1
|
Tozatto‐Maio K, Rós FA, Weinlich R, Rocha V. Inflammatory pathways and anti-inflammatory therapies in sickle cell disease. Hemasphere 2024; 8:e70032. [PMID: 39698332 PMCID: PMC11655128 DOI: 10.1002/hem3.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
Sickle cell disease (SCD) is a monogenic disease, resulting from a single-point mutation, that presents a complex pathophysiology and high clinical heterogeneity. Inflammation stands as a prominent characteristic of SCD. Over the past few decades, the role of different cells and molecules in the regulation of the inflammatory process has been elucidated. In conjunction with the polymerization of hemoglobin S (HbS), intravascular hemolysis, which releases free heme, HbS, and hemoglobin-related damage-associated molecular patterns, initiates multiple inflammatory pathways that are not yet fully comprehended. These complex phenomena lead to a vicious cycle that perpetuates vaso-occlusion, hemolysis, and inflammation. To date, few inflammatory biomarkers can predict disease complications; conversely, there is a plethora of therapies that reduce inflammation in SCD, although clinical outcomes vary widely. Importantly, whether the clinical heterogeneity and complications are related to the degree of inflammation is not known. This review aims to further our understanding of the roles of main immune cells, and other inflammatory factors, as potential prognostic biomarkers for predicting clinical outcomes or identifying novel treatments for SCD.
Collapse
Affiliation(s)
- Karina Tozatto‐Maio
- Centro de Ensino e PesquisaHospital Israelita Albert EinsteinSão PauloBrazil
- Divisão de Hematologia, Hemoterapia e Terapia CelularHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloBrazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco‐Immuno‐Hematology (LIM‐31), Department of Hematology and Cell TherapyHospital das Clínicas da Faculdade de Medicina da Universidade de Sao PauloSao PauloBrazil
| | - Felipe A. Rós
- Divisão de Hematologia, Hemoterapia e Terapia CelularHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloBrazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco‐Immuno‐Hematology (LIM‐31), Department of Hematology and Cell TherapyHospital das Clínicas da Faculdade de Medicina da Universidade de Sao PauloSao PauloBrazil
| | - Ricardo Weinlich
- Centro de Ensino e PesquisaHospital Israelita Albert EinsteinSão PauloBrazil
| | - Vanderson Rocha
- Divisão de Hematologia, Hemoterapia e Terapia CelularHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloBrazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco‐Immuno‐Hematology (LIM‐31), Department of Hematology and Cell TherapyHospital das Clínicas da Faculdade de Medicina da Universidade de Sao PauloSao PauloBrazil
- Instituto D'Or de Ensino e Pesquisa, Rede D'OrSao PauloBrazil
- Department of Hematology, Churchill HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Jajosky RP, Ayona D, Mener A, Stowell SR, Arthur CM. Dynamics of antibody engagement of red blood cells in vivo and in vitro. Front Immunol 2024; 15:1475470. [PMID: 39669570 PMCID: PMC11634868 DOI: 10.3389/fimmu.2024.1475470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 12/14/2024] Open
Abstract
Exposure to allogenic red blood cells (RBCs), either through pregnancy or transfusion, can result in alloimmunization, which can lead to severe hemolytic transfusion reactions and pregnancy complications. Passively administered antibodies can be used to prevent alloimmunization, where steric hindrance of allogeneic epitopes has been postulated as one mechanism whereby antibody engagement may prevent RBC alloimmunization. However, the dynamics of antibody engagement on the RBC surface has remained difficult to study. To examine this, we leveraged the HOD (HEL, OVA and Duffy) model system and Fcγ receptor knockout recipients to define the dynamics of antibody engagement of the Duffy antigen in the absence of RBC clearance or antigen modulation. Using this approach, the on-rate of antibody engagement of HOD RBCs was very similar in vivo and in vitro, with high levels of antibody binding observed within minutes of HOD RBC exposure. In contrast, the off-rate of HOD RBC bound antibody was relatively slow, with appreciable dissociation not being observed for an hour. However, the dynamics of antibody interactions with HOD changed significantly when antibody decorated HOD RBCs were exposed to free antibody. Despite the presence of prebound antibody, free antibody rapidly associated with HOD RBCs, with the rate of free antibody association observed being faster in vivo than in vitro. Importantly, antibody association and dissociation occurred in the absence of any appreciable changes in RBC clearance, antigen modulation or complement deposition, suggesting that differences in antibody levels observed reflected actual differences in the dynamics of antibody binding. These results suggest that while antibodies appear to be relatively static on the cell surface once bound, antibody engagement can be quite dynamic, especially in the face of free antibody in solution. These results not only have implications in the mechanisms of antibody-mediated immunosuppression, but also the potential use of other antibody-based approaches designed to prevent hemolytic transfusion reactions or target antigens in vivo in general.
Collapse
Affiliation(s)
| | | | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Khelfa M, Leclerc M, Kerbrat S, Boudjemai YNS, Benchouaia M, Neyrinck-Leglantier D, Cagnet L, Berradhia L, Tamagne M, Croisille L, Pirenne F, Maury S, Vingert B. Divergent CD4 + T-cell profiles are associated with anti-HLA alloimmunization status in platelet-transfused AML patients. Front Immunol 2023; 14:1165973. [PMID: 37701444 PMCID: PMC10493329 DOI: 10.3389/fimmu.2023.1165973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Acute myeloid leukemia (AML) is one of the commonest hematologic disorders. Due to the high frequency of disease- or treatment-related thrombocytopenia, AML requires treatment with multiple platelet transfusions, which can trigger a humoral response directed against platelets. Some, but not all, AML patients develop an anti-HLA immune response after multiple transfusions. We therefore hypothesized that different immune activation profiles might be associated with anti-HLA alloimmunization status. Methods We tested this hypothesis, by analyzing CD4+ T lymphocyte (TL) subsets and their immune control molecules in flow cytometry and single-cell multi-omics. Results A comparison of immunological status between anti-HLA alloimmunized and non-alloimmunized AML patients identified differences in the phenotype and function of CD4+ TLs. CD4+ TLs from alloimmunized patients displayed features of immune activation, with higher levels of CD40 and OX40 than the cells of healthy donors. However, the most notable differences were observed in non-alloimmunized patients. These patients had lower levels of CD40 and OX40 than alloimmunized patients and higher levels of PD1. Moreover, the Treg compartment of non-alloimmunized patients was larger and more functional than that in alloimmunized patients. These results were supported by a multi-omics analysis of immune response molecules in conventional CD4+ TLs, Tfh circulating cells, and Tregs. Discussion Our results thus reveal divergent CD4+ TL characteristics correlated with anti-HLA alloimmunization status in transfused AML patients. These differences, characterizing CD4+ TLs independently of any specific antigen, should be taken into account when considering the immune responses of patients to infections, vaccinations, or transplantations.
Collapse
Affiliation(s)
- Mehdi Khelfa
- Établissement Français du Sang, Île-de-France, France
- Univ Paris Est Creteil, INSERM, IMRB, Équipe Pirenne, Créteil, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mathieu Leclerc
- Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Service d’Hématologie clinique, Créteil, France
| | - Stéphane Kerbrat
- Univ Paris Est Creteil, INSERM, IMRB, Plateforme de Génomique, Créteil, France
| | | | - Médine Benchouaia
- Univ Paris Est Creteil, INSERM, IMRB, Plateforme de Génomique, Créteil, France
| | - Déborah Neyrinck-Leglantier
- Établissement Français du Sang, Île-de-France, France
- Univ Paris Est Creteil, INSERM, IMRB, Équipe Pirenne, Créteil, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Léonie Cagnet
- Établissement Français du Sang, Île-de-France, France
- Univ Paris Est Creteil, INSERM, IMRB, Équipe Pirenne, Créteil, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Lylia Berradhia
- Établissement Français du Sang, Île-de-France, France
- Univ Paris Est Creteil, INSERM, IMRB, Équipe Pirenne, Créteil, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Tamagne
- Établissement Français du Sang, Île-de-France, France
- Univ Paris Est Creteil, INSERM, IMRB, Équipe Pirenne, Créteil, France
- Laboratory of Excellence GR-Ex, Paris, France
| | | | - France Pirenne
- Établissement Français du Sang, Île-de-France, France
- Univ Paris Est Creteil, INSERM, IMRB, Équipe Pirenne, Créteil, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sébastien Maury
- Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Service d’Hématologie clinique, Créteil, France
| | - Benoît Vingert
- Établissement Français du Sang, Île-de-France, France
- Univ Paris Est Creteil, INSERM, IMRB, Équipe Pirenne, Créteil, France
- Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
4
|
Patel S, Chandrakar D, Wasnik PN, Nayak S, Shah S, Nanda R, Mohapatra E. Altered T-cell profile in sickle cell disease. Biomark Med 2023; 17:241-252. [PMID: 37204241 DOI: 10.2217/bmm-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Background: Impaired immune status due to altered T-cell response in sickle cell disease (SCD) might provide substantial insight into immune activity in SCD patients. Materials & methods: A total of 30 healthy control, 20 SCD patients in a crisis state and 38 SCD patients in a steady state were evaluated for T-cell subsets. Results: A significant decrease in CD8+ (p = 0.012) and CD8+45RA-197+ (p = 0.015) T-cells were observed among SCD patients. Naive T-cells (45RA+197+; p < 0.01) were elevated and effector (RA-197-) and central memory (RA-197+) T-cells were grossly reduced in the crisis state. Negative regression of naive T-cells with CD8+57+ affirmed immune inactivation. The predictor score reflected 100% sensitivity for predicting the crisis state (area under the curve = 0.851; p < 0.001). Conclusion: Monitoring naive T-cells with predictive scores can help assess the early shift from a steady state to a crisis state.
Collapse
Affiliation(s)
- Suprava Patel
- Department of Biochemistry, AIIMS, Raipur, Chhattisgarh, 492099, India
| | - Diksha Chandrakar
- Department of Biochemistry, AIIMS, Raipur, Chhattisgarh, 492099, India
| | - Preetam N Wasnik
- Department of Medicine, AIIMS, Raipur, Chhattisgarh, 492099, India
| | - Saurav Nayak
- Department of Biochemistry, AIIMS, Bhubaneswar, 751019, Odisha, India
| | - Seema Shah
- Department of Biochemistry, AIIMS, Raipur, Chhattisgarh, 492099, India
| | - Rachita Nanda
- Department of Biochemistry, AIIMS, Raipur, Chhattisgarh, 492099, India
| | - Eli Mohapatra
- Department of Biochemistry, AIIMS, Raipur, Chhattisgarh, 492099, India
| |
Collapse
|
5
|
Arthur CM, Stowell SR. The Development and Consequences of Red Blood Cell Alloimmunization. ANNUAL REVIEW OF PATHOLOGY 2023; 18:537-564. [PMID: 36351365 PMCID: PMC10414795 DOI: 10.1146/annurev-pathol-042320-110411] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While red blood cell (RBC) transfusion is the most common medical intervention in hospitalized patients, as with any therapeutic, it is not without risk. Allogeneic RBC exposure can result in recipient alloimmunization, which can limit the availability of compatible RBCs for future transfusions and increase the risk of transfusion complications. Despite these challenges and the discovery of RBC alloantigens more than a century ago, relatively little has historically been known regarding the immune factors that regulate RBC alloantibody formation. Through recent epidemiological approaches, in vitro-based translational studies, and newly developed preclinical models, the processes that govern RBC alloimmunization have emerged as more complex and intriguing than previously appreciated. Although common alloimmunization mechanisms exist, distinct immune pathways can be engaged, depending on the target alloantigen involved. Despite this complexity, key themes are beginning to emerge that may provide promising approaches to not only actively prevent but also possibly alleviate the most severe complications of RBC alloimmunization.
Collapse
Affiliation(s)
- Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| |
Collapse
|
6
|
Tambunan BA, Ugrasena IDG, Aryati. Role of Hemin in the Immune Response of T Follicular Helper Lymphocytes Expressing T-Cell Immunoreceptor with Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibitory Domains, Programmed Cell Death-1, and Interleukin-21 in Allo-Auto Positive and Negative Thalassemia. J Blood Med 2023; 14:7-17. [PMID: 36660451 PMCID: PMC9844107 DOI: 10.2147/jbm.s393134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Introduction Repeated transfusions in thalassemia patients can cause several complications, including alloimmunization and autoimmunization. Purpose This study compares the immune response of T follicular helper (Tfh) lymphocytes expressing T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory domains (TIGIT), programmed cell death-1 (PD-1), and interleukin-21 (IL-21) between patients with allo-auto positive and negative thalassemia before and after hemin administration. Materials and Methods This study used a quasi-experimental pre- and post-test design and was performed between April and November 2021 at the Dr. Soetomo General Academic Hospital in Surabaya, Indonesia. It enrolled 29 patients with allo-auto positive thalassemia and 28 with allo-auto negative, and 9 mL of whole blood (WB) was drawn from each patient. Hemin solution (20 µM) was added to 5 mL of WB, incubated for two hours, processed into peripheral blood mononuclear cells (PBMCs) in RPMI media, and cultured with 5% CO2 for three days. The 4 mL WB sample was also processed into PBMCs. PBMC cells cultured and without cultured were examined by flow cytometry using a BD FACSCalibur after surface and intracellular staining. Differences in Tfh cells expressing TIGIT, PD-1, and IL-21 between thalassemia groups before and after hemin administration were compared using independent t-tests or Mann-Whitney U-tests (p < 0.05). Results Tfh cell expression did not differ between groups before hemin administration and increased after hemin administration. The increase in Tfh cell expression was higher in the allo-auto positive group. TIGIT and PD-1 expression in Tfh cells did not differ between groups, but TIGIT decreased after hemin administration in contrast to PD-1 result. IL-21 expression in Tfh cells did not differ between groups and did not change after hemin administration. Conclusion Hemin affected the expression of Tfh cells in both group thalassemia, but there was no difference of Tfh cell expression between the groups.
Collapse
Affiliation(s)
- Betty Agustina Tambunan
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - I Dewa Gede Ugrasena
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aryati
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
7
|
Marchesani S, Bertaina V, Marini O, Cossutta M, Di Mauro M, Rotulo GA, Palma P, Sabatini L, Petrone MI, Frati G, Monteleone G, Palumbo G, Ceglie G. Inflammatory status in pediatric sickle cell disease: Unravelling the role of immune cell subsets. Front Mol Biosci 2023; 9:1075686. [PMID: 36703915 PMCID: PMC9871358 DOI: 10.3389/fmolb.2022.1075686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: The mutation of the beta-globin gene that causes sickle cell disease (SCD) results in pleiotropic effects, such as hemolysis and vaso-occlusive crisis that can induce inflammatory mechanisms with deleterious consequences on the organism. Moreover, SCD patients display an increased susceptibility to infections. Few studies are currently available that evaluate a wide immunological profile in a pediatric population. This study proposes an evaluation of the immune profile in subjects with SCD in a pediatric population through a detailed analysis by flow cytometry. Methods and Materials: Peripheral blood samples from 53 pediatric patients with SCD (mean age 9.8 years, interquartile range 9 years) were obtained and then analyzed by flow cytometry, in order to evaluate changes in the immune populations compared to 40 healthy donors (mean age 7.3 years, interquartile range 9.5 years). Results: Our data showed an increase in neutrophils (with a reduction in the CD62L + subpopulation) and monocytes (with a decrease in HLA-DRlow monocytes) with normal values of lymphocytes in SCD patients. In the lymphocyte subpopulations analysis we observed lower values of CD4+ T cells (with higher number of memory and central memory T lymphocytes) with increased frequency of CD8+ T cells (with a predominant naive pattern). Moreover, we observed higher values of CD39+ Tregs and lower HLA-DR+ and CD39- T cells with an increased Th17, Th1-17 and Th2 response. Conclusion: We observed immunological alterations typical of an inflammatory status (increase in activated neutrophils and monocytes) associated with a peculiar Treg pattern (probably linked to a body attempt to minimize inflammation intrinsic to SCD). Furthermore, we highlighted a T helper pathway associated with inflammation in line with other studies. Our data showed that immunological markers may have an important role in the understanding the pathophysiology of SCD and in optimizing targeted therapeutic strategies for each patient.
Collapse
Affiliation(s)
- Silvio Marchesani
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy,*Correspondence: Silvio Marchesani,
| | - Valentina Bertaina
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Olivia Marini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University of Padova, Padova, Italy
| | - Matilde Cossutta
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Di Mauro
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children Hospital, IRCCS, Rome, Italy,Department of Neuroscience, Rehabilitation Ophthalmology Genetics Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Palma
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy,Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Letizia Sabatini
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Maria Isabella Petrone
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Frati
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giulia Monteleone
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Palumbo
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy,Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giulia Ceglie
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Light J, Boucher M, Baskin-Miller J, Winstead M. Managing the Cerebrovascular Complications of Sickle Cell Disease: Current Perspectives. J Blood Med 2023; 14:279-293. [PMID: 37082003 PMCID: PMC10112470 DOI: 10.2147/jbm.s383472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
The importance of protecting brain function for people with sickle cell disease (SCD) cannot be overstated. SCD is associated with multiple cerebrovascular complications that threaten neurocognitive function and life. Without screening and preventive management, 11% of children at 24% of adults with SCD have ischemic or hemorrhagic strokes. Stroke screening in children with SCD is well-established using transcranial Doppler ultrasound (TCD). TCD velocities above 200 cm/s significantly increase the risk of stroke, which can be prevented using chronic red blood cell (RBC) transfusion. RBC transfusion is also the cornerstone of acute stroke management and secondary stroke prevention. Chronic transfusion requires long-term management of complications like iron overload. Hydroxyurea can replace chronic transfusions for primary stroke prevention in a select group of patients or in populations where chronic transfusions are not feasible. Silent cerebral infarction (SCI) is even more common than stroke, affecting 39% of children and more than 50% of adults with SCD; management of SCI is individualized and includes careful neurocognitive evaluation. Hematopoietic stem cell transplant prevents cerebrovascular complications, despite the short- and long-term risks. Newer disease-modifying agents like voxelotor and crizanlizumab, as well as gene therapy, may treat cerebrovascular complications, but these approaches are investigational.
Collapse
Affiliation(s)
- Jennifer Light
- Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Boucher
- Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacquelyn Baskin-Miller
- Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mike Winstead
- Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Correspondence: Mike Winstead, Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, USA, Tel +1 919-966-1178, Fax +1 919-966-7629, Email
| |
Collapse
|
9
|
Jarduli-Maciel LR, de Azevedo JTC, Clave E, Costa TCDM, Arruda LCM, Fournier I, Palma PVB, Lima KC, Elias JB, Stracieri ABP, Pieroni F, Cunha R, Darrigo-Júnior LG, Grecco CES, Covas DT, Silva-Pinto AC, De Santis GC, Simões BP, Oliveira MC, Toubert A, Malmegrim KCR. Allogeneic haematopoietic stem cell transplantation resets T- and B-cell compartments in sickle cell disease patients. Clin Transl Immunology 2022; 11:e1389. [PMID: 35474905 PMCID: PMC9035210 DOI: 10.1002/cti2.1389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is the only currently available curative treatment for sickle cell disease (SCD). Here, we comprehensively evaluated the reconstitution of T- and B-cell compartments in 29 SCD patients treated with allo-HSCT and how it correlated with the development of acute graft-versus-host disease (aGvHD). Methods T-cell neogenesis was assessed by quantification of signal-joint and β-chain TCR excision circles. B-cell neogenesis was evaluated by quantification of signal-joint and coding-joint K-chain recombination excision circles. T- and B-cell peripheral subset numbers were assessed by flow cytometry. Results Before allo-HSCT (baseline), T-cell neogenesis was normal in SCD patients compared with age-, gender- and ethnicity-matched healthy controls. Following allo-HSCT, T-cell neogenesis declined but was fully restored to healthy control levels at one year post-transplantation. Peripheral T-cell subset counts were fully restored only at 24 months post-transplantation. Occurrence of acute graft-versus-host disease (aGvHD) transiently affected T- and B-cell neogenesis and overall reconstitution of T- and B-cell peripheral subsets. B-cell neogenesis was significantly higher in SCD patients at baseline than in healthy controls, remaining high throughout the follow-up after allo-HSCT. Notably, after transplantation SCD patients showed increased frequencies of IL-10-producing B-regulatory cells and IgM+ memory B-cell subsets compared with baseline levels and with healthy controls. Conclusion Our findings revealed that the T- and B-cell compartments were normally reconstituted in SCD patients after allo-HSCT. In addition, the increase of IL-10-producing B-regulatory cells may contribute to improve immune regulation and homeostasis after transplantation.
Collapse
Affiliation(s)
- Luciana Ribeiro Jarduli-Maciel
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Graduate Program in Basic and Applied Immunology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Thalita Cristina de Mello Costa
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Isabelle Fournier
- Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Patrícia Vianna Bonini Palma
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Keli Cristina Lima
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | | | | | - Fabiano Pieroni
- Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Renato Cunha
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | | | | | - Dimas Tadeu Covas
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Ana Cristina Silva-Pinto
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Gil Cunha De Santis
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Belinda Pinto Simões
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Antoine Toubert
- Université de Paris INSERM UMR 1160 IRSL Paris France.,Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Department of Clinical Analysis, Toxicology and Food Sciences School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
10
|
Zerra PE, Patel SR, Jajosky RP, Arthur CM, McCoy JW, Allen JWL, Chonat S, Fasano RM, Roback JD, Josephson CD, Hendrickson JE, Stowell SR. Marginal zone B cells mediate a CD4 T-cell-dependent extrafollicular antibody response following RBC transfusion in mice. Blood 2021; 138:706-721. [PMID: 33876205 PMCID: PMC8394907 DOI: 10.1182/blood.2020009376] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme [HEL] and ovalbumin [OVA] fused with the human RBC antigen Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they colocalize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited immunoglobulin M (IgM) and IgG anti-HOD antibody formation, whereas CD4 T-cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild-type or MZ B-cell-deficient recipients, suggesting that IgG formation is not dependent on MZ B-cell-mediated CD4 T-cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response, and no increase in antigen-specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest that MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.
Collapse
Affiliation(s)
- Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Seema R Patel
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ryan Philip Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - James W McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | | | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
11
|
"Allo" from the (marginal) zone. Blood 2021; 138:595-596. [PMID: 34436531 DOI: 10.1182/blood.2021011973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
|
12
|
Watanaboonyongcharoen P, Akkawat B, Tohthong T, Rojnuckarin P. High B-cell activating factor levels in multi-transfused thalassemia patients. Transfus Med 2021; 31:350-356. [PMID: 34396626 DOI: 10.1111/tme.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To assess the associations between B-cell activating factor (BAFF) and alloimmunisation in multi-transfused thalassemia. BACKGROUND Red blood cell (RBC) alloimmunisation is a complication of multi-transfused thalassemia. BAFF is promoting B cells that produce alloantibodies. METHODS/MATERIALS Multi-transfused thalassemia, 15 years or older, were recruited in the cohort study. Alloantibodies and BAFF levels were analysed. RESULTS Of 114 patients, the overall prevalence of RBC alloimmunisation was 29.8%. The most common alloantibodies were anti-E, anti-Mia and anti-c. BAFF levels were different among the three groups; the patients with baseline alloantibodies (median ± interquartile range 1251 ± 474 pg/ml), without alloantibodies (1098 ± 453) and healthy controls (719 ± 306), p < 0.001. The BAFF level was elevated in the >25 years old patients (vs. the <25, p = 0.011) and the buffy-coat-reduced blood recipients (vs. the pre-storage leukocyte-depletion, p = 0.005). Absolute lymphocyte count was higher in the patients without baseline alloantibodies (vs. with baseline alloantibodies, p = 0.049) and the splenectomised patients (vs. the non-splenectomised patients, p < 0.001). Of the 72 patients without baseline antibodies, four who developed new antibodies showed no statistically different BAFF levels compared with those without new antibodies after 40-month follow-up (1296 ± 734 vs. 1062 ± 460, p = 0.491). In multivariate analysis, BAFF to absolute lymphocyte ratio was independently associated with RBC alloimmunisation (odds ratio 3.07, 95% confidence interval 1.124-8.369, p = 0.029). CONCLUSION B-cell activating factor (BAFF) levels were elevated in multi-transfused thalassemia and the BAFF to absolute lymphocyte ratio was associated with red blood cell (RBC) alloimmunisation.
Collapse
Affiliation(s)
- Phandee Watanaboonyongcharoen
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Renal Transplant Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Benjaporn Akkawat
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanida Tohthong
- Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Whole-blood phenotyping to assess alloimmunization status in transfused sickle cell disease patients. Blood Adv 2021; 5:1278-1282. [PMID: 33651102 DOI: 10.1182/bloodadvances.2020003537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
It is essential to limit hemolytic transfusion reactions in polytransfused individuals, and the prevention of alloimmunization is a key solution. CD4+ T lymphocyte (TL) markers, particularly follicular T helper (Tfh) cells, may differentiate between responder and nonresponder alloimmunization statuses. We tested this hypothesis by studying the phenotype of CXCR5+PD1+ TLs in whole blood. Our results suggest that high levels of CXCR5+PD1+CD4+ TLs in whole blood may be a characteristic of nonalloimmunized patients. However, these cells did not display the phenotypic characteristics of active Tfh cells. Instead, a decrease in blood quiescent Tfh-cell levels was observed in nonalloimmunized polytransfused patients. High levels of CXCR5+PD1+CD4+ TLs may be associated with inhibitory signaling functions of T cells, as reflected by the low levels of PD1+ICOS+ cells in the nonalloimmunized polytransfused group. The description of these particular phenotypes, and their comparison among groups of patients, responders, and nonresponders, suggests that new immunological components should be considered when trying to understand posttransfusion alloimmunization.
Collapse
|
14
|
Rankin A, Darbari D, Campbell A, Webb J, Mo YD, Jacquot C, Delaney M, Luban NLC, Nickel RS. Screening for new red blood cell alloantibodies after transfusion in patients with sickle cell disease. Transfusion 2021; 61:2255-2264. [PMID: 34002408 DOI: 10.1111/trf.16444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with sickle cell disease (SCD) are frequent recipients of red blood cell (RBC) transfusions and are at risk for RBC alloimmunization. RBC alloimmunization is diagnosed by identifying RBC alloantibodies as part of pre-transfusion testing, but this testing fails to detect alloantibodies that have evanesced. It may be beneficial to screen for new RBC alloantibody development after transfusion before possible antibody evanescence. STUDY DESIGN AND METHODS Our institution started a new initiative for episodically transfused patients with SCD to obtain at least one antibody screen 2-6 months after transfusion as part of their clinical care. A database was created to prospectively track all transfused patients for 1 year and their post-transfusion antibody screen results. Patients received prophylactically CEK-matched RBC units. RESULTS During the study year, 138 patients with SCD received a total of 242 RBC transfusions. Patients with a history of an RBC alloantibody (n = 13, 9.4%) had previously received more RBC units than non alloimmunized patients (median 11 vs. 2 RBC units, p = .0002). A total of 337 post-transfusion antibody screens were obtained in 127 patients (92.0%) with 110 patients (79.7%) having at least one antibody screen 2-6 months post-transfusion. With this prospective testing, two new RBC alloantibodies (anti-C and -M) were identified in two patients. CONCLUSION It is feasible to test for new RBC alloantibody development in most episodically transfused patients with SCD as part of their routine care. The yield of this screening appears low with CEK matching, but it could still provide important information for individual patients.
Collapse
Affiliation(s)
- Alexander Rankin
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Pediatric Hematology-Oncology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Deepika Darbari
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Andrew Campbell
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Jennifer Webb
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Yunchuan Delores Mo
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Cyril Jacquot
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Meghan Delaney
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Naomi L C Luban
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Robert Sheppard Nickel
- Divisions of Hematology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
15
|
Tamagne M, Pakdaman S, Bartolucci P, Habibi A, Galactéros F, Pirenne F, Vingert B. Whole-blood CCR7 expression and chemoattraction in red blood cell alloimmunization. Br J Haematol 2021; 194:477-481. [PMID: 33901302 DOI: 10.1111/bjh.17480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marie Tamagne
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Etablissement Français du Sang, Ivry sur Seine, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Sadaf Pakdaman
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Etablissement Français du Sang, Ivry sur Seine, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Pablo Bartolucci
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Etablissement Français du Sang, Ivry sur Seine, France.,Laboratory of Excellence GR-Ex, Paris, France.,Service Maladies Génétiques du Globule Rouge, AP-HP, Hôpital H. Mondor-A, Chenevier, Créteil, France
| | - Anoosha Habibi
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Etablissement Français du Sang, Ivry sur Seine, France.,Laboratory of Excellence GR-Ex, Paris, France.,Service Maladies Génétiques du Globule Rouge, AP-HP, Hôpital H. Mondor-A, Chenevier, Créteil, France
| | - Frédéric Galactéros
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Etablissement Français du Sang, Ivry sur Seine, France.,Laboratory of Excellence GR-Ex, Paris, France.,Service Maladies Génétiques du Globule Rouge, AP-HP, Hôpital H. Mondor-A, Chenevier, Créteil, France
| | - France Pirenne
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Etablissement Français du Sang, Ivry sur Seine, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Vingert
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Etablissement Français du Sang, Ivry sur Seine, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
16
|
|
17
|
Hendrickson JE. Red blood cell alloimmunization and sickle cell disease: a narrative review on antibody induction. ANNALS OF BLOOD 2020; 5:33. [PMID: 33554044 PMCID: PMC7861514 DOI: 10.21037/aob-2020-scd-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The high prevalence of red blood cell (RBC) alloantibodies in people with sickle cell disease (SCD) cannot be debated. Why people with SCD are so likely to form RBC alloantibodies, however, remains poorly understood. Over the past decade, a better understanding of non-ABO blood group antigen variants has emerged; RH genetic diversity and the role this diversity plays in RBC alloimmunization is discussed elsewhere. Outside of antigen variants, the immune systems of people with SCD are known to be different than those of people without SCD. Some of these differences are due to effects of free heme, whereas others are impacted by hyposplenism. Descriptive studies of differences in white blood cell (WBC) subsets, platelet counts and function, and complement activation between people with SCD and race-matched controls exist. Studies comparing the immune systems of alloimmunized people with SCD to non-alloimmunized people with SCD to race-matched controls without SCD have uncovered differences in T-cell subsets, monocytes, Fcγ receptor polymorphisms, and responses to free heme. Studies in murine models have documented the role that recipient inflammation plays in RBC alloantibody formation, with human studies reporting a similar association. Murine studies have also reported the importance of type 1 interferon (IFNα/β), known to play a pivotal role in autoimmunity, in RBC alloantibody formation. The goal of this manuscript is to review existing data on factors influencing RBC alloantibody induction in people with SCD with a focus on inflammation and other immune system considerations, from the bench to the bedside.
Collapse
Affiliation(s)
- Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Coombs J, Ben Hassen L, Leclerc M, Tamagne M, Pannetier L, Khelfa M, Delorme A, Bocquet T, Maury S, Pirenne F, Ansart‐Pirenne H, Vingert B. Dominant immune response to HLA‐B57/B58 molecules after platelet transfusion. Transfusion 2020; 60:2807-2814. [DOI: 10.1111/trf.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Justine Coombs
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Latifa Ben Hassen
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Mathieu Leclerc
- AP‐HP ‐ Hôpital Henri Mondor Créteil France
- Université Paris Est Faculté de médecine Créteil France
| | - Marie Tamagne
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Louise Pannetier
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Mehdi Khelfa
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Adèle Delorme
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | | | - Sébastien Maury
- AP‐HP ‐ Hôpital Henri Mondor Créteil France
- Université Paris Est Faculté de médecine Créteil France
| | - France Pirenne
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
- Université Paris Est Faculté de médecine Créteil France
| | | | - Benoît Vingert
- Etablissement Français du Sang Ivry sur Seine France
- Institut Mondor de Recherche Biomédicale Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| |
Collapse
|
19
|
CD4 + T Cell Profile and Activation Response in Sickle Cell Disease Patients with Osteonecrosis. Mediators Inflamm 2020; 2020:1747894. [PMID: 33132753 PMCID: PMC7568812 DOI: 10.1155/2020/1747894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Recent evidence suggests that abnormalities involving CD4+T lymphocytes are associated with the pathophysiology of osteonecrosis (ON); however, few studies have addressed the CD4+T cells in ON related to sickle cell disease (SCD/ON). In addition, T cells producing multiple cytokines simultaneously are often present in the inflammatory milieu and may be implicated in the immune response observed in SCD/ON. In the present study, we aimed to characterize the functional status of CD4+T cells in SCD by simultaneously determining the frequency of IFN-γ +, IL-4+, and IL-17+ CD4+T in cell cultures under exogenous stimuli. Peripheral blood mononuclear cells (PB-MNCs) from 9 steady-state SCD patients, 15 SCD/ON patients, and 19 healthy controls had functional status of CD4+T cells analyzed. Bone marrow mononuclear cells (BM-MNCs) from 24 SCD/ON patients (SCD BM) and 18 patients with ON not related to SCD (non-SCD BM) were also analyzed. We found that PB-MNC of SCD patients with or without ON presented significantly reduced TCD4+, TCD8+, and TCD4+ naïve cell frequencies and increased frequency of circulating CD4+T cells able to simultaneously produce IFN-γ +/IL4+ and IL-17+/IL4+ compared to healthy controls. Conversely, the polyclonal stimulation of BM-MNC induced an increased frequency of CD4+IFN-γ + and CD4+IL-17+ in SCD BM compared to non-SCD BM. The increased proportion of CD4+ T cells able to produce a broad spectrum of proinflammatory cytokines after a strong stimulus indicates that the immune system in SCD/ON patients presents an expressive pool of partially differentiated cells ready to take on effector function. It is possible that this increased subpopulation may extend to inflammatory sites of target organs and may contribute to the maintenance of inflammation and the pathophysiology of osteonecrosis in sickle cell disease.
Collapse
|
20
|
Balbuena-Merle R, Santhanakrishnan M, Devine L, Gibb DR, Tormey CA, Siddon AJ, Curtis SA, Gallagher PG, Weinstein JS, Hendrickson JE. Characterization of circulating and cultured Tfh-like cells in sickle cell disease in relation to red blood cell alloimmunization status. Transfus Apher Sci 2020; 59:102778. [PMID: 32439490 PMCID: PMC7483805 DOI: 10.1016/j.transci.2020.102778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND People living with sickle cell disease (SCD) are prone to red blood cell (RBC) alloimmunization. We hypothesized that subjects with alloantibodies (responders) would have differences in circulating T-follicular helper (Tfh)-like cells compared to subjects without alloantibodies (non-responders). MATERIALS AND METHODS Peripheral blood mononuclear cells were collected from 28 subjects, including those with SCD and controls. Circulating CD4 T-cell subsets were first evaluated at baseline. CD4 T-cell subsets were also evaluated after naïve CD4 T-cells were differentiated into Tfh-like cells following in vitro culture with CD3/CD28 beads, IL-7, IL-12, and Activin A. Transfusion and alloantibody histories were extracted from the electronic medical record. RESULTS Non-responders had a lower percentage of CD45RA negative Tmemory cells than responders or controls (p<0.05). Notably, there were no differences in circulating Tfh-like cells between any group. However, naïve CD4 T-cells from subjects with SCD were more likely to express CXCR5 after in vitro culture than cells from controls. After culture, CXCR5 expressing cells from responders were more likely to express PD1 and ICOS (16.43 %, sd. 20.23) compared to non-responders (3.69 %, s.d. 3.09) or controls (2.78 %, s.d. 2.04). DISCUSSION The tendency for naïve CD4 T-cells from responders to differentiate into Tfh-like cells after in vitro culture may suggest these cells are prepared to assist B-cells with antibody production regardless of antigen specificity. Further studies are needed, but it is possible that these results may explain why some responders form RBC alloantibodies with multiple specificities, in addition to RBC autoantibodies and HLA alloantibodies.
Collapse
Affiliation(s)
- Raisa Balbuena-Merle
- Yale University, Department of Laboratory Medicine, New Haven, CT, United States
| | | | - Lesley Devine
- Yale University, Department of Laboratory Medicine, New Haven, CT, United States
| | - David R Gibb
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, CA, United States
| | - Christopher A Tormey
- Yale University, Department of Laboratory Medicine, New Haven, CT, United States; VA Connecticut, Pathology and Laboratory Medicine Service, West Haven, CT, United States
| | - Alexa J Siddon
- Yale University, Department of Laboratory Medicine, New Haven, CT, United States; VA Connecticut, Pathology and Laboratory Medicine Service, West Haven, CT, United States; Yale University, Department of Pathology, New Haven, CT, United States
| | - Susanna A Curtis
- Yale University, Division of Hematology/Oncology, New Haven, CT, United States
| | - Patrick G Gallagher
- Yale University, Department of Pathology, New Haven, CT, United States; Yale University, Department of Pediatrics, New Haven, CT, United States; Yale University, Department of Genetics, New Haven, CT, United States
| | - Jason S Weinstein
- Rutgers New Jersey Medical School, Center for Immunity and Inflammation, Newark, NJ, United States
| | - Jeanne E Hendrickson
- Yale University, Department of Laboratory Medicine, New Haven, CT, United States; Yale University, Department of Pediatrics, New Haven, CT, United States.
| |
Collapse
|
21
|
Nickel RS, Flegel WA, Adams SD, Hendrickson JE, Liang H, Tisdale JF, Hsieh MM. The impact of pre-existing HLA and red blood cell antibodies on transfusion support and engraftment in sickle cell disease after nonmyeloablative hematopoietic stem cell transplantation from HLA-matched sibling donors: A prospective, single-center, observational study. EClinicalMedicine 2020; 24:100432. [PMID: 32637902 PMCID: PMC7327930 DOI: 10.1016/j.eclinm.2020.100432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is curative for patients with sickle cell disease (SCD). Prior to HSCT, patients with SCD commonly receive RBC transfusions with some becoming RBC or HLA alloimmunized. This alloimmunization may impact post-HSCT transfusion requirements and donor engraftment. METHODS The study population included patients with SCD transplanted on a single-center nonmyeloablative, HLA-matched sibling HSCT trial at the National Heart, Lung, and Blood Institute (NHLBI) who had a pre-HSCT sample available for HLA class I antibody testing. We evaluated transfusion requirements and engraftment outcomes comparing patients with and without pre-existing HLA and RBC antibodies. FINDINGS Of 36 patients studied, 10 (28%) had HLA class I antibodies and 11 (31%) had a history of RBC alloantibodies. Up to day +45 post-HSCT, patients with HLA antibodies received more platelet transfusions (median 2.5 vs 1, p = 0.042) and those with RBC alloantibodies received more RBC units (median 7 vs 4, p = 0.0059) compared to respective non-alloimmunized patients. HLA alloimmunization was not associated with neutrophil engraftment, donor chimerism, or graft rejection. However, RBC alloimmunization correlated with a decreased donor T cell chimerism at 1 year (median 24% vs 55%, p = 0.035). INTERPRETATION Pre-existing HLA and RBC alloantibodies are clinically significant for patients undergoing HLA-matched nonmyeloablative HSCT. Testing for both HLA and RBC antibodies is important to help estimate transfusion needs peri‑HSCT. The association of lower donor T cell chimerism and pre-existing RBC alloantibodies needs further investigation. FUNDING NIH Clinical Center and NHLBI Intramural Research Program (Z99 CL999999, HL006007-11) and the Thrasher Research Fund.
Collapse
Affiliation(s)
- Robert Sheppard Nickel
- Children's National Hospital, Division of Hematology, 111 Michigan Ave NW, Washington, DC 20010, United States
- The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Corresponding author at: Children's National Hospital, Division of Hematology, 111 Michigan Ave NW, Washington, DC 20010, United States.
| | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sharon D. Adams
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jeanne E. Hendrickson
- Departments of Laboratory Medicine and Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Hua Liang
- The George Washington University, Department of Statistics, Washington, DC, United States
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Institutes of Health, Bethesda, MD, United States
| | - Matthew M. Hsieh
- Cellular and Molecular Therapeutics Branch, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
de Azevedo JTC, Malmegrim KCR. Immune mechanisms involved in sickle cell disease pathogenesis: current knowledge and perspectives. Immunol Lett 2020; 224:1-11. [PMID: 32437728 DOI: 10.1016/j.imlet.2020.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the β-chain of the hemoglobin gene that results in the replacement of glutamic acid with valine in the hemoglobin protein. However, recent studies have demonstrated that alterations in several other genes, especially immune related genes, may be associated with complications of SCD. In fact, higher chronic inflammatory status is related to more severe clinical symptoms in SCD patients, suggesting crucial roles of the immune system in SCD physiopathology. Nevertheless, although participation of innate immune cells in SCD pathogenesis has been broadly and extensively described, little is known about the roles of the adaptive immune system in this disease. In addition, the influence of treatments on the immune system of SCD patients and their complications (such as alloimmunization) are not yet completely understood. Thus, we reviewed the current knowledge about the immune mechanisms involved in SCD pathogenesis. We suggest recommendations for future studies to allow for a broader understanding of SCD pathogenesis, helping in the development of new therapies and improvement in the life quality and expectancy of patients.
Collapse
Affiliation(s)
- Júlia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
23
|
Knoop J, Eugster A, Gavrisan A, Lickert R, Sedlmeier EM, Dietz S, Lindner A, Warncke K, Hummel N, Ziegler AG, Bonifacio E. Maternal Type 1 Diabetes Reduces Autoantigen-Responsive CD4 + T Cells in Offspring. Diabetes 2020; 69:661-669. [PMID: 31896551 DOI: 10.2337/db19-0751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/28/2019] [Indexed: 11/13/2022]
Abstract
Autoimmunity against pancreatic β-cell autoantigens is a characteristic of childhood type 1 diabetes (T1D). Autoimmunity usually appears in genetically susceptible children with the development of autoantibodies against (pro)insulin in early childhood. The offspring of mothers with T1D are protected from this process. The aim of this study was to determine whether the protection conferred by maternal T1D is associated with improved neonatal tolerance against (pro)insulin. Consistent with improved neonatal tolerance, the offspring of mothers with T1D had reduced cord blood CD4+ T-cell responses to proinsulin and insulin, a reduction in the inflammatory profile of their proinsulin-responsive CD4+ T cells, and improved regulation of CD4+ T cell responses to proinsulin at 9 months of age, as compared with offspring with a father or sibling with T1D. Maternal T1D was also associated with a modest reduction in CpG methylation of the INS gene in cord blood mononuclear cells from offspring with a susceptible INS genotype. Our findings support the concept that a maternal T1D environment improves neonatal immune tolerance against the autoantigen (pro)insulin.
Collapse
Affiliation(s)
- Jan Knoop
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anne Eugster
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anita Gavrisan
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ramona Lickert
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Eva-Maria Sedlmeier
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Sevina Dietz
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Annett Lindner
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Katharina Warncke
- Department of Pediatrics, Klinikum Rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Nadine Hummel
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| |
Collapse
|
24
|
Garcia NP, Júnior ALS, Soares GAS, Costa TCC, dos Santos APC, Costa AG, Tarragô AM, Martins RN, do Carmo Leão Pontes F, de Almeida EG, de Paula EV, Martins-Filho OA, Malheiro A. Sickle Cell Anemia Patients Display an Intricate Cellular and Serum Biomarker Network Highlighted by TCD4+CD69+ Lymphocytes, IL-17/MIP-1 β, IL-12/VEGF, and IL-10/IP-10 Axis. J Immunol Res 2020; 2020:4585704. [PMID: 32411797 PMCID: PMC7199620 DOI: 10.1155/2020/4585704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sickle cell anemia (SCA) is associated with a chronic proinflammatory state characterized by elevated leukocyte count, mortality from severe recurrent infections, and subsequent vasoocclusive complications with leukocyte adhesion to the endothelium and increased plasma levels of inflammatory cytokines. The immune system has a close connection with morbidity in SCA, but further studies are needed to uncover the involvement of innate and adaptive immunities in modulating the SCA physiopathology. We performed measurements of the frequency of innate and adaptive immunity cells, cytokines, chemokines, and growth factors and immunophenotyping of Toll-like receptor and adhesion molecule expression in the blood of SCA patients and healthy donors to evaluate the different profiles of these biomarkers, the relationship among them, and their correlation to laboratory records and death risk. Material and Methods. Immunophenotyping of cells, Toll-like receptors, and adhesion molecules were performed from peripheral blood samples of SCA patients and healthy donors by flow cytometry and cytokine/chemokine/growth factor measurement by the Luminex technique performed from the serum of the same subjects. RESULTS Cells of adaptive immunity such as IL-12, IL-17, and IL-10 cytokines; IL-8, IP-10, MIP-1α, MIP-1β, and RANTES chemokines; and VEGF, FGF-basic, and GM-CSF growth factors were higher in SCA patients than healthy donors regardless of any laboratorial and clinical condition. However, high death risk appears to have relevant biomarkers. CONCLUSION In the SCA pathophysiology at steady state, there is a broad immunological biomarker crosstalk highlighted by TCD4+CD69+ lymphocytes, IL-12 and IL-17 inflammatory and IL-10 regulatory cytokines, MIP-1α, MIP-1β, and IP-10 chemokines, and VEGF growth factor. High expression of TLR2 in monocytes and VLA-4 in TCD8+ lymphocytes and high levels of MIP-1β and RANTES appear to be relevant in high death risk conditions. The high reticulocytosis and high death risk conditions present common correlations, and there seems to be a balance by the Th2 profile.
Collapse
Affiliation(s)
- Nadja Pinto Garcia
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Alexander Leonardo S. Júnior
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Geyse Adriana S. Soares
- Programa de Apoio a Iniciação Científica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Thainá Cristina C. Costa
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Alicia Patrine C. dos Santos
- Programa de Apoio a Iniciação Científica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Andréa Monteiro Tarragô
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Rejane Nina Martins
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Flávia do Carmo Leão Pontes
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Emerson Garcia de Almeida
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Erich Vinícius de Paula
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
- Departamento de Clínica Médica da Faculdade de Ciências Médicas da UNICAMP, 13083-970 Campinas, SP, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou/Fiocruz Minas, 30190-002 Belo Horizonte, MG, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| |
Collapse
|
25
|
|
26
|
Nickel RS, Horan JT, Abraham A, Qayed M, Haight A, Ngwube A, Liang H, Luban NLC, Hendrickson JE. Human leukocyte antigen (HLA) class I antibodies and transfusion support in paediatric HLA‐matched haematopoietic cell transplant for sickle cell disease. Br J Haematol 2019; 189:162-170. [DOI: 10.1111/bjh.16298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Robert S. Nickel
- Division of Hematology Children's National Hospital WashingtonDCUSA
- The George Washington University School of Medicine and Health Sciences Washington DCUSA
| | - John T. Horan
- Aflac Cancer and Blood Disorders Center Emory University Atlanta GAUSA
| | - Allistair Abraham
- Division of Hematology Children's National Hospital WashingtonDCUSA
- The George Washington University School of Medicine and Health Sciences Washington DCUSA
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center Emory University Atlanta GAUSA
| | - Ann Haight
- Aflac Cancer and Blood Disorders Center Emory University Atlanta GAUSA
| | - Alexander Ngwube
- Center for Cancer and Blood Disorders Phoenix Children's Hospital Phoenix AZUSA
| | - Hua Liang
- Department of Statistics The George Washington University Washington DCUSA
| | - Naomi L. C. Luban
- Division of Hematology Children's National Hospital WashingtonDCUSA
- The George Washington University School of Medicine and Health Sciences Washington DCUSA
| | | |
Collapse
|
27
|
Meinderts SM, Gerritsma JJ, Sins JWR, de Boer M, van Leeuwen K, Biemond BJ, Rijneveld AW, Kerkhoffs JLH, Habibi A, van Bruggen R, Kuijpers TW, van der Schoot E, Pirenne F, Fijnvandraat K, Tanck MW, van den Berg TK. Identification of genetic biomarkers for alloimmunization in sickle cell disease. Br J Haematol 2019; 186:887-899. [PMID: 31168801 DOI: 10.1111/bjh.15998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Most sickle cell disease (SCD) patients rely on blood transfusion as their main treatment strategy. However, frequent blood transfusion poses the risk of alloimmunization. On average, 30% of SCD patients will alloimmunize while other patient groups form antibodies less frequently. Identification of genetic markers may help to predict which patients are at risk to form alloantibodies. The aim of this study was to evaluate whether genetic variations in the Toll-like receptor pathway or in genes previously associated with antibody-mediated conditions are associated with red blood cell (RBC) alloimmunization in a cohort of SCD patients. In this case-control study, cases had a documented history of alloimmunization while controls had received ≥20 RBC units without alloantibody formation. We used a customized single nucleotide polymorphism (SNP) panel to genotype 690 SNPs in 275 (130 controls, 145 cases) patients. Frequencies were compared using multiple logistic regression analysis. In our primary analysis, no SNPs were found to be significantly associated with alloimmunization after correction for multiple testing. However, in a secondary analysis with a less stringent threshold for significance we found 19 moderately associated SNPs. Among others, SNPs in TLR1/TANK and MALT1 were associated with a higher alloimmunization risk, while SNPs in STAM/IFNAR1 and STAT4 conferred a lower alloimmunization risk.
Collapse
Affiliation(s)
- Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Jorn J Gerritsma
- Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Univsersity of Amsterdam, Amsterdam, the Netherlands
| | - Joep W R Sins
- Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Univsersity of Amsterdam, Amsterdam, the Netherlands
| | - Martin de Boer
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin van Leeuwen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart J Biemond
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita W Rijneveld
- Department of Haematology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | | | - Anoosha Habibi
- Reference Centre for Sickle Cell Disease, Hôpital Henri Mondor, Créteil, France
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Ellen van der Schoot
- Department of Experimental Immunohaematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - France Pirenne
- Etablissement Français Du Sang Ile de France, INSERM U955, University of Paris Est-Créteil, Hôpital Henri Mondor, Créteil, France
| | - Karin Fijnvandraat
- Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Univsersity of Amsterdam, Amsterdam, the Netherlands
| | - Michael W Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Molecular Cell Biology, VU Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Tozatto-Maio K, Girot R, Ly ID, Rocha V, Silva Pinto AC, Diagne I, Benzerara Y, Dinardo CL, Kashima S, Leston-Araujo I, Kenzey C, Fonseca GHH, Rodrigues ES, Volt F, Jarduli LR, Ruggeri A, Mariaselvam CM, Gualandro SFM, Elayoubi H, Cunha R, Cappelli B, Malmegrim KCR, Simões BP, Gluckman E, Tamouza R. A Toll-like receptor 2 genetic variant modulates occurrence of bacterial infections in patients with sickle cell disease. Br J Haematol 2019; 185:918-924. [PMID: 30908604 DOI: 10.1111/bjh.15875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Despite adequate immunization and penicillin prophylaxis, bacterial infections remain a leading cause of morbidity and mortality in patients with sickle cell disease (SCD). Besides hyposplenism, inflammatory and genetic factors might modulate their susceptibility to bacterial infections. We performed a candidate gene association of single nucleotide polymorphisms (SNPs) located in Toll-like receptor (TLR) genes, encoding prominent molecules for innate immune responses, with the occurrence of bacterial infections in patients with SCD. A cohort followed in centres in Brazil, France and Senegal (n = 430) was divided in two groups: patients who presented at least one episode of bacterial infection (n = 235) and patients who never had bacterial infections (n = 195). There were no differences in gender or age distribution among the groups. The frequency of the TLR2 rs4696480 TA genotype was significantly lower in the infected group (50% vs. 67%, odds ratio [OR] = 0·50, 95% confidence interval [CI] 0·34-0·75, P < 0·001), and the TT genotype was significantly higher in the infected group (15% vs. 5%, OR = 3·18, 95% CI 1·53-6·61, P < 0·001). Previous reports demonstrated higher secretion of inflammatory factors in cells from AA individuals, lower occurrence and severity of immune diseases in T carriers. The rs4696480 TA genotype might stand between deleterious effects of over inflammatory response (AA genotype) and inefficient responses (TT genotype) to infectious agents in SCD settings.
Collapse
Affiliation(s)
- Karina Tozatto-Maio
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for Cell-Based Therapy, Blood Centre of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Haematology, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Robert Girot
- Hôpital Tenon, Hôpitaux Universitaires Est Parisien, Paris, France
| | - Indou D Ly
- Pediatrics Unit, Cheikh Anta Diop University, Centre Hospitalier National d'Enfants Albert Royer, Dakar, Senegal
| | - Vanderson Rocha
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Haematology, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil.,Department of Haematology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Ana C Silva Pinto
- Centre for Cell-Based Therapy, Blood Centre of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Yahia Benzerara
- Département de Bactériologie, Hôpitaux Universitaires Est Parisien, Paris, France
| | - Carla L Dinardo
- Department of Haematology, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Simone Kashima
- Centre for Cell-Based Therapy, Blood Centre of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Itauá Leston-Araujo
- INSERM 1160, Alloimmunity-Autoimmunity-Transplantation, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chantal Kenzey
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Guilherme H H Fonseca
- Department of Haematology, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Evandra S Rodrigues
- Centre for Cell-Based Therapy, Blood Centre of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Volt
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Luciana R Jarduli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Annalisa Ruggeri
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Cellular Therapy & Immunobiology Working Party of EBMT, Rome, Italy.,Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Sandra F M Gualandro
- Department of Haematology, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Hanadi Elayoubi
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Renato Cunha
- Centre for Cell-Based Therapy, Blood Centre of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Barbara Cappelli
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kelen C R Malmegrim
- Centre for Cell-Based Therapy, Blood Centre of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Belinda P Simões
- Centre for Cell-Based Therapy, Blood Centre of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliane Gluckman
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco.,Eurocord, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ryad Tamouza
- INSERM U955, Centre Hospitalier Universitaire Henri Mondor, Créteil, France
| |
Collapse
|
29
|
Recipient priming to one RBC alloantigen directly enhances subsequent alloimmunization in mice. Blood Adv 2019; 2:105-115. [PMID: 29365318 DOI: 10.1182/bloodadvances.2017010124] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022] Open
Abstract
Individuals that become immunized to red blood cell (RBC) alloantigens can experience an increased rate of antibody formation to additional RBC alloantigens following subsequent transfusion. Despite this, how an immune response to one RBC immunogen may impact subsequent alloimmunization to a completely different RBC alloantigen remains unknown. Our studies demonstrate that Kell blood group antigen (KEL) RBC transfusion in the presence of inflammation induced by poly (I:C) (PIC) not only enhances anti-KEL antibody production through a CD4+ T-cell-dependent process but also directly facilitates anti-HOD antibody formation following subsequent exposure to the disparate HOD (hen egg lysozyme, ovalbumin, fused to human blood group antigen Duffy b) antigen. PIC/KEL priming of the anti-HOD antibody response required that RBCs express both the KEL and HOD antigens (HOD × KEL RBCs), as transfusion of HOD RBCs plus KEL RBCs or HOD RBCs alone failed to impact anti-HOD antibody formation in recipients previously primed with PIC/KEL. Transfer of CD4+ T cells from PIC/KEL-primed recipients directly facilitated anti-HOD antibody formation following (HOD × KEL) RBC transfusion. RBC alloantigen priming was not limited to PIC/KEL enhancement of anti-HOD alloantibody formation, as HOD-reactive CD4+ T cells enhanced anti-glycophorin A (anti-GPA) antibody formation in the absence of inflammation following transfusion of RBCs coexpressing GPA and HOD. These results demonstrate that immune priming to one RBC alloantigen can directly enhance a humoral response to a completely different RBC alloantigen, providing a potential explanation for why alloantibody responders may exhibit increased immune responsiveness to additional RBC alloantigens following subsequent transfusion.
Collapse
|
30
|
How I safely transfuse patients with sickle-cell disease and manage delayed hemolytic transfusion reactions. Blood 2018; 131:2773-2781. [PMID: 29724898 DOI: 10.1182/blood-2018-02-785964] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
Transfusions can be a life-saving treatment of patients with sickle-cell disease (SCD). However, availability of matched units can be limiting because of distinctive blood group polymorphisms in patients of African descent. Development of antibodies against the transfused red blood cells (RBCs), resulting in delayed hemolytic transfusion reactions (DHTRs), can be life-threatening and pose unique challenges for this population with regard to treatment strategies and transfusion management protocols. In cases where the transfused cells and the patient's own RBCs are destroyed, diagnosis of DHTR can be difficult because symptoms may mimic vaso-occlusive crisis, and frequently, antibodies are undetectable. Guidelines are needed for early diagnosis of DHTR because treatment may need to include temporarily withholding any new transfusions to avoid further hemolysis. Also needed are case-control studies to optimally tailor treatments based on the severity of DHTR and develop preventive transfusion strategies for patients at DHTR risk. Here, we will review gaps in knowledge and describe through case studies our recommended approach to prevent alloimmunization and to diagnose and treat symptomatic DHTRs for which complementary mechanistic studies to understand their pathogenesis are sorely needed.
Collapse
|
31
|
Garraud O, Sut C, Haddad A, Tariket S, Aloui C, Laradi S, Hamzeh-Cognasse H, Bourlet T, Zeni F, Aubron C, Ozier Y, Laperche S, Peyrard T, Buffet P, Guyotat D, Tavernier E, Cognasse F, Pozzetto B, Andreu G. Transfusion-associated hazards: A revisit of their presentation. Transfus Clin Biol 2018; 25:118-135. [PMID: 29625790 DOI: 10.1016/j.tracli.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a therapy or a support to other therapies, despite being largely beneficial to patients in general, transfusion it is not devoid of some risks. In a moderate number of cases, patients may manifest adverse reactions, otherwise referred to as transfusion-associated hazards (TAHs). The latest French 2016 haemovigilance report indicates that 93% of TAHs are minor (grade 1), 5.5% are moderate (grade 2) and 1.6% are severe (grade 3), with only five deaths (grade 4) being attributed to transfusion with relative certainty (imputability of level [or grade] 1 to 3). Health-care providers need to be well aware of the benefits and potential risks (to best evaluate and discuss the benefit-risk ratio), how to prevent TAHs, the overall costs and the availability of alternative therapeutic options. In high-income countries, most blood establishments (BEs) and hospital blood banks (HBBs) have developed tools for reporting and analysing at least severe transfusion reactions. With nearly two decades of haemovigilance, transfusion reaction databases should be quite informative, though there are four main caveats that prevent it from being fully efficient: (ai) reporting is mainly declarative and is thus barely exhaustive even in countries where it is mandatory by law; (aii) it is often difficult to differentiate between the different complications related to transfusion, diseases, comorbidities and other types of therapies in patients suffering from debilitating conditions; (aiii) there is a lack of consistency in the definitions used to describe and report some transfusion reactions, their severity and their likelihood of being related to transfusion; and (aiv) it is difficult to assess the imputability of a particular BC given to a patient who has previously received many BCs over a relatively short period of time. When compiling all available information published so far, it appears that TAHs can be analysed using different approaches: (bi) their pathophysiological nature; (bii) their severity; (biii) the onset scheme; (biv) a quality assessment (preventable or non-preventable); (bv) their impact on ongoing therapy. Moreover, TAHs can be reported either in a non-integrative or in an integrative way; in the latter case, presentation may also differ when issued by a blood establishment or a treating ward. At some point, a recapitulative document would be useful to gain a better understanding of TAHs in order to decrease their occurrence and severity and allow decision makers to determine action plans: this is what this review attempts to make. This review attempts to merge the different aspects, with a focus on the hospital side, i.e., how the most frequent TAHs can be avoided or mitigated.
Collapse
Affiliation(s)
- O Garraud
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Institut National de la Transfusion Sanguine, 75017 Paris, France.
| | - C Sut
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - A Haddad
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | - S Tariket
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - C Aloui
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - S Laradi
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | | | - T Bourlet
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Microbiology, University Hospital, 42023 Saint-Etienne, France
| | - F Zeni
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Critical Care, University Hospital, 29200 Saint-Etienne, France
| | - C Aubron
- Université de Bretagne Occidentale, 29200 Brest, France; Department of Critical Care, University Hospital, 75005 Brest, France
| | - Y Ozier
- Université de Bretagne Occidentale, 29200 Brest, France; Department of Critical Care, University Hospital, 75005 Brest, France
| | - S Laperche
- Institut National de la Transfusion Sanguine, 75017 Paris, France
| | - T Peyrard
- Institut National de la Transfusion Sanguine, 75017 Paris, France; Inserm S_1134, 75015 Paris, France
| | - P Buffet
- Institut National de la Transfusion Sanguine, 75017 Paris, France; Inserm S_1134, 75015 Paris, France; University Paris-Descartes, Paris, France
| | - D Guyotat
- UMR_5229, University of Lyon, 69675 Lyon, France; Institut du Cancer Lucien Neuwirth, 42023 Saint-Etienne, France
| | - E Tavernier
- UMR_5229, University of Lyon, 69675 Lyon, France; Institut du Cancer Lucien Neuwirth, 42023 Saint-Etienne, France
| | - F Cognasse
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | - B Pozzetto
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Microbiology, University Hospital, 42023 Saint-Etienne, France
| | - G Andreu
- Institut National de la Transfusion Sanguine, 75017 Paris, France
| |
Collapse
|
32
|
Red blood cell alloimmunization: new findings at the bench and new recommendations for the bedside. Curr Opin Hematol 2017; 23:543-549. [PMID: 27454234 DOI: 10.1097/moh.0000000000000277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW To summarize recent discoveries from clinical studies and animal models that contribute to understanding the alloimmune response to non-ABO blood group antigens. RECENT FINDINGS Several studies have confirmed high rates of alloimmunization among patients requiring chronic red blood cell (RBC) transfusion. Moreover, 'triggers' for alloantibody development in the transfusion setting have been identified, with a number of investigations linking recipient inflammation to a higher likelihood of alloimmunization. Additional associations between human leukocyte antigen expression and CD4 T-cell markers in 'responder' or 'nonresponder' humans have been revealed. Recent animal studies have described novel mechanistic properties by which the alloimmune response is governed, including the critical role played by dendritic cells in transfusion-associated alloimmunization. New light has also been shed on the properties of alloantibodies developed as a result of pregnancy, as well as mechanisms through which such alloimmunization may be prevented. SUMMARY Many of the clinical/biological factors that contribute to the RBC alloimmune response have been further elucidated. This knowledge will be applied to identify individuals most likely to mount an immune response to RBC antigens, such that appropriate resources and strategies for preventing alloimmunization (or mitigating its harmful effects) can be implemented.
Collapse
|
33
|
Elayeb R, Tamagne M, Pinheiro M, Ripa J, Djoudi R, Bierling P, Pirenne F, Vingert B. Anti-CD20 Antibody Prevents Red Blood Cell Alloimmunization in a Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 199:3771-3780. [DOI: 10.4049/jimmunol.1700754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022]
|
34
|
Pirenne F, Bartolucci P, Habibi A. Management of delayed hemolytic transfusion reaction in sickle cell disease: Prevention, diagnosis, treatment. Transfus Clin Biol 2017; 24:227-231. [DOI: 10.1016/j.tracli.2017.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Gehrie EA, Ness PM, Bloch EM, Kacker S, Tobian AAR. Medical and economic implications of strategies to prevent alloimmunization in sickle cell disease. Transfusion 2017; 57:2267-2276. [PMID: 28653325 PMCID: PMC5695925 DOI: 10.1111/trf.14212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND The pathogenesis of alloimmunization is not well understood, and initiatives that aim to reduce the incidence of alloimmunization are generally expensive and either ineffective or unproven. In this review, we summarize the current medical literature regarding alloimmunization in the sickle cell disease (SCD) population, with a special focus on the financial implications of different approaches to prevent alloimmunization. STUDY DESIGN AND METHODS A review of EMBASE and MEDLINE data from January 2006 through January 2016 was conducted to identify articles relating to complications of SCD. The search was specifically designed to capture articles that evaluated the costs of various strategies to prevent alloimmunization and its sequelae. RESULTS Currently, there is no proven, inexpensive way to prevent alloimmunization among individuals with SCD. Serologic matching programs are not uniformly successful in preventing alloimmunization, particularly to Rh antigens, because of the high frequency of variant Rh alleles in the SCD population. A genotypic matching program could offer some cost savings compared to a serologic matching program, but the efficacy of gene matching for the prevention of alloimmunization is largely unproven, and large-scale implementation could be expensive. CONCLUSIONS Future reductions in the costs associated with genotype matching could make a large-scale program economically feasible. Novel techniques to identify patients at highest risk for alloimmunization could improve the cost effectiveness of antigen matching programs. A clinical trial comparing the efficacy of serologic matching to genotype matching would be informative.
Collapse
Affiliation(s)
- Eric A Gehrie
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Ness
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Seema Kacker
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
36
|
Hendrickson JE. Red blood cell alloimmunisation: induction of immunity and potential mitigation strategies. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/voxs.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- J. E. Hendrickson
- Department of Laboratory Medicine; Yale University School of Medicine; New Haven CT USA
- Department of Pediatrics; Yale University School of Medicine; New Haven CT USA
| |
Collapse
|
37
|
Yazdanbakhsh K. Immunoregulatory networks in sickle cell alloimmunization. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:457-461. [PMID: 27913516 PMCID: PMC5427509 DOI: 10.1182/asheducation-2016.1.457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Red blood cell (RBC) transfusions are critical for treatment and prevention of complications of sickle cell disease (SCD), and most SCD patients will receive 1 or more transfusions by age 20. However, SCD alloimmunization remains a serious complication of transfusions that can lead to life-threatening acute and delayed transfusion reactions. Alloimmunization rates are higher in SCD patients most likely due to RBC antigenic differences between largely white donors vs mainly African-American recipients and frequency of transfusions. However, it remains unclear why some but not all SCD patients develop alloantibodies. Cellular immune responses that differ between alloimmunized and nonalloimmunized SCD patients are beginning to be characterized. Altered CD4+ T helper cell responses, known to control immunoglobulin G production, have been identified in alloimmunized SCD patients, including abnormalities in regulatory T cells, as well as helper type 1 (TH1), TH17, and follicular helper T cells. Furthermore, heightened innate immune cell responses to cell free heme with cell polarization toward proinflammatory T cell profiles were recently reported in SCD antibody responders, suggesting that the ongoing hemolytic state in SCD may impair the ability of innate immune cells in these already alloimmunized patients to counter alloimmunization. Identification of molecular pathways in key cellular components that differ between alloimmunized and nonalloimmunized SCD patients is likely to lead to identification of biomarkers of alloimmunization and future design of targeted therapies to prevent or even dampen alloantibody responses in these highly susceptible patients.
Collapse
|
38
|
Yazdanbakhsh K, Shaz BH, Hillyer CD. Immune Regulation of sickle Cell Alloimmunization. ACTA ACUST UNITED AC 2016; 12:248-253. [PMID: 28261322 DOI: 10.1111/voxs.12296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Red blood cell (RBC) transfusion remains an important treatment for patients with sickle cell disease (SCD) and the majority of patients receive transfusions by adulthood. However, SCD patients are at a high risk of alloimmunization, which can cause life-threatening complications. The high rate of alloimmunization can in part be explained by chronic inflammatory condition in SCD characterized by significant immune and inflammatory activation. Heightened immune effector cell responses and/or impaired regulatory networks are likely to drive alloantibody production in alloimmunized SCD patients. In support of this, altered T cell immunoregulation, known to control antibody responses, have been reported in alloimmunized SCD patients. In addition, stronger follicular help T cell responses that help antibody production by B cells were described in alloimmunized as compared to non-alloimmunized SCD patients. Furthermore, several innate immune abnormalities have been identified in alloimmunized SCD patients, including a compromised anti-inflammatory response against extracellular cell free heme. The data support a model in which alloimmunized SCD patients are unable to switch off their proinflammatory state in response to the ongoing hemolytic state characteristic of SCD, placing this patient subset at a higher risk to develop a strong immune response against allogeneic determinants on transfused RBCs, thus increasing the risk of further alloimmunization. A detailed mechanistic understanding of innate immune abnormalities that can contribute to pathogenic T cell responses in alloimmunized SCD patients will lay the foundation for identification of biomarkers of alloimmunization with the goal that this information will ultimately help guide therapy in these patients.
Collapse
|
39
|
Godefroy E, Liu Y, Shi P, Mitchell WB, Cohen D, Chou ST, Manwani D, Yazdanbakhsh K. Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization. Haematologica 2016; 101:1028-38. [PMID: 27229712 PMCID: PMC5060019 DOI: 10.3324/haematol.2016.147181] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/19/2016] [Indexed: 12/24/2022] Open
Abstract
Transfusions are the main treatment for patients with sickle cell disease. However, alloimmunization remains a major life-threatening complication for these patients, but the mechanism underlying pathogenesis of alloimmunization is not known. Given the chronic hemolytic state characteristic of sickle cell disease, resulting in release of free heme and activation of inflammatory cascades, we tested the hypothesis that anti-inflammatory response to heme is compromised in alloimmunized sickle patients, increasing their risk of alloimmunization. Heme-exposed monocyte-derived dendritic cells from both non-alloimmunized sickle patients and healthy donors inhibited priming of pro-inflammatory CD4(+) type 1 T cells, and exhibited significantly reduced levels of the maturation marker CD83. In contrast, in alloimmunized patients, heme did not reverse priming of pro-inflammatory CD4(+) cells by monocyte-derived dendritic cells or their maturation. Furthermore, heme dampened NF-κB activation in non-alloimmunized, but not in alloimmunized monocyte-derived dendritic cells. Heme-mediated CD83 inhibition depended on Toll-like receptor 4 but not heme oxygenase 1. These data suggest that extracellular heme limits CD83 expression on dendritic cells in non-alloimmunized sickle patients through a Toll-like receptor 4-mediated pathway, involving NF-κB, resulting in dampening of pro-inflammatory responses, but that in alloimmunized patients this pathway is defective. This opens up the possibility of developing new therapeutic strategies to prevent sickle cell alloimmunization.
Collapse
Affiliation(s)
| | - Yunfeng Liu
- Laboratory of Complement Biology, New York Blood Center, NY
| | | | | | | | | | - Deepa Manwani
- Division of Pediatric Hematology/Oncology - Children's Hospital at Montefiore, New York, NY, USA
| | | |
Collapse
|
40
|
Balandya E, Reynolds T, Obaro S, Makani J. Alteration of lymphocyte phenotype and function in sickle cell anemia: Implications for vaccine responses. Am J Hematol 2016; 91:938-46. [PMID: 27237467 DOI: 10.1002/ajh.24438] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
Abstract
Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper: CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg ), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27 + IgM(high) IgD(low) memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. Am. J. Hematol. 91:938-946, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emmanuel Balandya
- Muhimbili University of Health and Allied Sciences (MUHAS); P.O. Box 65001 Dar-es-Salaam Tanzania
| | - Teri Reynolds
- Muhimbili University of Health and Allied Sciences (MUHAS); P.O. Box 65001 Dar-es-Salaam Tanzania
- University of San Francisco, California (UCSF); 505 Parnassus Ave. San Francisco CA 94143 United States
| | - Stephen Obaro
- University of Nebraska Medical Center (UNMC), 982162 Nebraska Medical Center; Omaha Nebraska 68198-2162 United States
- University of Abuja Teaching Hospital; Gwagwalada, P.M.B 228 Abuja Nigeria
| | - Julie Makani
- Muhimbili University of Health and Allied Sciences (MUHAS); P.O. Box 65001 Dar-es-Salaam Tanzania
| |
Collapse
|
41
|
Pirenne F. TIGIT-positive circulating follicular helper T cells and sickle cell alloimmunization. Haematologica 2016; 100:1371-3. [PMID: 26521294 DOI: 10.3324/haematol.2015.136135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- France Pirenne
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Université Paris Est, Faculté de Médecine, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
42
|
Elayeb R, Tamagne M, Bierling P, Noizat-Pirenne F, Vingert B. Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion. Haematologica 2016; 101:209-18. [PMID: 26430173 PMCID: PMC4938341 DOI: 10.3324/haematol.2015.134171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Murine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4(+) T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α(+) dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4(+) T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells.
Collapse
Affiliation(s)
- Rahma Elayeb
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Tamagne
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Philippe Bierling
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Université Paris Est, Faculté de Médecine, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - France Noizat-Pirenne
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Université Paris Est, Faculté de Médecine, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Vingert
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
43
|
Nickel RS, Horan JT, Fasano RM, Meyer E, Josephson CD, Winkler AM, Yee ME, Kean LS, Hendrickson JE. Immunophenotypic parameters and RBC alloimmunization in children with sickle cell disease on chronic transfusion. Am J Hematol 2015; 90:1135-41. [PMID: 26361243 DOI: 10.1002/ajh.24188] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/16/2022]
Abstract
Alloimmunization against red blood cell (RBC) antigens is a cause of morbidity and mortality in transfused patients with sickle cell disease (SCD). To investigate distinguishing characteristics of patients who develop RBC alloantibodies after transfusion (responders) versus those who do not (non-responders), a cross-sectional study of 90 children with SCD on chronic RBC transfusion therapy at a single institution was conducted in which 18 immune parameters (including T and B cell subsets) were tested via flow cytometry, and medical records were reviewed. RBC alloimmunization was present in 26/90 (29%) patients, with anti-E, K, and C among the most commonly detected alloantibodies despite prophylactic matching for these antigens at the study institution. In addition, RBC autoantibodies had been detected in 18/26 (69%) of alloimmunized versus 7/64 (11%) of non-alloimmunized patients (P < 0.0001). Alloimmunized patients were significantly older (median 13.0 years vs. 10.7 years, P = 0.010) and had more RBC unit exposures (median 148 U vs. 82 U, P = 0.020) than non-alloimmunized patients. Sex, age at initiation of chronic transfusion, splenectomy, stroke, and transfusion outside of the study institution were not significantly associated with RBC alloimmunization. Alloimmunized patients had a significantly increased percentage of CD4+ T memory cells compared to non-alloimmunized patients (57% vs. 49%, P = 0.0047), with no other significant differences in immune cell subsets or laboratory values detected between these groups. Additional research of RBC alloimmunization is needed to optimize transfusion therapy and to develop strategies to prevent alloimmunization.
Collapse
Affiliation(s)
- Robert S. Nickel
- Division of Hematology; Children's National Health System; Washington District of Columbia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University; Atlanta Georgia
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine; Emory University; Atlanta Georgia
| | - John T. Horan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University; Atlanta Georgia
| | - Ross M. Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University; Atlanta Georgia
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine; Emory University; Atlanta Georgia
| | - Erin Meyer
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine; Emory University; Atlanta Georgia
| | - Cassandra D. Josephson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University; Atlanta Georgia
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine; Emory University; Atlanta Georgia
| | - Anne M. Winkler
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine; Emory University; Atlanta Georgia
| | - Marianne E.M. Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University; Atlanta Georgia
| | - Leslie S. Kean
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University; Atlanta Georgia
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Department of Pediatrics, University of Washington, and the Fred Hutchinson Cancer Research Center; Seattle Washington
| | - Jeanne E. Hendrickson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University; Atlanta Georgia
- Department of Laboratory Medicine; Yale University; New Haven Connecticut
- Department of Pediatrics; Yale University; New Haven Connecticut
| |
Collapse
|
44
|
Nickel RS, Hendrickson JE, Fasano RM, Meyer EK, Winkler AM, Yee MM, Lane PA, Jones YA, Pashankar FD, New T, Josephson CD, Stowell SR. Impact of red blood cell alloimmunization on sickle cell disease mortality: a case series. Transfusion 2015; 56:107-14. [DOI: 10.1111/trf.13379] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Robert Sheppard Nickel
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Division of Hematology; Children's National Health System; Washington DC
| | - Jeanne E. Hendrickson
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
- Department of Pediatrics; Yale University; New Haven Connecticut
- Department of Laboratory Medicine; Yale University; New Haven Connecticut
| | - Ross M. Fasano
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Erin K. Meyer
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
| | - Anne M. Winkler
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
| | - Marianne M. Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Peter A. Lane
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Yuritzi A. Jones
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | | | - Tamara New
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Cassandra D. Josephson
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta; Emory University; Atlanta Georgia
| | - Sean R. Stowell
- Center for Transfusion and Cellular Therapy, Department of Pathology; Emory University; Atlanta Georgia
| |
Collapse
|
45
|
Godefroy E, Zhong H, Pham P, Friedman D, Yazdanbakhsh K. TIGIT-positive circulating follicular helper T cells display robust B-cell help functions: potential role in sickle cell alloimmunization. Haematologica 2015; 100:1415-25. [PMID: 26250578 DOI: 10.3324/haematol.2015.132738] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 12/24/2022] Open
Abstract
T follicular helper cells are the main CD4(+) T cells specialized in supporting B-cell responses, but their role in driving transfusion-associated alloimmunization is not fully characterized. Reports of T follicular helper subsets displaying various markers and functional activities underscore the need for better characterization/identification of markers with defined functions. Here we show that a previously unidentified subset of human circulating T follicular helper cells expressing TIGIT, the T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains, exhibit strong B-cell help functions. Compared to the subset lacking the receptor, T follicular helper cells expressing this receptor up-regulated co-stimulatory molecules and produced higher levels of interleukins (IL-21 and IL-4) critical for promoting B-cell activation/differentiation. Furthermore, this subset was more efficient at inducing the differentiation of B cells into plasmablasts and promoting immunoglobulin G production. Blocking antibodies abrogated the B-cell help properties of receptor-expressing T follicular helper cells, consistent with the key role of this molecule in T follicular helper-associated responses. Importantly, in chronically transfused patients with sickle cell anemia, we identified functional differences of this subset between alloimmunized and non-alloimmunized patients. Altogether, these studies suggest that expression of the T-cell immunoreceptor with Ig and immunoreceptor tyro-sine-based inhibitory domains not only represents a novel circulating T follicular helper biomarker, but is also functional and promotes strong B-cell help and ensuing immunoglobulin G production. These findings open the way to defining new diagnostic and therapeutic strategies in modulating humoral responses in alloimmunization, and possibly vaccination, autoimmunity and immune deficiencies.
Collapse
Affiliation(s)
| | - Hui Zhong
- Laboratory of Complement Biology, New York Blood Center, NY, USA
| | - Petra Pham
- Laboratory of Flow Cytometry, New York Blood Center, NY, USA
| | - David Friedman
- Departments of Pediatrics and Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|