependent phagocytosis in DCs as a key regulator in driving autoimmune CD4+ T cell-mediated CNS damage.
Collapse
|
16
|
Herz J, Filiano AJ, Wiltbank AT, Yogev N, Kipnis J. Myeloid Cells in the Central Nervous System. Immunity 2017; 46:943-956. [PMID: 28636961 PMCID: PMC5657250 DOI: 10.1016/j.immuni.2017.06.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.
Collapse
Affiliation(s)
- Jasmin Herz
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony J Filiano
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ashtyn T Wiltbank
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Nir Yogev
- Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
17
|
Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, Wang Y, Su H, Jia A, Hu Y, Han L, Zhang J, Li S, Tao W, Liu G. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun 2017; 8:14275. [PMID: 28145433 PMCID: PMC5296641 DOI: 10.1038/ncomms14275] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. The differentiation of Th17 cells is central to infection and autoimmunity. Here, the authors show that expression of MST1 by dendritic cells limits IL-6 production and thereby controls Th17 differentiation in immunity to fungal infection and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Chunxiao Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huilin Su
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ying Hu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Linian Han
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jiangyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Simin Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Sie C, Korn T. Dendritic cells in central nervous system autoimmunity. Semin Immunopathol 2016; 39:99-111. [PMID: 27888330 DOI: 10.1007/s00281-016-0608-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/13/2016] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) operate at the intersection of the innate and adaptive immune systems. DCs can promote or inhibit adaptive immune responses against neuroantigens. While DC intrinsic properties, i.e., their maturation state or the subset they belong to, are important determinants of the outcome of an autoimmune reaction, tissue-specific cues might also be relevant for the function of DCs. Thus, a better understanding of the performance of distinct DC subsets in specific anatomical niches, not only in lymphoid tissue but also in non-lymphoid tissues such as the meninges, the choroid plexus, and the inflamed CNS parenchyma, will be instrumental for the design of immune intervention strategies to chronic inflammatory diseases that do not put at risk basic surveillance functions of the immune system in the CNS. Here, we will review modern concepts of DC biology in steady state and during autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Christopher Sie
- Klinikum rechts der Isar, Department of Neurology and Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology and Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
19
|
Paterka M, Siffrin V, Voss JO, Werr J, Hoppmann N, Gollan R, Belikan P, Bruttger J, Birkenstock J, Jung S, Esplugues E, Yogev N, Flavell RA, Bopp T, Zipp F. Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation. EMBO J 2015; 35:89-101. [PMID: 26612827 DOI: 10.15252/embj.201591488] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/07/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis is the most frequent chronic inflammatory disease of the CNS. The entry and survival of pathogenic T cells in the CNS are crucial for the initiation and persistence of autoimmune neuroinflammation. In this respect, contradictory evidence exists on the role of the most potent type of antigen-presenting cells, dendritic cells. Applying intravital two-photon microscopy, we demonstrate the gatekeeper function of CNS professional antigen-presenting CD11c(+) cells, which preferentially interact with Th17 cells. IL-17 expression correlates with expression of GM-CSF by T cells and with accumulation of CNS CD11c(+) cells. These CD11c(+) cells are organized in perivascular clusters, targeted by T cells, and strongly express the inflammatory chemokines Ccl5, Cxcl9, and Cxcl10. Our findings demonstrate a fundamental role of CNS CD11c(+) cells in the attraction of pathogenic T cells into and their survival within the CNS. Depletion of CD11c(+) cells markedly reduced disease severity due to impaired enrichment of pathogenic T cells within the CNS.
Collapse
Affiliation(s)
- Magdalena Paterka
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Volker Siffrin
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jan O Voss
- Molecular Neurology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Johannes Werr
- Molecular Neurology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Nicola Hoppmann
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - René Gollan
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Patrick Belikan
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julia Bruttger
- Institute for Molecular Medicine, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jérôme Birkenstock
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Steffen Jung
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Enric Esplugues
- Howard Hughes Medical Institute Yale University School of Medicine, New Haven, CT, USA
| | - Nir Yogev
- Institute for Molecular Medicine, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Richard A Flavell
- Howard Hughes Medical Institute Yale University School of Medicine, New Haven, CT, USA
| | - Tobias Bopp
- Institute for Immunology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
20
|
Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, Magnus T, Planas AM. Dendritic cells in brain diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1862:352-67. [PMID: 26569432 DOI: 10.1016/j.bbadis.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Gallizioli
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah Behr
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa H Brait
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
21
|
Lee Y, Mitsdoerffer M, Xiao S, Gu G, Sobel RA, Kuchroo VK. IL-21R signaling is critical for induction of spontaneous experimental autoimmune encephalomyelitis. J Clin Invest 2015; 125:4011-20. [PMID: 26413871 DOI: 10.1172/jci75933] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 01/12/2023] Open
Abstract
IL-17-producing CD4+ T cells (Th17 cells) have well-described pathogenic roles in tissue inflammation and autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE); however, the involvement of IL-21 in these processes has remained controversial. While IL-21 is an essential autocrine amplification factor for differentiation of Th17 cells, the loss of IL-21 or IL-21 receptor (IL-21R) does not protect mice from actively induced EAE. Here, we utilized a transgenic EAE mouse model, in which T and B cells overexpress receptors for myelin oligodendrocyte glycoprotein (MOG) (referred to as 2D2xTH mice), and demonstrated that IL-21 is critical for the development of a variant form of spontaneous EAE in these animals. Il21r deletion in 2D2xTH mice reduced the incidence and severity of spontaneous EAE, which was associated with a defect in Th17 cell generation. Moreover, IL-21R deficiency limited IL-23R expression on Th17 cells and inhibited expression of key molecules involved in the generation of pathogenic Th17 cells. Conversely, loss of IL-23R in 2D2xTH mice resulted in complete resistance to the development of spontaneous EAE. Our data identify a previously unappreciated role for IL-21 in EAE and reveal that IL-21-mediated signaling supports generation and stabilization of pathogenic Th17 cells and development of spontaneous autoimmunity.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Cells, Cultured
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-21 Receptor alpha Subunit/deficiency
- Interleukin-21 Receptor alpha Subunit/genetics
- Interleukin-21 Receptor alpha Subunit/physiology
- Interleukins/physiology
- Lymphocyte Activation
- Lymphopoiesis
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Peptide Fragments/immunology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/deficiency
- Receptors, Interleukin/genetics
- Signal Transduction
- Specific Pathogen-Free Organisms
- Th17 Cells/immunology
Collapse
|
22
|
Price JD, Tarbell KV. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases. Front Immunol 2015; 6:288. [PMID: 26124756 PMCID: PMC4466467 DOI: 10.3389/fimmu.2015.00288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Price
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Kristin V Tarbell
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
23
|
Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators Inflamm 2015; 2015:513295. [PMID: 25705093 PMCID: PMC4325219 DOI: 10.1155/2015/513295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/01/2015] [Accepted: 01/01/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder in the central nervous system (CNS) characterized by inflammation and demyelination as well as axonal and neuronal degeneration. So far effective therapies to reverse the disease are still lacking; most therapeutic drugs can only ameliorate the symptoms or reduce the frequency of relapse. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are key players in both mediating immune responses and inducing immune tolerance. Increasing evidence indicates that DCs contribute to the pathogenesis of MS and might provide an avenue for therapeutic intervention. Here, we summarize the immunogenic and tolerogenic roles of DCs in MS and review medicinal drugs that may affect functions of DCs and have been applied in clinic for MS treatment. We also describe potential therapeutic molecules that can target DCs by inducing anti-inflammatory cytokines and inhibiting proinflammatory cytokines in MS.
Collapse
|
24
|
Clarkson BD, Walker A, Harris MG, Rayasam A, Sandor M, Fabry Z. CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression. THE JOURNAL OF IMMUNOLOGY 2014; 194:531-41. [PMID: 25505278 DOI: 10.4049/jimmunol.1401320] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs)--although absent from the healthy CNS parenchyma--rapidly accumulate within brain and spinal cord tissue during neuroinflammation associated with experimental autoimmune encephalomyelitis (EAE; a mouse model of multiple sclerosis). Yet, although DCs have been appreciated for their role in initiating adaptive immune responses in peripheral lymphoid organ tissues, how DCs infiltrate the CNS and contribute to ongoing neuroinflammation in situ is poorly understood. In this study, we report the following: 1) CD11c(+) bone marrow-derived DCs and CNS-infiltrating DCs express chemokine receptor CCR2; 2) compared with CCR2(+/+) cells, adoptively transferred CCR2(-/-) bone marrow-derived DCs or DC precursors do not accumulate in the CNS during EAE, despite abundance in blood; 3) CCR2(-/-) DCs show less accumulation in the inflamed CNS in mixed bone marrow chimeras, when compared with CCR2(+/+) DCs; and 4) ablation of CCR2(+/+) DCs during EAE clinical onset delays progression and attenuates cytokine production by infiltrating T cells. Whereas the role of CCR2 in monocyte migration into the CNS has been implicated previously, the role of CCR2 in DC infiltration into the CNS has never been directly addressed. Our data suggest that CCR2-dependent DC recruitment to the CNS during ongoing neuroinflammation plays a crucial role in effector T cell cytokine production and disease progression, and signify that CNS-DCs and circulating DC precursors might be key therapeutic targets for suppressing ongoing neuroinflammation in CNS autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin D Clarkson
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Graduate Training Program of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; and
| | - Alec Walker
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Melissa G Harris
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Aditya Rayasam
- Graduate Training Program of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Matyas Sandor
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Zsuzsanna Fabry
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792; Department of Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792;
| |
Collapse
|
25
|
Ray A, Basu S, Miller NM, Chan AM, Dittel BN. An increase in tolerogenic dendritic cell and natural regulatory T cell numbers during experimental autoimmune encephalomyelitis in Rras-/- mice results in attenuated disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5109-17. [PMID: 24771856 PMCID: PMC4041102 DOI: 10.4049/jimmunol.1302254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
R-Ras is a member of the Ras superfamily of small GTPases, which are regulators of various cellular processes, including adhesion, survival, proliferation, trafficking, and cytokine production. R-Ras is expressed by immune cells and has been shown to modulate dendritic cell (DC) function in vitro and has been associated with liver autoimmunity. We used Rras-deficient mice to study the mechanism whereby R-Ras contributes to autoimmunity using experimental autoimmune encephalomyelitis (EAE), a mouse model of the CNS autoimmune disease multiple sclerosis. We found that a lack of R-Ras in peripheral immune cells resulted in attenuated EAE disease. Further investigation revealed that, during EAE, absence of R-Ras promoted the formation of MHC II(low) DC concomitant with a significant increase in proliferation of natural regulatory T cells, resulting in an increase in their cell numbers in the periphery. Our study suggests a novel role for R-Ras in promoting autoimmunity through negative regulation of natural regulatory T cell numbers by inhibiting the development of MHCII(low) DC with tolerogenic potential.
Collapse
Affiliation(s)
- Avijit Ray
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201
| | - Sreemanti Basu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Nichole M Miller
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201
| | - Andrew M Chan
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| |
Collapse
|
26
|
Ko HJ, Brady JL, Ryg-Cornejo V, Hansen DS, Vremec D, Shortman K, Zhan Y, Lew AM. GM-CSF-responsive monocyte-derived dendritic cells are pivotal in Th17 pathogenesis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2202-9. [PMID: 24489100 DOI: 10.4049/jimmunol.1302040] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although multiple dendritic cell (DC) subsets have the potential to induce Th17 differentiation in vitro, the key DC that is critical in Th17 induction and Th17-mediated disease remains moot. In this study, we revealed that CCR2(+) monocyte-derived DCs (moDCs), but not conventional DCs, were critical for in vivo Th17 induction and autoimmune inflammation. Functional comparison in vitro indicated that moDCs are the most potent type of Th17-inducing DCs compared with conventional DCs and plasmacytoid DCs. Furthermore, we demonstrated that the importance of GM-CSF in Th17 induction and Th17-mediated disease is its endowment of moDCs to induce Th17 differentiation in vivo, although it has little effect on moDC numbers. Our findings identify the in vivo cellular targets that can be selectively manipulated to ameliorate Th17-mediated inflammatory diseases, as well as the mechanism of GM-CSF antagonism in such diseases.
Collapse
Affiliation(s)
- Hyun-Ja Ko
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pierson ER, Stromnes IM, Goverman JM. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. THE JOURNAL OF IMMUNOLOGY 2013; 192:929-39. [PMID: 24367024 DOI: 10.4049/jimmunol.1302171] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The efficacy of rituximab treatment in multiple sclerosis has renewed interest in the role of B cells in CNS autoimmunity. In this study, we show that B cells are the predominant MHC class II(+) subset in the naive CNS in mice, and they constitutively express proinflammatory cytokines. Incidence of experimental autoimmune encephalomyelitis induced by adoptive transfer was significantly reduced in C3HeB/Fej μMT (B cell-deficient) mice, suggesting an important role for CNS B cells in initiating inflammatory responses. Initial T cell infiltration of the CNS occurred normally in μMT mice; however, lack of production of T cell cytokines and other immune mediators indicated impaired T cell reactivation. Subsequent recruitment of immune cells from the periphery driven by this initial T cell reactivation did not occur in μMT mice. B cells required exogenous IL-1β to reactivate Th17 but not Th1 cells in vitro. Similarly, reactivation of Th1 cells infiltrating the CNS was selectively impaired compared with Th17 cells in μMT mice, causing an increased Th17/Th1 ratio in the CNS at experimental autoimmune encephalomyelitis onset and enhanced brain inflammation. These studies reveal an important role for B cells within the CNS in reactivating T cells and influencing the clinical manifestation of disease.
Collapse
Affiliation(s)
- Emily R Pierson
- Department of Immunology, University of Washington, Seattle, WA 98109
| | | | | |
Collapse
|
28
|
Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod'homme T, Varrin-Doyer M, Shetty A, Linington C, Slavin AJ, Hidalgo J, Jenne DE, Wekerle H, Sobel RA, Bernard CCA, Shlomchik MJ, Zamvil SS. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. ACTA ACUST UNITED AC 2013; 210:2921-37. [PMID: 24323356 PMCID: PMC3865476 DOI: 10.1084/jem.20130699] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antigen presentation, but not antibody secretion, by B cells drives CNS autoimmunity induced by immunization with human MOG. Whether B cells serve as antigen-presenting cells (APCs) for activation of pathogenic T cells in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) is unclear. To evaluate their role as APCs, we engineered mice selectively deficient in MHC II on B cells (B–MHC II−/−), and to distinguish this function from antibody production, we created transgenic (Tg) mice that express the myelin oligodendrocyte glycoprotein (MOG)–specific B cell receptor (BCR; IgHMOG-mem) but cannot secrete antibodies. B–MHC II−/− mice were resistant to EAE induced by recombinant human MOG (rhMOG), a T cell– and B cell–dependent autoantigen, and exhibited diminished Th1 and Th17 responses, suggesting a role for B cell APC function. In comparison, selective B cell IL-6 deficiency reduced EAE susceptibility and Th17 responses alone. Administration of MOG-specific antibodies only partially restored EAE susceptibility in B–MHC II−/− mice. In the absence of antibodies, IgHMOG-mem mice, but not mice expressing a BCR of irrelevant specificity, were fully susceptible to acute rhMOG-induced EAE, also demonstrating the importance of BCR specificity. Spontaneous opticospinal EAE and meningeal follicle–like structures were observed in IgHMOG-mem mice crossed with MOG-specific TCR Tg mice. Thus, B cells provide a critical cellular function in pathogenesis of central nervous system autoimmunity independent of their humoral involvement, findings which may be relevant to B cell–targeted therapies.
Collapse
Affiliation(s)
- Nicolas Molnarfi
- Department of Neurology and 2 Program in Immunology, University of California, San Francisco, San Francisco, CA 94158
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Dendritic cells (DCs) initiate and shape both the innate and adaptive immune responses. Accordingly, recent evidence from clinical studies and experimental models implicates DCs in the pathogenesis of most autoimmune diseases. However, fundamental questions remain unanswered concerning the actual roles of DCs in autoimmunity, both in general and, in particular, in specific diseases. In this Review, we discuss the proposed roles of DCs in immunological tolerance, the effect of the gain or loss of DCs on autoimmunity and DC-intrinsic molecular regulators that help to prevent the development of autoimmunity. We also review the emerging roles of DCs in several autoimmune diseases, including autoimmune myocarditis, multiple sclerosis, psoriasis, type 1 diabetes and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Dipyaman Ganguly
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
30
|
Satake A, Schmidt AM, Archambault A, Leichner TM, Wu GF, Kambayashi T. Differential targeting of IL-2 and T cell receptor signaling pathways selectively expands regulatory T cells while inhibiting conventional T cells. J Autoimmun 2013; 44:13-20. [PMID: 23834842 DOI: 10.1016/j.jaut.2013.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Strategies to expand regulatory T cells hold therapeutic potential for ameliorating T cell-mediated autoimmunity. Recently, we reported that the requirements for T cell receptor signaling in conventional T cell and regulatory T cell proliferation are different. Using mutant mice that display defective T cell receptor-mediated phospholipase Cγ (PLCγ) activation, we hereby demonstrate that PLCγ activation is required for antigen-specific conventional T cell proliferation but not for IL-2-induced regulatory T cell proliferation. This led us to hypothesize that in conjunction with IL-2, pharmacological inhibition of T cell receptor-mediated PLCγ activation might offer a novel therapeutic strategy to expand regulatory T cells while simultaneously inhibiting conventional T cell proliferation. Indeed, using the calcineurin inhibitor Cyclosporine A to inhibit signaling downstream of PLCγ, we found that Cyclosporine A attenuated antigen-specific Tconv proliferation but permitted IL-2-induced regulatory T cell expansion in vitro and in vivo. Furthermore, the combination of Cyclosporine A and IL-2 was superior over either Cyclosporine A or IL-2 monotherapy in protection against the T cell-mediated demyelinating autoimmune disease mouse model, experimental autoimmune encephalomyelitis. Thus, a combination of TCR signaling inhibition and IL-2 might be a beneficial strategy in expanding regulatory T cells and inhibiting conventional T cell proliferation in autoimmune settings.
Collapse
Affiliation(s)
- Atsushi Satake
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 10194, USA
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Dendritic cells and multiple sclerosis: disease, tolerance and therapy. Int J Mol Sci 2012; 14:547-62. [PMID: 23271370 PMCID: PMC3565281 DOI: 10.3390/ijms14010547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs), the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.
Collapse
|
33
|
Becher B, Greter M. Acquitting an APC: DCs found “not guilty” after trial by ablation. Eur J Immunol 2012; 42:2551-4. [DOI: 10.1002/eji.201242928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Burkhard Becher
- Institute of Experimental Immunology; University of Zurich; Zurich; Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology; University of Zurich; Zurich; Switzerland
| |
Collapse
|