1
|
van Dijk A, Anten J, Bakker A, Evers N, Hoekstra AT, Chang JC, Scheenstra MR, Veldhuizen EJA, Netea MG, Berkers CR, Haagsman HP. Innate Immune Training of Human Macrophages by Cathelicidin Analogs. Front Immunol 2022; 13:777530. [PMID: 35958593 PMCID: PMC9360325 DOI: 10.3389/fimmu.2022.777530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Trained innate immunity can be induced in human macrophages by microbial ligands, but it is unknown if exposure to endogenous alarmins such as cathelicidins can have similar effects. Previously, we demonstrated sustained protection against infection by the chicken cathelicidin-2 analog DCATH-2. Thus, we assessed the capacity of cathelicidins to induce trained immunity. PMA-differentiated THP-1 (dTHP1) cells were trained with cathelicidin analogs for 24 hours and restimulated after a 3-day rest period. DCATH-2 training of dTHP-1 cells amplified their proinflammatory cytokine response when restimulated with TLR2/4 agonists. Trained cells displayed a biased cellular metabolism towards mTOR-dependent aerobic glycolysis and long-chain fatty acid accumulation and augmented microbicidal activity. DCATH-2-induced trained immunity was inhibited by histone acetylase inhibitors, suggesting epigenetic regulation, and depended on caveolae/lipid raft-mediated uptake, MAPK p38 and purinergic signaling. To our knowledge, this is the first report of trained immunity by host defense peptides.
Collapse
Affiliation(s)
- Albert van Dijk
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Albert van Dijk,
| | - Jennifer Anten
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Bakker
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Noah Evers
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anna T. Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jung-Chin Chang
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Maaike R. Scheenstra
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Edwin J. A. Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Celia R. Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henk P. Haagsman
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Leinardi R, Longo Sanchez-Calero C, Huaux F. Think Beyond Particle Cytotoxicity: When Self-Cellular Components Released After Immunogenic Cell Death Explain Chronic Disease Development. FRONTIERS IN TOXICOLOGY 2022; 4:887228. [PMID: 35846433 PMCID: PMC9284505 DOI: 10.3389/ftox.2022.887228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged perturbation of the immune system following the release of a plethora of self-molecules (known as damage-associated molecular patterns, DAMPs) by stressed or dying cells triggers acute and chronic pathological responses. DAMPs are commonly released after plasma membrane damage or complete rupture due to immunogenic cell death (ICD), upon numerous stressors including infectious and toxic agents. The set of DAMPs released after ICD include mature proinflammatory cytokines and alarmins, but also polymeric macromolecules. These self-intracellular components are recognized by injured and healthy surrounding cells via innate receptors, and induce upregulation of stress-response mechanisms, including inflammation. In this review, by overstepping the simple toxicological evaluation, we apply ICD and DAMP concepts to silica cytotoxicity, providing new insights on the mechanisms driving the progress and/or the exacerbation of certain SiO2–related pathologies. Finally, by proposing self-DNA as new crucial DAMP, we aim to pave the way for the development of innovative and easy-to-perform predictive tests to better identify the hazard of fine and ultrafine silica particles. Importantly, such mechanisms could be extended to nano/micro plastics and diesel particles, providing strategic advice and reports on their health issues.
Collapse
|
3
|
Murdaca G, Allegra A, Paladin F, Calapai F, Musolino C, Gangemi S. Involvement of Alarmins in the Pathogenesis and Progression of Multiple Myeloma. Int J Mol Sci 2021; 22:9039. [PMID: 34445745 PMCID: PMC8396675 DOI: 10.3390/ijms22169039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Multiple Myeloma (MM) is a haematological disease resulting from the neoplastic transformation of plasma cells. The uncontrolled growth of plasma cells in the bone marrow and the delivery of several cytokines causes bone erosion that often does not regress, even in the event of disease remission. MM is characterised by a multi-step evolutionary path, which starts with an early asymptomatic stage defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease. DATA SOURCES AND STUDY SELECTION We have selected scientific publications on the specific topics "alarmis, MGUS, and MM", drawing from PubMed. The keywords we used were alarmines, MGUS, MM, and immune system. RESULTS The analysis confirms the pivotal role of molecules such as high-mobility group box-1, heat shock proteins, and S100 proteins in the induction of neoangiogenesis, which represents a milestone in the negative evolution of MM as well as other haematological and non-haematological tumours. CONCLUSIONS Modulation of the host immune system and the inhibition of neoangiogenesis may represent the therapeutic target for the treatment of MM that is capable of promoting better survival and reducing the risk of RRMM.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Ospedale Policlinico San Martino IRCCS, 20132 Genoa, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, Ospedale Policlinico San Martino IRCCS, 20132 Genoa, Italy;
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
4
|
Nohawica M, Errachid A, Wyganowska-Swiatkowska M. Adipose-PAS interactions in the context of its localised bio-engineering potential (Review). Biomed Rep 2021; 15:70. [PMID: 34276988 PMCID: PMC8278035 DOI: 10.3892/br.2021.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
Adipocytes are a known source of stem cells. They are easy to harvest, and are a suitable candidate for autogenous grafts. Adipose derived stem cells (ADSCs) have multiple target tissues which they can differentiate into, including bone and cartilage. In adipose tissue, ADSCs are able to differentiate, as well as providing energy and a supply of cytokines/hormones to manage the hypoxic and lipid/hormone saturated adipose environment. The plasminogen activation system (PAS) controls the majority of proteolytic activities in both adipose and wound healing environments, allowing for rapid cellular migration and tissue remodelling. While the primary activation pathway for PAS occurs through the urokinase plasminogen activator (uPA), which is highly expressed by endothelial cells, its function is not limited to enabling revascularisation. Proteolytic activity is dependent on protease activation, localisation, recycling mechanisms and substrate availability. uPA and uPA activated plasminogen allows pluripotent cells to arrive to new local environments and fulfil the niche demands. However, overstimulation, the acquisition of a migratory phenotype and constant protein turnover can be unconducive to the formation of structured hard and soft tissues. To maintain a suitable healing pattern, the proteolytic activity stimulated by uPA is modulated by plasminogen activator inhibitor 1. Depending on the physiological settings, different parts of the remodelling mechanism are activated with varying results. Utilising the differences within each microenvironment to recreate a desired niche is a valid therapeutic bio-engineering approach. By controlling the rate of protein turnover combined with a receptive stem cell lineage, such as ADSC, a novel avenue on the therapeutic opportunities may be identified, which can overcome limitations, such as scarcity of stem cells, low angiogenic potential or poor host tissue adaptation.
Collapse
Affiliation(s)
- Michal Nohawica
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| | - Abdelmounaim Errachid
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
- Earth and Life Institute, University Catholique of Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Marzena Wyganowska-Swiatkowska
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| |
Collapse
|
5
|
Shelley JR, Davidson DJ, Dorin JR. The Dichotomous Responses Driven by β-Defensins. Front Immunol 2020; 11:1176. [PMID: 32595643 PMCID: PMC7304343 DOI: 10.3389/fimmu.2020.01176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Defensins are short, rapidly evolving, cationic antimicrobial host defence peptides with a repertoire of functions, still incompletely realised, that extends beyond direct microbial killing. They are released or secreted at epithelial surfaces, and in some cases, from immune cells in response to infection and inflammation. Defensins have been described as endogenous alarmins, alerting the body to danger and responding to inflammatory signals by promoting both local innate and adaptive systemic immune responses. However, there is now increasing evidence that they exert variable control on the response to danger; creating a dichotomous response that can suppress inflammation in some circumstances but exacerbate the response to danger and damage in others and, at higher levels, lead to a cytotoxic effect. Focussing in this review on human β-defensins, we discuss the evidence for their functions as proinflammatory, immune activators amplifying the response to infection or damage signals and/or as mediators of resolution of damage, contributing to a return to homeostasis. Finally, we consider their involvement in the development of autoimmune diseases.
Collapse
Affiliation(s)
- Jennifer R Shelley
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| | - Donald J Davidson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| | - Julia R Dorin
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| |
Collapse
|
6
|
Iglesias-Guimarais V, Ahrends T, de Vries E, Knobeloch KP, Volkov A, Borst J. IFN-Stimulated Gene 15 Is an Alarmin that Boosts the CTL Response via an Innate, NK Cell-Dependent Route. THE JOURNAL OF IMMUNOLOGY 2020; 204:2110-2121. [PMID: 32169846 DOI: 10.4049/jimmunol.1901410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/01/2020] [Indexed: 12/26/2022]
Abstract
Type I IFN is produced upon infection and tissue damage and induces the expression of many IFN-stimulated genes (ISGs) that encode host-protective proteins. ISG15 is a ubiquitin-like molecule that can be conjugated to proteins but is also released from cells in a free form. Free, extracellular ISG15 is suggested to have an immune-regulatory role, based on disease phenotypes of ISG15-deficient humans and mice. However, the underlying mechanisms by which free ISG15 would act as a "cytokine" are unclear and much debated. We, in this study, demonstrate in a clinically relevant mouse model of therapeutic vaccination that free ISG15 is an alarmin that induces tissue alert, characterized by extracellular matrix remodeling, myeloid cell infiltration, and inflammation. Moreover, free ISG15 is a potent adjuvant for the CTL response. ISG15 produced at the vaccination site promoted the vaccine-specific CTL response by enhancing expansion, short-lived effector and effector/memory differentiation of CD8+ T cells. The function of free ISG15 as an extracellular ligand was demonstrated, because the equivalents in murine ISG15 of 2 aa recently implicated in binding of human ISG15 to LFA-1 in vitro were required for its adjuvant effect in vivo. Moreover, in further agreement with the in vitro findings on human cells, free ISG15 boosted the CTL response in vivo via NK cells in the absence of CD4+ T cell help. Thus, free ISG15 is part of a newly recognized innate route to promote the CTL response.
Collapse
Affiliation(s)
- Victoria Iglesias-Guimarais
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Tomasz Ahrends
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Evert de Vries
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical School, 2333 ZA Leiden, the Netherlands.,Oncode Institute, Leiden University Medical School, 2333 ZA Leiden, the Netherlands; and
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andriy Volkov
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; .,Department of Immunohematology and Blood Transfusion, Leiden University Medical School, 2333 ZA Leiden, the Netherlands.,Oncode Institute, Leiden University Medical School, 2333 ZA Leiden, the Netherlands; and
| |
Collapse
|
7
|
Lai JJ, Cruz FM, Rock KL. Immune Sensing of Cell Death through Recognition of Histone Sequences by C-Type Lectin-Receptor-2d Causes Inflammation and Tissue Injury. Immunity 2019; 52:123-135.e6. [PMID: 31859049 DOI: 10.1016/j.immuni.2019.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
The immune system monitors the health of cells and is stimulated by necrosis. Here we examined the receptors and ligands driving this response. In a targeted screen of C-type lectin receptors, a Clec2d reporter responded to lysates from necrotic cells. Biochemical purification identified histones, both free and bound to nucleosomes or neutrophil extracellular traps, as Clec2d ligands. Clec2d recognized poly-basic sequences in histone tails and this recognition was sensitive to post-translational modifications of these sequences. As compared with WT mice, Clec2d-/- mice exhibited reduced proinflammatory responses to injected histones, and less tissue damage and improved survival in a hepatotoxic injury model. In macrophages, Clec2d localized to the plasma membrane and endosomes. Histone binding to Clec2d did not stimulate kinase activation or cytokine production. Rather, histone-bound DNA stimulated endosomal Tlr9-dependent responses in a Clec2d-dependent manner. Thus, Clec2d binds to histones released upon necrotic cell death, with functional consequences to inflammation and tissue damage.
Collapse
Affiliation(s)
- Jiann-Jyh Lai
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
9
|
Mack M. Inflammation and fibrosis. Matrix Biol 2018; 68-69:106-121. [DOI: 10.1016/j.matbio.2017.11.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023]
|
10
|
Abstract
More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity.
Collapse
Affiliation(s)
- De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
11
|
Joly P, Marshall JC, Tessier PA, Massé C, Page N, Frenette AJ, Khazoom F, Le Guillan S, Berthiaume Y, Charbonney E. S100A8/A9 and sRAGE kinetic after polytrauma; an explorative observational study. Scand J Trauma Resusc Emerg Med 2017; 25:114. [PMID: 29178941 PMCID: PMC5702249 DOI: 10.1186/s13049-017-0455-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Following tissue injury after trauma, the activation of innate immune pathways results in systemic inflammation, organ failure and an increased risk of infections. The objective of this study was to characterize the kinetics of the S100A8/S100A9 complex, a new-recognized alarmin, as well as its soluble receptor sRAGE, over time after trauma as potential early biomarkers of the risk of organ damage. Methods We collected comprehensive data from consenting patients admitted to an ICU following severe trauma. The blood samples were taken at Day 0 (admission), Day1, 3 and 5 S100A8/A9 and sRAGE were measured by ELISA. Biomarkers levels were reported as median (IQR). Results Thirty-eight patients sustaining in majority a blunt trauma (89%) with a median ISS of 39 were included. In this cohort, the S100A8/A9 complex increased significantly over time (p = 0.001), but its levels increment over time (D0 to D5) was significantly smaller in patients developing infection (7.6 vs 40.1 mcg/mL, p = 0.011). The circulating level of sRAGE circulating levels decreased over time (p < 0.0001) and was higher in patients who remained in shock on day 3 (550 vs 918 pg/mL; p = 0.02) or 5 (498 vs 644 pg/mL; p = 0.045). Admission sRAGE levels were significantly higher in non-survivors (1694 vs 745 pg/mL; p = 0.015) and was higher in patients developing renal failure (1143 vs 696 pg/mL, p = 0.011). Discussion Our findings reveal an interesting association between the biomarker S100A8/9 least increase over time and the presence of infectious complication after trauma. We describe that the sRAGE decline over time is in relation with shock and markers of ischemic injury. We also confirm the association of sRAGE levels measured at admission with mortality and the development of renal failure. Conclusions This work illustrates the importance of following the circulating level of biomarker overtime. The utilization of S1008/9 as a tool to stratify infection risk and trigger early interventions need to be validated prospectively.
Collapse
Affiliation(s)
- Philippe Joly
- Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - John C Marshall
- St. Michael's Hospital and the Keenan Research Centre for Biomedical Science, University of Toronto, Toronto, Canada
| | - Philippe A Tessier
- Axe de recherche sur les maladies infectieuses et l'immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Chantal Massé
- Institut de recherches cliniques de Montréal, Université de Montréal, Montréal, Canada
| | - Nathalie Page
- Axe de recherche sur les maladies infectieuses et l'immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, Université de Montréal, Montréal, Canada.,Département de médecine, Faculté de Médecine Université de Montréal, Montréal, Canada
| | - Emmanuel Charbonney
- Institut de recherches cliniques de Montréal, Université de Montréal, Montréal, Canada. .,Hôpital du Sacré-Coeur de Montréal, CIUSSS-NIM, Montréal, Canada. .,Département de médecine, Faculté de Médecine Université de Montréal, Montréal, Canada.
| |
Collapse
|
12
|
Matta BM, Reichenbach DK, Blazar BR, Turnquist HR. Alarmins and Their Receptors as Modulators and Indicators of Alloimmune Responses. Am J Transplant 2017; 17:320-327. [PMID: 27232285 PMCID: PMC5124552 DOI: 10.1111/ajt.13887] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 01/25/2023]
Abstract
Cell damage and death releases alarmins, self-derived immunomodulatory molecules that recruit and activate the immune system. Unfortunately, numerous processes critical to the transplantation of allogeneic materials result in the destruction of donor and recipient cells and may trigger alarmin release. Alarmins, often described as damage-associated molecular patterns, together with exogenous pathogen-associated molecular patterns, are potent orchestrators of immune responses; however, the precise role that alarmins play in alloimmune responses remains relatively undefined. We examined evolving concepts regarding how alarmins affect solid organ and allogeneic hematopoietic cell transplantation outcomes and the mechanisms by which self molecules are released. We describe how, once released, alarmins may act alone or in conjunction with nonself materials to contribute to cytokine networks controlling alloimmune responses and their intensity. It is becoming recognized that this class of molecules has pleotropic functions, and certain alarmins can promote both inflammatory and regulatory responses in transplant models. Emerging evidence indicates that alarmins and their receptors may be promising transplantation biomarkers. Developing the therapeutic ability to support alarmin regulatory mechanisms and the predictive value of alarmin pathway biomarkers for early intervention may provide opportunities to benefit graft recipients.
Collapse
Affiliation(s)
- Benjamin M. Matta
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dawn K. Reichenbach
- Department of Pediatrics, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hēth R. Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Hēth R. Turnquist, PhD,
| |
Collapse
|
13
|
Rucavado A, Nicolau CA, Escalante T, Kim J, Herrera C, Gutiérrez JM, Fox JW. Viperid Envenomation Wound Exudate Contributes to Increased Vascular Permeability via a DAMPs/TLR-4 Mediated Pathway. Toxins (Basel) 2016; 8:toxins8120349. [PMID: 27886127 PMCID: PMC5198544 DOI: 10.3390/toxins8120349] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/21/2023] Open
Abstract
Viperid snakebite envenomation is characterized by inflammatory events including increase in vascular permeability. A copious exudate is generated in tissue injected with venom, whose proteomics analysis has provided insights into the mechanisms of venom-induced tissue damage. Hereby it is reported that wound exudate itself has the ability to induce increase in vascular permeability in the skin of mice. Proteomics analysis of exudate revealed the presence of cytokines and chemokines, together with abundant damage associated molecular pattern molecules (DAMPs) resulting from both proteolysis of extracellular matrix and cellular lysis. Moreover, significant differences in the amounts of cytokines/chemokines and DAMPs were detected between exudates collected 1 h and 24 h after envenomation, thus highlighting a complex temporal dynamic in the composition of exudate. Pretreatment of mice with Eritoran, an antagonist of Toll-like receptor 4 (TLR4), significantly reduced the exudate-induced increase in vascular permeability, thus suggesting that DAMPs might be acting through this receptor. It is hypothesized that an "Envenomation-induced DAMPs cycle of tissue damage" may be operating in viperid snakebite envenomation through which venom-induced tissue damage generates a variety of DAMPs which may further expand tissue alterations.
Collapse
Affiliation(s)
- Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Carolina A Nicolau
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Rio de Janeiro CEP 21040-360, Brazil.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Junho Kim
- Department of Fine Chemistry & New Materials, Sangji University, Wonju-si, Kangwon-do 220-702, Korea.
| | - Cristina Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, P.O. Box 800734, Charlottesville, VA 22908, USA.
| |
Collapse
|
14
|
Wang F, Qiao L, Lv X, Trivett A, Yang R, Oppenheim JJ, Yang D, Zhang N. Alarmin human α defensin HNP1 activates plasmacytoid dendritic cells by triggering NF-κB and IRF1 signaling pathways. Cytokine 2016; 83:53-60. [PMID: 27031443 PMCID: PMC7822553 DOI: 10.1016/j.cyto.2016.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 01/13/2023]
Abstract
Human neutrophil peptide 1 (HNP1), a predominant α defensin in the azurophilic granules of human neutrophils, is an alarmin capable of inducing the migration and maturation of human myeloid/conventional dendritic cells. However, it is not determined whether it can activate plasmacytoid dendritic cells (pDCs). Herein, we found that both human pDCs and CAL-1 cells, a pDC-like cell line, produced IFNα upon treatment with HNP1. Additionally, HNP1 could promote CpG ODN-induced pDC production of proinflammatory cytokines including IFNα. HNP1 triggered activation of NF-κB and nuclear translocation of interferon regulatory factor 1 (IRF1) in CAL-1 cells. HNP1 upregulation of cytokine expression in pDCs was inhibited by blockade of NF-κB activation or knockdown of IRF1, demonstrating the importance of these two signaling events in HNP1-induced pDC activation. Using a human pDC-nude mouse model, HNP1 was shown to induce IFNα production by human pDCs in vivo. Thus, HNP1 can activate human pDCs using NF-κB and IRF signaling pathways, and HNP-induced IFN production may participate in the inflammatory pathogenesis in certain authoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Linan Qiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Xing Lv
- Department of Rheumatism and Immunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, People's Republic of China
| | - Anna Trivett
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA
| | - Rui Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Joost J Oppenheim
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA
| | - De Yang
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China.
| |
Collapse
|
15
|
Watanabe Y, Yamaguchi Y, Komitsu N, Ohta S, Azuma Y, Izuhara K, Aihara M. Elevation of serum squamous cell carcinoma antigen 2 in patients with psoriasis: associations with disease severity and response to the treatment. Br J Dermatol 2016; 174:1327-36. [PMID: 26822223 DOI: 10.1111/bjd.14426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Squamous cell carcinoma antigen (SCCA) belongs to the ovalbumin-serpin family and is a known tumour marker. Expression of SCCA is upregulated in the serum and skin of patients with psoriasis. OBJECTIVES The aim of this study was to determine SCCA2 levels in association with disease severity and treatment efficacy in patients with psoriasis. MATERIALS AND METHODS Patients with psoriasis (n = 123) and healthy controls (n = 25) were enrolled in this prospective cross-sectional study. Enzyme-linked immunosorbent assay (ELISA) analysis was performed to determine serum SCCA2 levels. SCCA2 expression in skin was evaluated using immunohistochemical analysis. Serum SCCA2 levels were compared with Psoriasis Area Severity Index (PASI) scores. The effect of treatment on serum SCCA2 levels was assessed using serial examinations. Induction of SCCA2 by several psoriatic cytokines in human keratinocytes was evaluated. RESULTS The serum levels of SCCA2 were significantly higher in patients with psoriasis than healthy controls and correlated well with disease severity. Increased SCCA2 staining was observed in lesional skin but not in nonlesional skin of patients with psoriasis. In addition, SCCA2 expression levels in skin correlated with serum concentrations of SCCA2. SCCA2 significantly decreased according to improvement of PASI scores. Interleukin (IL)-17 and IL-22 synergistically increased the production of SCCA2 at both mRNA and protein levels in human keratinocytes. CONCLUSIONS Significant elevation of SCCA2 is associated with disease severity and reflects treatment efficacy. SCCA2 may be a useful biomarker in psoriasis, reflecting T-helper 17-type inflammation - the main determinant of the severity of psoriasis.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Y Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - N Komitsu
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - S Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Y Azuma
- Shino-Test Corporation, Sagamihara, Japan
| | - K Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - M Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
16
|
Abstract
PURPOSE Alarmins are constitutively present endogenous molecules that essentially act as early warning signals for the immune system. We provide a brief overview of major alarmins and highlight their roles in tumor immunity. METHODS We searched PubMed up to January 10, 2016, using alarmins and/or damage-associated molecular patterns (DAMPs), as key words. We selected and reviewed articles that focused on the discovery and functions of alarmin and their roles in tumor immunity. FINDINGS Alarmins are essentially endogenous immunostimulatory DAMP molecules that are exposed in response to danger (eg, infection or tissue injury) as a result of degranulation, cell death, or induction. They are sensed by chemotactic receptors and pattern recognition receptors to induce immune responses by promoting the recruitment and activation of leukocytes, particularly antigen-presenting cells. IMPLICATIONS Accumulating data suggest that certain alarmins, High-mobility group nucleosome-binding protein 1 (HMGN1) in particular, contribute to the generation of antitumor immunity. Some alarmins can also be used as cancer biomarkers. Therefore, alarmins can potentially be applied for our fight against cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Guizhou Provincial Peoples' Hospital, Guiyang, Guizhou Province, China
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Basic Research Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
17
|
Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342304. [PMID: 26247017 PMCID: PMC4515263 DOI: 10.1155/2015/342304] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Collapse
|
18
|
Sozzani S, Del Prete A, Bonecchi R, Locati M. Chemokines as effector and target molecules in vascular biology. Cardiovasc Res 2015; 107:364-72. [PMID: 25969393 DOI: 10.1093/cvr/cvv150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/26/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokines are key mediators of inflammation. In pathological tissues, the main roles of chemokines are to regulate leucocyte accumulation through the activation of oriented cell migration and the activation of limited programs of gene transcription. Through these activities, chemokines exert many crucial functions, including the regulation of angiogenesis. The 'chemokine system' is tightly regulated at several levels, such as the post-transcriptional processing of ligands, the regulation of the expression and function of the receptors and through the expression of molecules known as 'atypical chemokine receptors', proteins that function as chemokine scavenging and presenting molecules. Several experimental evidence obtained in vitro, in animal models and in human studies, has defined a crucial role of chemokines in cardiovascular diseases. An intense area of research is currently exploring the possibility to develop new effective therapeutic strategies through the identification of chemokine receptor antagonists.
Collapse
Affiliation(s)
- Silvano Sozzani
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Interleukin-1α released from HSV-1-infected keratinocytes acts as a functional alarmin in the skin. Nat Commun 2014; 5:5230. [PMID: 25323745 PMCID: PMC4237007 DOI: 10.1038/ncomms6230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 09/10/2014] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a human pathogen that utilizes several strategies to circumvent the host immune response. An immune evasion mechanism employed by HSV-1 is retention of interleukin-1β (IL-1β) in the intracellular space, which blocks the pro-inflammatory activity of IL-1β. Here, we report that HSV-1 infected keratinocytes actively release the also pro-inflammatory IL-1α, preserving the ability of infected cells to signal danger to the surrounding tissue. The extracellular release of IL-1α is independent of inflammatory caspases. In vivo recruitment of leukocytes to early HSV-1 micro-infection sites within the epidermis is dependent upon IL-1 signalling. Following cutaneous HSV-1 infection, mice unable to signal via extracellular IL-1α exhibit an increased mortality rate associated with viral dissemination. We conclude that IL-1α acts as an alarmin essential for leukocyte recruitment and protective immunity against HSV-1. This function may have evolved to counteract an immune evasion mechanism deployed by HSV-1.
Collapse
|
20
|
De Paula VS, Pomin VH, Valente AP. Unique properties of human β-defensin 6 (hBD6) and glycosaminoglycan complex: sandwich-like dimerization and competition with the chemokine receptor 2 (CCR2) binding site. J Biol Chem 2014; 289:22969-22979. [PMID: 24970887 DOI: 10.1074/jbc.m114.572529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defensins are components of the innate immune system that promote the directional migration and activation of dendritic cells, thereby modulating the adaptive immune response. Because matrix glycosaminoglycan (GAG) is known to be important for these functions, we characterized the structural features of human β-defensin 6 (hBD6) and GAG interaction using a combination of structural and in silico analyses. Our results showed that GAG model compounds, a pentasaccharide (fondaparinux, FX) and an octasaccharide heparin derivative (dp8) bind to the α-helix and in the loops between the β2 and β3 strands, inducing the formation of a ternary complex with a 2:1 hBD6:FX stoichiometry. Competition experiments indicated an overlap of GAG and chemokine receptor CCR2 binding sites. An NMR-derived model of the ternary complex revealed that FX interacts with hBD6 along the dimerization interface, primarily contacting the α-helices and β2-β3 loops from each monomer. We further demonstrated that high-pressure NMR spectroscopy could capture an intermediate stage of hBD6-FX interaction, exhibiting features of a cooperative binding mechanism. Collectively, these data suggest a "sandwich-like" model in which two hBD6 molecules bind a single FX chain and provide novel structural insights into how defensin orchestrates leukocyte recruitment through GAG binding and G protein-coupled receptor activation. Despite the similarity to chemokines and hBD2, our data indicate different properties for the hBD6-GAG complex. This work adds significant information to the currently limited data available for the molecular structures and dynamics of defensin carbohydrate binding.
Collapse
Affiliation(s)
- Viviane S De Paula
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas and Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil.
| | - Vitor H Pomin
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil
| | - Ana Paula Valente
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas and Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil.
| |
Collapse
|
21
|
Dorhoi A, Yeremeev V, Nouailles G, Weiner J, Jörg S, Heinemann E, Oberbeck-Müller D, Knaul JK, Vogelzang A, Reece ST, Hahnke K, Mollenkopf HJ, Brinkmann V, Kaufmann SHE. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur J Immunol 2014; 44:2380-93. [PMID: 24782112 PMCID: PMC4298793 DOI: 10.1002/eji.201344219] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/17/2014] [Accepted: 04/25/2014] [Indexed: 12/27/2022]
Abstract
General interest in the biological functions of IFN type I in Mycobacterium tuberculosis (Mtb) infection increased after the recent identification of a distinct IFN gene expression signature in tuberculosis (TB) patients. Here, we demonstrate that TB-susceptible mice lacking the receptor for IFN I (IFNAR1) were protected from death upon aerogenic infection with Mtb. Using this experimental model to mimic primary progressive pulmonary TB, we dissected the immune processes affected by IFN I. IFNAR1 signaling did not affect T-cell responses, but markedly altered migration of inflammatory monocytes and neutrophils to the lung. This process was orchestrated by IFNAR1 expressed on both immune and tissue-resident radioresistant cells. IFNAR1-driven TB susceptibility was initiated by augmented Mtb replication and in situ death events, along with CXCL5/CXCL1-driven accumulation of neutrophils in alveoli, followed by the discrete compartmentalization of Mtb in lung phagocytes. Early depletion of neutrophils rescued TB-susceptible mice to levels observed in mice lacking IFNAR1. We conclude that IFN I alters early innate events at the site of Mtb invasion leading to fatal immunopathology. These data furnish a mechanistic explanation for the detrimental role of IFN I in pulmonary TB and form a basis for understanding the complex roles of IFN I in chronic inflammation.
Collapse
Affiliation(s)
- Anca Dorhoi
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Förster R, Sozzani S. Emerging aspects of leukocyte migration. Eur J Immunol 2013; 43:1404-6. [DOI: 10.1002/eji.201343670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Reinhold Förster
- Institute of Immunology; Hannover Medical School; Hannover; Germany
| | | |
Collapse
|