1
|
Cao Z, Wichmann CW, Burvenich IJG, Osellame LD, Guo N, Rigopoulos A, O'Keefe GJ, Scott FE, Lorensuhewa N, Lynch KP, Scott AM. Radiolabelling and preclinical characterisation of [ 89Zr]Zr-Df-ATG-101 bispecific to PD-L1/4-1BB. Eur J Nucl Med Mol Imaging 2024; 51:3202-3214. [PMID: 38730087 PMCID: PMC11368977 DOI: 10.1007/s00259-024-06742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- School of Chemistry - Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Laura Danielle Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | | | | | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
2
|
Van der Vreken A, Vanderkerken K, De Bruyne E, De Veirman K, Breckpot K, Menu E. Fueling CARs: metabolic strategies to enhance CAR T-cell therapy. Exp Hematol Oncol 2024; 13:66. [PMID: 38987856 PMCID: PMC11238373 DOI: 10.1186/s40164-024-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological malignancies to ultimately suggest novel combination strategies.
Collapse
Affiliation(s)
- Arne Van der Vreken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Team Laboratory of Cellular and Molecular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium.
| |
Collapse
|
3
|
Kaptein P, Slingerland N, Metoikidou C, Prinz F, Brokamp S, Machuca-Ostos M, de Roo G, Schumacher TN, Yeung YA, Moynihan KD, Djuretic IM, Thommen DS. CD8-Targeted IL2 Unleashes Tumor-Specific Immunity in Human Cancer Tissue by Reviving the Dysfunctional T-cell Pool. Cancer Discov 2024; 14:1226-1251. [PMID: 38563969 PMCID: PMC11215409 DOI: 10.1158/2159-8290.cd-23-1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).
Collapse
Affiliation(s)
- Paulien Kaptein
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Nadine Slingerland
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Christina Metoikidou
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Felix Prinz
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Simone Brokamp
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Mercedes Machuca-Ostos
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Guido de Roo
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ton N.M. Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Yik A. Yeung
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | | | | - Daniela S. Thommen
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Li K, Zhou Y, Zang M, Jin X, Li X. Therapeutic prospects of nectin-4 in cancer: applications and value. Front Oncol 2024; 14:1354543. [PMID: 38606099 PMCID: PMC11007101 DOI: 10.3389/fonc.2024.1354543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Nectin-4 is a Ca2+-independent immunoglobulin-like protein that exhibits significantly elevated expression in malignant tumors while maintaining extremely low levels in healthy adult tissues. In recent years, overexpression of Nectin-4 has been implicated in tumor occurrence and development of various cancers, including breast cancer, urothelial cancer, and lung cancer. In 2019, the Food and Drug Administration approved enfortumab vedotin, the first antibody-drug conjugate targeting Nectin-4, for the treatment of urothelial carcinoma. This has emphasized the value of Nectin-4 in tumor targeted therapy and promoted the implementation of more clinical trials of enfortumab vedotin. In addition, many new drugs targeting Nectin-4 for the treatment of malignant tumors have entered clinical trials, with the aim of exploring potential new indications. However, the exact mechanisms by which Nectin-4 affects tumorigenesis and progression are still unclear, and the emergence of drug resistance and treatment-related adverse reactions poses challenges. This article reviews the diagnostic potential, prognostic significance, and molecular role of Nectin-4 in tumors, with a focus on clinical trials in the field of Nectin-4-related tumor treatment and the development of new drugs targeting Nectin-4.
Collapse
Affiliation(s)
- Kaiyue Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Jin
- Imaging Center, Jinan Third People’s Hospital, Jinan, Shandong, China
| | - Xin Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
De Sousa Linhares A, Sharma S, Steinberger P, Leitner J. Transcriptional reprogramming via signaling domains of CD2, CD28, and 4-1BB. iScience 2024; 27:109267. [PMID: 38455974 PMCID: PMC10918215 DOI: 10.1016/j.isci.2024.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/23/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
Costimulatory signals provided to T cells during antigen encounter have a decisive role in the outcome of immune responses. Here, we used chimeric receptors harboring the extracellular domain of mouse inducible T cell costimulator (mICOS) to study transcriptional activation mediated by cytoplasmic sequences of the major T cell costimulatory receptors CD28, 4-1BB, and CD2. The chimeric receptors were introduced in a T cell reporter platform that allows to simultaneously evaluate nuclear factor κB (NF-κB), NFAT, and AP-1 activation. Engagement of the chimeric receptors induced distinct transcriptional profiles. CD28 signaling activated all three transcription factors, whereas 4-1BB strongly promoted NF-κB and AP-1 but downregulated NFAT activity. CD2 signals resulted in the strongest upregulation of NFAT. Transcriptome analysis revealed pronounced and distinct gene expression signatures upon CD2 and 4-1BB signaling. Using the intracellular sequence of CD28, we exemplify that distinct signaling motifs endow chimeric receptors with different costimulatory capacities.
Collapse
Affiliation(s)
- Annika De Sousa Linhares
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Loop lab Bio GmbH, Vienna, Austria
| | - Sumana Sharma
- MRC Translational Immune Discovery Unit John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Ma Y, Luo F, Zhang Y, Liu Q, Xue J, Huang Y, Zhao Y, Yang Y, Fang W, Zhou T, Chen G, Cao J, Chen Q, She X, Luo P, Liu G, Zhang L, Zhao H. Preclinical characterization and phase 1 results of ADG106 in patients with advanced solid tumors and non-Hodgkin's lymphoma. Cell Rep Med 2024; 5:101414. [PMID: 38330942 PMCID: PMC10897605 DOI: 10.1016/j.xcrm.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
ADG106, a ligand-blocking agonistic antibody targeting CD137 (4-1BB), exhibits promising results in preclinical studies, demonstrating tumor suppression in various animal models and showing a balanced profile between safety and efficacy. This phase 1 study enrolls 62 patients with advanced malignancies, revealing favorable tolerability up to the 5.0 mg/kg dose level. Dose-limiting toxicity occurs in only one patient (6.3%) at 10.0 mg/kg, resulting in grade 4 neutropenia. The most frequent treatment-related adverse events include leukopenia (22.6%), neutropenia (22.6%), elevated alanine aminotransferase (22.6%), rash (21.0%), itching (17.7%), and elevated aspartate aminotransferase (17.7%). The overall disease control rates are 47.1% for advanced solid tumors and 54.5% for non-Hodgkin's lymphoma. Circulating biomarkers suggest target engagement by ADG106 and immune modulation of circulating T, B, and natural killer cells and cytokines interferon γ and interleukin-6, which may affect the probability of clinical efficacy. ADG106 has a manageable safety profile and preliminary anti-tumor efficacy in patients with advanced cancers (this study was registered at ClinicalTrials.gov: NCT03802955).
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qianwen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiaxin Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | | | | | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
7
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Leone GE, Shields DC, Haque A, Banik NL. Rehabilitation: Neurogenic Bone Loss after Spinal Cord Injury. Biomedicines 2023; 11:2581. [PMID: 37761022 PMCID: PMC10526516 DOI: 10.3390/biomedicines11092581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoporosis is a common skeletal disorder which can severely limit one's ability to complete daily tasks due to the increased risk of bone fractures, reducing quality of life. Spinal cord injury (SCI) can also result in osteoporosis and sarcopenia. Most individuals experience sarcopenia and osteoporosis due to advancing age; however, individuals with SCI experience more rapid and debilitating levels of muscle and bone loss due to neurogenic factors, musculoskeletal disuse, and cellular/molecular events. Thus, preserving and maintaining bone mass after SCI is crucial to decreasing the risk of fragility and fracture in vulnerable SCI populations. Recent studies have provided an improved understanding of the pathophysiology and risk factors related to musculoskeletal loss after SCI. Pharmacological and non-pharmacological therapies have also provided for the reduction in or elimination of neurogenic bone loss after SCI. This review article will discuss the pathophysiology and risk factors of muscle and bone loss after SCI, including the mechanisms that may lead to muscle and bone loss after SCI. This review will also focus on current and future pharmacological and non-pharmacological therapies for reducing or eliminating neurogenic bone loss following SCI.
Collapse
Affiliation(s)
- Giovanna E. Leone
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
9
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Heumann T, Judkins C, Li K, Lim SJ, Hoare J, Parkinson R, Cao H, Zhang T, Gai J, Celiker B, Zhu Q, McPhaul T, Durham J, Purtell K, Klein R, Laheru D, De Jesus-Acosta A, Le DT, Narang A, Anders R, Burkhart R, Burns W, Soares K, Wolfgang C, Thompson E, Jaffee E, Wang H, He J, Zheng L. A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma. Nat Commun 2023; 14:3650. [PMID: 37339979 PMCID: PMC10281953 DOI: 10.1038/s41467-023-39196-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
A neoadjuvant immunotherapy platform clinical trial allows for rapid evaluation of treatment-related changes in tumors and identifying targets to optimize treatment responses. We enrolled patients with resectable pancreatic adenocarcinoma into such a platform trial (NCT02451982) to receive pancreatic cancer GVAX vaccine with low-dose cyclophosphamide alone (Arm A; n = 16), with anti-PD-1 antibody nivolumab (Arm B; n = 14), and with both nivolumab and anti-CD137 agonist antibody urelumab (Arm C; n = 10), respectively. The primary endpoint for Arms A/B - treatment-related change in IL17A expression in vaccine-induced lymphoid aggregates - was previously published. Here, we report the primary endpoint for Arms B/C: treatment-related change in intratumoral CD8+ CD137+ cells and the secondary outcomes including safety, disease-free and overall survivals for all Arms. Treatment with GVAX+nivolumab+urelumab meets the primary endpoint by significantly increasing intratumoral CD8+ CD137+ cells (p = 0.003) compared to GVAX+Nivolumab. All treatments are well-tolerated. Median disease-free and overall survivals, respectively, are 13.90/14.98/33.51 and 23.59/27.01/35.55 months for Arms A/B/C. GVAX+nivolumab+urelumab demonstrates numerically-improved disease-free survival (HR = 0.55, p = 0.242; HR = 0.51, p = 0.173) and overall survival (HR = 0.59, p = 0.377; HR = 0.53, p = 0.279) compared to GVAX and GVAX+nivolumab, respectively, although not statistically significant due to small sample size. Therefore, neoadjuvant and adjuvant GVAX with PD-1 blockade and CD137 agonist antibody therapy is safe, increases intratumoral activated, cytotoxic T cells, and demonstrates a potentially promising efficacy signal in resectable pancreatic adenocarcinoma that warrants further study.
Collapse
Affiliation(s)
- Thatcher Heumann
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vanderbilt University Medical Center, Department of Hematology-Oncology, Nashville, TN, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Carol Judkins
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Su Jin Lim
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Quantitative Sciences, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Hoare
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Rose Parkinson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Haihui Cao
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Tengyi Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Jessica Gai
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Betul Celiker
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Qingfeng Zhu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas McPhaul
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Durham
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Katrina Purtell
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - Rachel Klein
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Laheru
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Ana De Jesus-Acosta
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
| | - Amol Narang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Burkhart
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Burns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Elizabeth Thompson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- Division of Quantitative Sciences, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin He
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program at Johns Hopkins, Baltimore, MD, USA.
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Nagai H, Azuma M, Sato A, Shibui N, Ogawara S, Tsutsui Y, Suzuki A, Wakaizumi T, Ito A, Matsuyama S, Morita M, Hikosaka Kuniishi M, Ishii N, So T. Fundamental Characterization of Antibody Fusion-Single-Chain TNF Recombinant Proteins Directed against Costimulatory TNF Receptors Expressed by T-Lymphocytes. Cells 2023; 12:1596. [PMID: 37371066 DOI: 10.3390/cells12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The costimulatory signal regulated by the members of the tumor necrosis factor receptor (TNFR) superfamily expressed by T cells plays essential roles for T cell responses and has emerged as a promising target for cancer immunotherapy. However, it is unclear how the difference in TNFR costimulation contributes to T cell responses. In this study, to clarify the functional significance of four different TNFRs, OX40, 4-1BB, CD27 and GITR, we prepared corresponding single-chain TNF ligand proteins (scTNFLs) connected to IgG Fc domain with beneficial characteristics, i.e., Fc-scOX40L, Fc-sc4-1BBL, Fc-scCD27L (CD70) and Fc-scGITRL. Without intentional cross-linking, these soluble Fc-scTNFL proteins bound to corresponding TNFRs induced NF-kB signaling and promoted proliferative and cytokine responses in CD4+ and CD8+ T cells with different dose-dependencies in vitro. Mice injected with one of the Fc-scTNFL proteins displayed significantly augmented delayed-type hypersensitivity responses, showing in vivo activity. The results demonstrate that each individual Fc-scTNFL protein provides a critical costimulatory signal and exhibits quantitatively distinct activity toward T cells. Our findings provide important insights into the TNFR costimulation that would be valuable for investigators conducting basic research in cancer immunology and also have implications for T cell-mediated immune regulation by designer TNFL proteins.
Collapse
Affiliation(s)
- Hodaka Nagai
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mitsuki Azuma
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ayaka Sato
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nagito Shibui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Sayaka Ogawara
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuta Tsutsui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ayano Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tomomi Wakaizumi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Aya Ito
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shimpei Matsuyama
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mari Hikosaka Kuniishi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
12
|
Ford BR, Poholek AC. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:869-879. [PMID: 36947818 PMCID: PMC10037537 DOI: 10.4049/jimmunol.2200681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Collapse
Affiliation(s)
- B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Domenjo-Vila E, Casella V, Iwabuchi R, Fossum E, Pedragosa M, Castellví Q, Cebollada Rica P, Kaisho T, Terahara K, Bocharov G, Argilaguet J, Meyerhans A. XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections. Cell Rep 2023; 42:112123. [PMID: 36795562 DOI: 10.1016/j.celrep.2023.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/11/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
Collapse
Affiliation(s)
- Eva Domenjo-Vila
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Even Fossum
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Quim Castellví
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain; IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
14
|
Metabolic Regulation of T cell Activity: Implications for Metabolic-Based T-cell Therapies for Cancer. IRANIAN BIOMEDICAL JOURNAL 2023; 27:1-14. [PMID: 36624636 PMCID: PMC9971708 DOI: 10.52547/ibj.3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunometabolism is an emerging field in tumor immunotherapy. Understanding the metabolic competition for access to the limited nutrients between tumor cells and immune cells can reveal the complexity of the tumor microenvironment and help develop new therapeutic approaches for cancer. Recent studies have focused on modifying the function of immune cells by manipulating their metabolic pathways. Besides, identifying metabolic events, which affect the function of immune cells leads to new therapeutic opportunities for treatment of inflammatory diseases and immune-related conditions. According to the literature, metabolic pathway such as glycolysis, tricarboxylic acid cycle, and fatty acid metabolism, significantly influence the survival, proliferation, activation, and function of immune cells and thus regulate immune responses. In this paper, we reviewed the role of metabolic processes and major signaling pathways involving in T-cell regulation and T-cell responses against tumor cells. Moreover, we summarized the new therapeutics suggested to enhance anti-tumor activity of T cells through manipulating metabolic pathways.
Collapse
|
15
|
Li K, Tandurella JA, Gai J, Zhu Q, Lim SJ, Thomas DL, Xia T, Mo G, Mitchell JT, Montagne J, Lyman M, Danilova LV, Zimmerman JW, Kinny-Köster B, Zhang T, Chen L, Blair AB, Heumann T, Parkinson R, Durham JN, Narang AK, Anders RA, Wolfgang CL, Laheru DA, He J, Osipov A, Thompson ED, Wang H, Fertig EJ, Jaffee EM, Zheng L. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 2022; 40:1374-1391.e7. [PMID: 36306792 PMCID: PMC9669212 DOI: 10.1016/j.ccell.2022.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy necessitates optimization and maintenance of activated effector T cells (Teff). We prospectively collected and applied multi-omic analyses to paired pre- and post-treatment PDAC specimens collected in a platform neoadjuvant study of granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDAC vaccine (GVAX) vaccine ± nivolumab (anti-programmed cell death protein 1 [PD-1]) to uncover sensitivity and resistance mechanisms. We show that GVAX-induced tertiary lymphoid aggregates become immune-regulatory sites in response to GVAX + nivolumab. Higher densities of tumor-associated neutrophils (TANs) following GVAX + nivolumab portend poorer overall survival (OS). Increased T cells expressing CD137 associated with cytotoxic Teff signatures and correlated with increased OS. Bulk and single-cell RNA sequencing found that nivolumab alters CD4+ T cell chemotaxis signaling in association with CD11b+ neutrophil degranulation, and CD8+ T cell expression of CD137 was required for optimal T cell activation. These findings provide insights into PD-1-regulated immune pathways in PDAC that should inform more effective therapeutic combinations that include TAN regulators and T cell activators.
Collapse
Affiliation(s)
- Keyu Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Joseph A Tandurella
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jessica Gai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Su Jin Lim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwayne L Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tao Xia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Guanglan Mo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacob T Mitchell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle Montagne
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Melissa Lyman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ludmila V Danilova
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacquelyn W Zimmerman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benedict Kinny-Köster
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tengyi Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Linda Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alex B Blair
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thatcher Heumann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rose Parkinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer N Durham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amol K Narang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel A Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth D Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
16
|
Hamid O, Chiappori AA, Thompson JA, Doi T, Hu-Lieskovan S, Eskens FALM, Ros W, Diab A, Spano JP, Rizvi NA, Wasser JS, Angevin E, Ott PA, Forgie A, Yang W, Guo C, Chou J, El-Khoueiry AB. First-in-human study of an OX40 (ivuxolimab) and 4-1BB (utomilumab) agonistic antibody combination in patients with advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2022-005471. [PMID: 36302562 PMCID: PMC9621185 DOI: 10.1136/jitc-2022-005471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ivuxolimab (PF-04518600) and utomilumab (PF-05082566) are humanized agonistic IgG2 monoclonal antibodies against OX40 and 4-1BB, respectively. This first-in-human, multicenter, open-label, phase I, dose-escalation/dose-expansion study explored safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of ivuxolimab+utomilumab in patients with advanced solid tumors. METHODS Dose-escalation: patients with advanced bladder, gastric, or cervical cancer, melanoma, head and neck squamous cell carcinoma, or non-small cell lung cancer (NSCLC) who were unresponsive to available therapies, had no standard therapy available or declined standard therapy were enrolled into five dose cohorts: ivuxolimab (0.1-3 mg/kg every 2 weeks (Q2W)) intravenously plus utomilumab (20 or 100 mg every 4 weeks (Q4W)) intravenously. Dose-expansion: patients with melanoma (n=10) and NSCLC (n=20) who progressed on prior anti-programmed death receptor 1/programmed death ligand-1 and/or anti-cytotoxic T-lymphocyte-associated antigen 4 (melanoma) received ivuxolimab 30 mg Q2W intravenously plus utomilumab 20 mg Q4W intravenously. Adverse events (AEs) were graded per National Cancer Institute Common Terminology Criteria for Adverse Events V.4.03 and efficacy was assessed using Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and immune-related RECIST (irRECIST). Paired tumor biopsies and whole blood were collected to assess pharmacodynamic effects and immunophenotyping. Whole blood samples were collected longitudinally for immunophenotyping. RESULTS Dose-escalation: 57 patients were enrolled; 2 (3.5%) patients with melanoma (0.3 mg/kg+20 mg and 0.3 mg/kg+100 mg) achieved partial response (PR), 18 (31.6%) patients achieved stable disease (SD); the disease control rate (DCR) was 35.1% across all dose levels. Dose-expansion: 30 patients were enrolled; 1 patient with NSCLC achieved PR lasting >77 weeks. Seven of 10 patients with melanoma (70%) and 7 of 20 patients with NSCLC (35%) achieved SD: median (range) duration of SD was 18.9 (13.9-49.0) weeks for the melanoma cohort versus 24.1 (14.3-77.9+) weeks for the NSCLC cohort; DCR (NSCLC) was 40%. Grade 3-4 treatment-emergent AEs were reported in 28 (49.1%) patients versus 11 (36.7%) patients in dose-escalation and dose-expansion, respectively. There were no grade 5 AEs deemed attributable to treatment. Ivuxolimab area under the concentration-time curve increased in a dose-dependent manner at 0.3-3 mg/kg doses. CONCLUSIONS Ivuxolimab+utomilumab was found to be well tolerated and demonstrated preliminary antitumor activity in selected groups of patients. TRIAL REGISTRATION NUMBER NCT02315066.
Collapse
Affiliation(s)
- Omid Hamid
- Translational Research and Immunotherapy, The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | | | | | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Siwen Hu-Lieskovan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Willeke Ros
- Department of Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adi Diab
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Jean-Philippe Spano
- Medical Oncology, APHP-Sorbonne University, IPLEs Inserm1136, Pitie-Salpetrière Hospital-Paris, Paris, France
| | - Naiyer A Rizvi
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jeffrey S Wasser
- Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Eric Angevin
- Drug Development Department, Institut Gustave Roussy, Villejuif, France
| | - Patrick A Ott
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alison Forgie
- Translational Oncology, Pfizer Inc, San Francisco, California, USA
| | - Wenjing Yang
- Oncology Computational Biology, Pfizer Inc, San Diego, Calfornia, USA
| | - Cen Guo
- Clinical Pharmacology, Pfizer Inc, San Diego, California, USA
| | - Jeffrey Chou
- Early Oncology Development and Clinical Research, Pfizer Inc, San Francisco, California, USA
| | - Anthony B El-Khoueiry
- Department of Internal Medicine, Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
17
|
Huang D, Zhao C, Li R, Chen B, Zhang Y, Sun Z, Wei J, Zhou H, Gu Q, Xu J. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun 2022; 13:5338. [PMID: 36097003 PMCID: PMC9468151 DOI: 10.1038/s41467-022-33006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major challenges for discovering protein-protein interaction inhibitors is identifying selective and druggable binding sites at the protein surface. Here, we report an approach to identify a small molecular binding site to selectively inhibit the interaction of soluble RANKL and RANK for designing anti-osteoporosis drugs without undesirable immunosuppressive effects. Through molecular dynamic simulations, we discovered a binding site that allows a small molecule to selectively interrupt soluble RANKL-RANK interaction and without interfering with the membrane RANKL-RANK interaction. We describe a highly potent inhibitor, S3-15, and demonstrate its specificity to inhibit the soluble RANKL-RANK interaction with in vitro and in vivo studies. S3-15 exhibits anti-osteoporotic effects without causing immunosuppression. Through in silico and in vitro experiments we further confirm the binding model of S3-15 and soluble RANKL. This work might inspire structure-based drug discovery for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Dane Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China ,grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Chao Zhao
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Ruyue Li
- grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Bingyi Chen
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuting Zhang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhejun Sun
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Junkang Wei
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Yu C, Li Q, Zhang Y, Wen ZF, Dong H, Mou Y. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:941750. [PMID: 36092724 PMCID: PMC9458968 DOI: 10.3389/fcell.2022.941750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) have a high incidence and mortality rate, and investigating the pathogenesis and potential therapeutic strategies of HNSCC is required for further progress. Immunotherapy is a considerable therapeutic strategy for HNSCC due to its potential to produce a broad and long-lasting antitumor response. However, immune escape, which involves mechanisms including dyregulation of cytokines, perturbation of immune checkpoints, and recruitment of inhibitory cell populations, limit the efficacy of immunotherapy. Currently, multiple immunotherapy strategies for HNSCC have been exploited, including immune checkpoint inhibitors, costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted therapy. Each of these strategies has unique advantages, and the appropriate application of these immunotherapies in HNSCC treatment has significant value for patients. Therefore, this review comprehensively summarizes the mechanisms of immune escape and the characteristics of different immunotherapy strategies in HNSCC to provide a foundation and consideration for the clinical treatment of HNSCC.
Collapse
Affiliation(s)
- Chenhang Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Fa Wen
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Dong
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yongbin Mou
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Hong DS, Gopal AK, Shoushtari AN, Patel SP, He AR, Doi T, Ramalingam SS, Patnaik A, Sandhu S, Chen Y, Davis CB, Fisher TS, Huang B, Fly KD, Ribas A. Utomilumab in Patients With Immune Checkpoint Inhibitor-Refractory Melanoma and Non-Small-Cell Lung Cancer. Front Immunol 2022; 13:897991. [PMID: 35983060 PMCID: PMC9379324 DOI: 10.3389/fimmu.2022.897991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Section HeadClinical/translational cancer immunotherapyBackgroundThe goal of this study was to estimate the objective response rate for utomilumab in adults with immune checkpoint inhibitor (ICI)-refractory melanoma and non–small-cell lung cancer (NSCLC).MethodsUtomilumab was dosed intravenously every 4 weeks (Q4W) and adverse events (AEs) monitored. Tumor responses by RECIST1.1 were assessed by baseline and on-treatment scans. Tumor biopsies were collected for detection of programmed cell death ligand 1, CD8, 4-1BB, perforin, and granzyme B, and gene expression analyzed by next-generation sequencing. CD8+ T cells from healthy donors were stimulated with anti-CD3 ± utomilumab and compared with control.ResultsPatients with melanoma (n=43) and NSCLC (n=20) received utomilumab 0.24 mg/kg (n=36), 1.2 mg/kg (n=26), or 10 mg/kg (n=1). Treatment-emergent AEs (TEAEs) occurred in 55 (87.3%) patients and serious TEAEs in 18 (28.6%). Five (7.9%) patients discontinued owing to TEAEs. Thirty-two (50.8%) patients experienced treatment-related AEs, mostly grade 1–2. Objective response rate: 2.3% in patients with melanoma; no confirmed responses for patients with NSCLC. Ten patients each with melanoma (23.3%) or NSCLC (50%) had stable disease; respective median (95% confidence interval, CI) progression-free survival was 1.8 (1.7–1.9) and 3.6 (1.6–6.5) months. Utomilumab exposure increased with dose. The incidences of antidrug and neutralizing antibodies were 46.3% and 19.4%, respectively. Efficacy was associated with immune-active tumor microenvironments, and pharmacodynamic activity appeared to be blunted at higher doses.ConclusionsUtomilumab was well tolerated, but antitumor activity was low in patients who previously progressed on ICIs. The potential of 4-1BB agonists requires additional study to optimize efficacy while maintaining the tolerable safety profile.
Collapse
Affiliation(s)
- David S. Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: David S. Hong,
| | - Ajay K. Gopal
- National Cancer Center Hospital East, Kashiwa, Seattle, WA, United States
| | - Alexander N. Shoushtari
- Melanoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sandip P. Patel
- University of California San Diego Moores Cancer Center, La Jolla, CA, United States
| | - Aiwu R. He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | | | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, VIC, Australia
| | - Ying Chen
- Pfizer Oncology, San Diego, CA, United States
| | | | | | - Bo Huang
- Pfizer Oncology, Groton, CT, United States
| | | | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Upadhyaya P, Kristensson J, Lahdenranta J, Repash E, Ma J, Kublin J, Mudd GE, Luus L, Jeffrey P, Hurov K, McDonnell K, Keen N. Discovery and Optimization of a Synthetic Class of Nectin-4-Targeted CD137 Agonists for Immuno-oncology. J Med Chem 2022; 65:9858-9872. [PMID: 35819182 PMCID: PMC9340768 DOI: 10.1021/acs.jmedchem.2c00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
CD137 (4-1BB) is a co-stimulatory receptor on immune
cells and
Nectin-4 is a cell adhesion molecule that is overexpressed in multiple
tumor types. Using a series of poly(ethylene glycol) (PEG)-based linkers,
synthetic bicyclic peptides targeting CD137 were conjugated to Bicycles targeting Nectin-4. The resulting bispecific molecules
were potent CD137 agonists that require the presence of both Nectin-4-expressing
tumor cells and CD137-expressing immune cells for activity. A multipronged
approach was taken to optimize these Bicycle tumor-targeted
immune cell agonists by exploring the impact of chemical configuration,
binding affinity, and pharmacokinetics on CD137 agonism and antitumor
activity. This effort resulted in the discovery of BT7480, which elicited
robust CD137 agonism and maximum antitumor activity in syngeneic mouse
models. A tumor-targeted approach to CD137 agonism using low-molecular-weight,
short-acting molecules with high tumor penetration is a yet unexplored
path in the clinic, where emerging data suggest that persistent target
engagement, characteristic of biologics, may lead to suboptimal immune
response.
Collapse
Affiliation(s)
- Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Johanna Lahdenranta
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jessica Kublin
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Gemma E Mudd
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Lia Luus
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| |
Collapse
|
21
|
Nielsen MA, Juul-Madsen K, Stegmayr J, Gao C, Mehta AY, Greisen SR, Kragstrup TW, Hvid M, Vorup-Jensen T, Cummings RD, Leffler H, Deleuran BW. Galectin-3 Decreases 4-1BBL Bioactivity by Crosslinking Soluble and Membrane Expressed 4-1BB. Front Immunol 2022; 13:915890. [PMID: 35812455 PMCID: PMC9263355 DOI: 10.3389/fimmu.2022.915890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 01/22/2023] Open
Abstract
4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface. The increase was accompanied by a 4-fold decrease in TNFα production by the 4-1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients, complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in suppression of 4-1BBL’s bioactivity.
Collapse
Affiliation(s)
- Morten Aagaard Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - John Stegmayr
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Akul Y. Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Stinne Ravn Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Hakon Leffler
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Bent Winding Deleuran,
| |
Collapse
|
22
|
Immune Cell Metabolic Fitness for Life. Antibodies (Basel) 2022; 11:antib11020032. [PMID: 35645205 PMCID: PMC9149842 DOI: 10.3390/antib11020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Adoptive cell therapy holds great promise for treating a myriad of diseases, especially cancer. Within the last decade, immunotherapy has provided a significant leap in the successful treatment of leukemia. The research conducted throughout this period to understand the interrelationships between cancer cells and infiltrating immune cells winds up having one very common feature, bioenergetics. Cancer cells and immune cells both need ATP to perform their individual functions and cancer cells have adopted means to limit immune cell activity via changes in immune cell bioenergetics that redirect immune cell behavior to encourage tumor growth. Current leading strategies for cancer treatment super-charge an individual’s own immune cells against cancer. Successful Chimeric Antigen Receptor T Cells (CAR T) target pathways that ultimately influence bioenergetics. In the last decade, scientists identified that mitochondria play a crucial role in T cell physiology. When modifying T cells to create chimeras, a unique mitochondrial fitness emerges that establishes stemness and persistence. This review highlights many of the key findings leading to this generation’s CAR T treatments and the work currently being done to advance immunotherapy, to empower not just T cells but other immune cells as well against a variety of cancers.
Collapse
|
23
|
Glez-Vaz J, Azpilikueta A, Olivera I, Cirella A, Teijeira A, Ochoa MC, Alvarez M, Eguren-Santamaria I, Luri-Rey C, Rodriguez-Ruiz ME, Nie X, Chen L, Guedan S, Sanamed MF, Luis Perez Gracia J, Melero I. Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. J Immunother Cancer 2022; 10:jitc-2021-003532. [PMID: 35236742 PMCID: PMC8896037 DOI: 10.1136/jitc-2021-003532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. Methods We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. Results CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. Conclusion sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Xinxin Nie
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose Luis Perez Gracia
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
24
|
Yang J, Wang Y, Tong XM. Sintilimab-induced autoimmune diabetes: A case report and review of the literature. World J Clin Cases 2022; 10:1263-1277. [PMID: 35211559 PMCID: PMC8855200 DOI: 10.12998/wjcc.v10.i4.1263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With the widespread application of immune checkpoint inhibitor (ICI) therapy, the number of immune-related adverse effects (irAEs) has increased over the years. Autoimmune diabetes mellitus (DM) is a rare irAEs of ICIs and can be troublesome and life threatening.
CASE SUMMARY We report a 78-year-old woman with no history of diabetes who presented with hyperglycemia up to 23.4 mmol/L (random blood glucose level) after 14 courses of sintilimab. Hemoglobin A1c was 8.2%, fasting insulin was 0.29 mIU/mL, and fasting C-peptide was decreased to a level with negative autoantibodies. Combing her medical history and laboratory examination, she was diagnosed with programmed cell death (PD)-1-inhibitor-induced, new-onset autoimmune DM. After controlling her blood glucose, she was treated with daily insulin by subcutaneous injection. She was allowed to continue anti-PD-1 therapy and she still obtained some therapeutic efficacy. We also reviewed some published cases (n = 36) of PD-1/PD-ligand 1 (PD-L1) inhibitor-induced DM. We also discuss potential pathogenic mechanisms, clinical features, prognostic markers (β cell antibodies, human leukocyte antigen type, PD-L1 Level) of this rare adverse effect.
CONCLUSION It is important for all clinicians to be aware of DM as an irAEs of ICIs.
Collapse
Affiliation(s)
- Jing Yang
- Clinical Laboratory Center, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Ying Wang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Xiang-Min Tong
- Department of Hematology, Clinical Trial Institute, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
25
|
Aschmoneit N, Kocher K, Siegemund M, Lutz MS, Kühl L, Seifert O, Kontermann RE. Fc-based Duokines: dual-acting costimulatory molecules comprising TNFSF ligands in the single-chain format fused to a heterodimerizing Fc (scDk-Fc). Oncoimmunology 2022; 11:2028961. [PMID: 35083097 PMCID: PMC8786347 DOI: 10.1080/2162402x.2022.2028961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Targeting costimulatory receptors of the tumor necrosis factor superfamily (TNFSF) to activate T-cells and promote anti-tumor T-cell function have emerged as a promising strategy in cancer immunotherapy. Previous studies have shown that combining two different members of the TNFSF resulted in dual-acting costimulatory molecules with the ability to activate two different receptors either on the same cell or on different cell types. To achieve prolonged plasma half-life and extended drug disposition, we have developed novel dual-acting molecules by fusing single-chain ligands of the TNFSF to heterodimerizing Fc chains (scDuokine-Fc, scDk-Fc). Incorporating costimulatory ligands of the TNF superfamily into a scDk-Fc molecule resulted in enhanced T-cell proliferation translating in an increased anti-tumor activity in combination with a primary T-cell-activating bispecific antibody. Our data show that the scDk-Fc molecules are potent immune-stimulatory molecules that are able to enhance T-cell mediated anti-tumor responses.
Collapse
Affiliation(s)
- Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martina S. Lutz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
26
|
Stirling ER, Bronson SM, Mackert JD, Cook KL, Triozzi PL, Soto-Pantoja DR. Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells 2022; 11:179. [PMID: 35011741 PMCID: PMC8750774 DOI: 10.3390/cells11010179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.
Collapse
Affiliation(s)
- Elizabeth R. Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
| | - Steven M. Bronson
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jessica D. Mackert
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Pierre L. Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Hematology and Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - David R. Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
27
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
28
|
TNFSF9 promotes metastasis of pancreatic cancer by regulating M2 polarization of macrophages through Src/FAK/p-Akt/IL-1β signaling. Int Immunopharmacol 2021; 102:108429. [PMID: 34906856 DOI: 10.1016/j.intimp.2021.108429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
The effect of tumor necrosis factor superfamily member 9 (TNFSF9) on the metastasis of pancreatic cancer (PC) and the underlying mechanism remain unclear. We studied the expression of TNFSF9 in pancreatic cancer and its relationship with immune cells. We further explored the effect of TNFSF9 on pancreatic cancer metastasis by inducing macrophage polarization, and evaluated the expression of Src/FAK/p-Akt/IL-1β signals in macrophages after knocking down TNFSF9. The data shows that TNFSF9 expression is elevated in pancreatic cancer and is related to the poor prognosis of patients with pancreatic cancer. In addition, TNFSF9 may induce the M2 polarization of macrophages through Src/FAK/p-Akt/IL-1β signals, thereby promoting the migration of pancreatic cancer cells. In conclusion, our data reveals that TNFSF9 may become a predictive biomarker of pancreatic cancer and provides a new intervention target for the immunotherapy of pancreatic cancer.
Collapse
|
29
|
Hurov K, Lahdenranta J, Upadhyaya P, Haines E, Cohen H, Repash E, Kanakia D, Ma J, Kristensson J, You F, Campbell C, Witty D, Kelly M, Blakemore S, Jeffrey P, McDonnell K, Brandish P, Keen N. BT7480, a novel fully synthetic Bicycle tumor-targeted immune cell agonist™ ( Bicycle TICA™) induces tumor localized CD137 agonism. J Immunother Cancer 2021; 9:jitc-2021-002883. [PMID: 34725211 PMCID: PMC8562524 DOI: 10.1136/jitc-2021-002883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background CD137 (4-1BB) is an immune costimulatory receptor with high therapeutic potential in cancer. We are creating tumor target-dependent CD137 agonists using a novel chemical approach based on fully synthetic constrained bicyclic peptide (Bicycle®) technology. Nectin-4 is overexpressed in multiple human cancers that may benefit from CD137 agonism. To this end, we have developed BT7480, a novel, first-in-class, Nectin-4/CD137 Bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™). Methods Nectin-4 and CD137 co-expression analyses in primary human cancer samples was performed. Chemical conjugation of two CD137 Bicycles to a Nectin-4 Bicycle led to BT7480, which was then evaluated using a suite of in vitro and in vivo assays to characterize its pharmacology and mechanism of action. Results Transcriptional profiling revealed that Nectin-4 and CD137 were co-expressed in a variety of human cancers with high unmet need and spatial proteomic imaging found CD137-expressing immune cells were deeply penetrant within the tumor near Nectin-4-expressing cancer cells. BT7480 binds potently, specifically, and simultaneously to Nectin-4 and CD137. In co-cultures of human peripheral blood mononuclear cells and tumor cells, this co-ligation causes robust Nectin-4-dependent CD137 agonism that is more potent than an anti-CD137 antibody agonist. Treatment of immunocompetent mice bearing Nectin-4-expressing tumors with BT7480 elicited a profound reprogramming of the tumor immune microenvironment including an early and rapid myeloid cell activation that precedes T cell infiltration and upregulation of cytotoxicity-related genes. BT7480 induces complete tumor regressions and resistance to tumor re-challenge. Importantly, antitumor activity is not dependent on continuous high drug levels in the plasma since a once weekly dosing cycle provides maximum antitumor activity despite minimal drug remaining in the plasma after day 2. BT7480 appears well tolerated in both rats and non-human primates at doses far greater than those expected to be clinically relevant, including absence of the hepatic toxicity observed with non-targeted CD137 agonists. Conclusion BT7480 is a highly potent Nectin-4-dependent CD137 agonist that produces complete regressions and antitumor immunity with only intermittent drug exposure in syngeneic mouse tumor models and is well tolerated in preclinical safety species. This work supports the clinical investigation of BT7480 for the treatment of cancer in humans.
Collapse
Affiliation(s)
- Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | | | - Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Eric Haines
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Heather Cohen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Drasti Kanakia
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Fanglei You
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Carly Campbell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - David Witty
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Mike Kelly
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Stephen Blakemore
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Philip Brandish
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| |
Collapse
|
30
|
Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat Rev Clin Oncol 2021; 18:715-727. [PMID: 34230645 DOI: 10.1038/s41571-021-00530-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptors (CARs) are engineered proteins designed to target T cells to cancer cells. To effectively activate the T cells in which they are expressed, CARs must contain a costimulatory domain. The CAR T cell products approved for the treatment of B cell lymphomas and/or acute lymphoblastic leukaemia or multiple myeloma incorporate either a CD28-derived or a 4-1BB-derived costimulatory domain. Almost all other clinically tested CARs also use costimulatory domains from CD28 or 4-1BB. In preclinical experiments, cytokine release is usually greater with CARs containing CD28 versus 4-1BB costimulatory domains; however, constructs with either domain confer similar anticancer activity in mouse models. T cell products expressing CARs with either CD28 or 4-1BB costimulatory domains have been highly efficacious in patients with relapsed haematological malignancies, with anti-CD19 products having similar activity regardless of the source of the costimulatory domain. In large-cohort clinical trials, the rates of neurological toxicities have been higher with CD28-costimulated CARs, although this finding is probably the result of a combination of factors rather than due to CD28 signalling alone. Future preclinical and clinical research should aim to compare different costimulatory domains while controlling for confounding variables. Herein, we provide an overview of T cell costimulation by CD28 and 4-1BB and, using the available preclinical and clinical data, compare the efficacy and toxicity profiles associated with CARs containing either costimulatory domain.
Collapse
Affiliation(s)
- Kathryn M Cappell
- Hematology Oncology Fellowship Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | |
Collapse
|
31
|
Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 2021; 4:e000733. [PMID: 32611557 PMCID: PMC7333812 DOI: 10.1136/esmoopen-2020-000733] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
CD137 (4-1BB) is a surface glycoprotein that belongs to the tumour necrosis factor receptor family (TNFRSF9). Its expression is induced on activation on a number of leucocyte types. Interestingly, for cancer immunotherapy, CD137 becomes expressed on primed T and natural killer (NK) cells, which on ligation provides powerful costimulatory signals. Perturbation of CD137 by CD137L or agonist monoclonal antibodies on activated CD8 T cells protects such antigen-specific cytotoxic T lymphocytes from apoptosis, enhances effector functionalities and favours persistence and memory differentiation. As a consequence, agonist antibodies exert potent antitumour effects in mouse models and the CD137 signalling domain is critical in chimeric antigen receptors (CAR) of CAR T cells approved to be used in the clinic. New formats of CD137 agonist moieties are being clinically developed, seeking potent costimulation targeted to the tumour microenvironment to avoid liver inflammation side effects, that have thus far limited and delayed clinical development.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain.
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain; Department of Immunology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
32
|
Abstract
Bispecific T-cell recruiting antibodies are emerging as a potent immunotherapeutic class in the treatment of B-cell malignancies and act by simultaneously targeting antigens on T-cells and malignant cells to effect tumor cell death. Glofitamab is a novel full-length IgG-like CD20-CD3 bispecific with a unique 2:1 configuration that provides an extended half-life and superior CD20 binding. Phase 1 monotherapy and combination data demonstrate clear activity in heavily treated aggressive and indolent B-cell lymphoma, including >50% complete responses at the recommended phase 2 dose. In this review, we provide an overview of the structure, mechanism of action and pharmacokinetics of glofitamab. Available efficacy and safety data from ongoing clinical trials are also presented. Glofitamab appears to be a welcome addition to the treatment possibilities for patients with B-cell lymphomas who otherwise have limited therapeutic options. The current data are sufficient to evaluate its role in combination and in earlier lines of therapy.
Collapse
Affiliation(s)
- Adrian Minson
- Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
33
|
Evidence to Date: Evaluating Pembrolizumab in the Treatment of Extensive-Stage Small-Cell Lung Cancer. Clin Pract 2021; 11:441-454. [PMID: 34287275 PMCID: PMC8293071 DOI: 10.3390/clinpract11030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive subtype of lung cancer characterized by a rapid initial response and early development of resistance to systemic therapy and radiation. The management of SCLC significantly changed for the first time in decades with the introduction of immune checkpoint inhibitors. Pembrolizumab, a humanized IgG4 isotype antibody, targets the programmed cell death protein 1 (PD-1) pathway to restore anti-tumor immunity. Prospective trials of pembrolizumab in patients with previously treated SCLC showed significant durability of responses. These results led to the U.S. Food and Drug Administration (FDA) granting pembrolizumab accelerated approval as second- or third-line monotherapy for patients with extensive-stage (ES) SCLC. In a recent clinical trial that included patients with previously untreated ES-SCLC, pembrolizumab in combination with platinum/etoposide met its progression-free survival endpoint, but overall survival (OS) did not cross the threshold for superiority. With the therapeutic landscape for SCLC rapidly evolving, we review prior experience and future directions of pembrolizumab in ES-SCLC.
Collapse
|
34
|
Shi Z, Liu B, Huang C, Xie W, Cen Y, Chen L, Liang M. An oncolytic vaccinia virus armed with anti-human-PD-1 antibody and anti-human-4-1BB antibody double genes for cancer-targeted therapy. Biochem Biophys Res Commun 2021; 559:176-182. [PMID: 33945995 DOI: 10.1016/j.bbrc.2021.04.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022]
Abstract
Oncolytic virus can selectively recognize cancer cells, target tumors, and stimulate an oncolytic and immune response. Recombinant armed oncolytic vaccinia virus has emerged as an attractive tool in oncolytic virotherapy because it has tumor-specific cytotoxicity and serves as a vector to express immune genes. A novel thymidine kinase (TK) gene-deleted oncolytic vaccinia virus (named ΔTK-Armed-VACV) armed with anti-human-programed cell death-1 protein (PD-1) antibody and anti-human-tumor necrosis factor receptor superfamily, member 9 (4-1BB) antibody genes was constructed based on Western Reserve in our previous study. The present study evaluated the ability of this virus for cancer-targeted therapy both in vitro and in vivo. A complete morphological structure of ΔTK-Armed-VACV was verified using transmission electron microscopy. The antibody was co-expressed with the replication of ΔTK-Armed-VACV in vitro assessed by Western blot analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-rboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay showed that the ΔTK-Armed-VACV exhibited significant tumor-specific cytotoxicity in vitro. The ΔTK-Armed-VACV inhibited the tumor growth in a 4T1 or A549 tumor-bearing mouse model. ELISpot assay showed that ΔTK-Armed-VACV-treated mice induced the expression of interferon-gamma, and lactate dehydrogenase-dependent cytotoxicity assay revealed that the ΔTK-Armed-VACV treatment activated tumor-specific cytotoxic T lymphocytes. The results indicated that oncolytic VACV with Western Reserve-mediated anti-human-PD-1 and anti-human-4-1BB antibody co-expression exerted a significant antitumor effect, indicating that the combination of oncolytic virotherapy and immunotherapy by the oncolytic VACV expressing one or more immune checkpoint genes might have satisfactory clinical expectations.
Collapse
Affiliation(s)
- Zhenrui Shi
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Bo Liu
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Chengda Huang
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Wenbo Xie
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yi Cen
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Ling Chen
- GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China
| | - Min Liang
- School of Life Sciences, Shanghai University, Shanghai, China; GeneSail Biotech (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
35
|
Yuan W, Xu C, Li B, Xia H, Pan Y, Zhong W, Xu L, Chen R, Wang B. Contributions of Costimulatory Molecule CD137 in Endothelial Cells. J Am Heart Assoc 2021; 10:e020721. [PMID: 34027676 PMCID: PMC8483511 DOI: 10.1161/jaha.120.020721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD137 (4-1BB, tumor necrosis factor receptor superfamily 9) is a surface glycoprotein of the tumor necrosis factor receptor family that can be induced on a variety of immunocytes and nonimmune cells, including endothelial cells and smooth muscle cells. The importance of CD137 in immune response has been well recognized; however, the precise biological effects and underlying mechanisms of CD137 in endothelial cells are unclear. A single layer of cells called the endothelium constitutes the innermost layer of blood vessels including larger arteries, veins, the capillaries, and the lymphatic vessels. It not only acts as an important functional interface, but also participates in local inflammatory response. This review covers recent findings to illuminate the role of CD137 in endothelial cells in different pathophysiologic settings.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Chong Xu
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Bo Li
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Hao Xia
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Yingjie Pan
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Wei Zhong
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Liangjie Xu
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Rui Chen
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Bin Wang
- Department of Geriatrics Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
36
|
Activation of 4-1BB signaling in bone marrow stromal cells triggers bone loss via the p-38 MAPK-DKK1 axis in aged mice. Exp Mol Med 2021; 53:654-666. [PMID: 33859350 PMCID: PMC8102492 DOI: 10.1038/s12276-021-00605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/02/2023] Open
Abstract
Senile osteoporosis can cause bone fragility and increased fracture risks and has been one of the most prevalent and severe diseases affecting the elderly population. Bone formation depends on the proper osteogenic differentiation of bone marrow stromal cells (BMSCs) in the bone marrow microenvironment, which is generated by the functional relationship among different cell types in the bone marrow. With aging, bone marrow provides signals that repress osteogenesis. Finding the signals that oppose BMSC osteogenic differentiation from the bone marrow microenvironment and identifying the abnormal changes in BMSCs with aging are key to elucidating the mechanisms of senile osteoporosis. In a pilot experiment, we found that 4-1BBL and 4-1BB were more abundant in bone marrow from aged (18-month-old) mice than young (6-month-old) mice. Meanwhile, significant bone loss was observed in aged mice compared with young mice. However, very little data have been generated regarding whether high-level 4-1BB/4-1BBL in bone marrow was associated with bone loss in aged mice. In the current study, we found upregulation of 4-1BB in the BMSCs of aged mice, which resulted in the attenuation of the osteogenic differentiation potential of BMSCs from aged mice via the p38 MAPK-Dkk1 pathway. More importantly, bone loss of aged mice could be rescued through the blockade of 4-1BB signaling in vivo. Our study will benefit not only our understanding of the pathogenesis of age-related trabecular bone loss but also the search for new targets to treat senile osteoporosis.
Collapse
|
37
|
Hinterberger M, Giessel R, Fiore G, Graebnitz F, Bathke B, Wennier S, Chaplin P, Melero I, Suter M, Lauterbach H, Berraondo P, Hochrein H, Medina-Echeverz J. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. J Immunother Cancer 2021; 9:jitc-2020-001586. [PMID: 33579736 PMCID: PMC7883866 DOI: 10.1136/jitc-2020-001586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Human cancers are extraordinarily heterogeneous in terms of tumor antigen expression, immune infiltration and composition. A common feature, however, is the host′s inability to mount potent immune responses that prevent tumor growth effectively. Often, naturally primed CD8+ T cells against solid tumors lack adequate stimulation and efficient tumor tissue penetration due to an immune hostile tumor microenvironment. Methods To address these shortcomings, we cloned tumor-associated antigens (TAA) and the immune-stimulatory ligand 4-1BBL into the genome of modified vaccinia Ankara (MVA) for intratumoral virotherapy. Results Local treatment with MVA-TAA-4-1BBL resulted in control of established tumors. Intratumoral injection of MVA localized mainly to the tumor with minimal leakage to the tumor-draining lymph node. In situ infection by MVA-TAA-4-1BBL triggered profound changes in the tumor microenvironment, including the induction of multiple proinflammatory molecules and immunogenic cell death. These changes led to the reactivation and expansion of antigen-experienced, tumor-specific cytotoxic CD8+ T cells that were essential for the therapeutic antitumor effect. Strikingly, we report the induction of a systemic antitumor immune response including tumor antigen spread by local MVA-TAA-4-1BBL treatment which controlled tumor growth at distant, untreated lesions and protected against local and systemic tumor rechallenge. In all cases, 4-1BBL adjuvanted MVA was superior to MVA. Conclusion Intratumoral 4-1BBL-armed MVA immunotherapy induced a profound reactivation and expansion of potent tumor-specific CD8+ T cells as well as favorable proinflammatory changes in the tumor microenvironment, leading to elimination of tumors and protective immunological memory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mark Suter
- Bavarian Nordic GmbH, Planegg, Germany.,Vetsuisse Fakultät, Dekanat, Bereich Immunologie, Universität Zürich, Zürich, Switzerland
| | - Henning Lauterbach
- Bavarian Nordic GmbH, Planegg, Germany.,Present address: Hookipa Pharma Inc, 350 Fifth Avenue, Room/Suite 7240, New York City, New York, USA
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | | | | |
Collapse
|
38
|
CD137 + T-Cells: Protagonists of the Immunotherapy Revolution. Cancers (Basel) 2021; 13:cancers13030456. [PMID: 33530328 PMCID: PMC7866028 DOI: 10.3390/cancers13030456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The CD137 receptor is expressed by activated antigen-specific T-cells. CD137+ T-cells were identified inside TILs and PBMCs of different tumor types and have proven to be the naturally occurring antitumor effector cells, capable of expressing a wide variability in terms of TCR specificity against both shared and neoantigenic tumor-derived peptides. The aim of this review is thus summarizing and highlighting their role as drivers of patients’ immune responses in anticancer therapies as well as their potential role in future and current strategies of immunotherapy. Abstract The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-cell survival, proliferation, and cytokine production. This allowed to identify the CD137+ T-cells as the real tumor-specific activated T-cell population. In fact, these cells express various TCRs that are specific for a wide range of tumor-derived peptides, both shared and neoantigenic ones. Moreover, their prevalence in sites close to the tumor and their unicity in killing cancer cells both in vitro and in vivo, raised particular interest in studying their potential role in different strategies of immunotherapy. They indeed showed to be a reliable marker able to predict patient’s outcome to immune-based therapies as well as monitor their response. In addition, the possibility of isolating and expanding this population, turned promising in order to generate effector antitumor T-cells in the context of adoptive T-cell therapies. CD137-targeting monoclonal antibodies have already shown their antitumor efficacy in cancer patients and a number of clinical trials are thus ongoing to test their possible introduction in different combination approaches of immunotherapy. Finally, the intracellular domain of the CD137 receptor was introduced in the anti-CD19 CAR-T cells that were approved by FDA for the treatment of pediatric B-cell leukemia and refractory B-cell lymphoma.
Collapse
|
39
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
40
|
Pellegrino M, Del Bufalo F, De Angelis B, Quintarelli C, Caruana I, de Billy E. Manipulating the Metabolism to Improve the Efficacy of CAR T-Cell Immunotherapy. Cells 2020; 10:cells10010014. [PMID: 33374128 PMCID: PMC7824126 DOI: 10.3390/cells10010014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
The adoptive transfer of the chimeric antigen receptor (CAR) expressing T-cells has produced unprecedented successful results in the treatment of B-cell malignancies. However, the use of this technology in other malignancies remains less effective. In the setting of solid neoplasms, CAR T-cell metabolic fitness needs to be optimal to reach the tumor and execute their cytolytic function in an environment often hostile. It is now well established that both tumor and T cell metabolisms play critical roles in controlling the immune response by conditioning the tumor microenvironment and the fate and activity of the T cells. In this review, after a brief description of the tumoral and T cell metabolic reprogramming, we summarize the latest advances and new strategies that have been developed to improve the metabolic fitness and efficacy of CAR T-cell products.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Department of Onco-hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital–IRCCS, 00146 Rome, Italy; (M.P.); (F.D.B.); (B.D.A.); (C.Q.); (I.C.)
| | - Francesca Del Bufalo
- Department of Onco-hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital–IRCCS, 00146 Rome, Italy; (M.P.); (F.D.B.); (B.D.A.); (C.Q.); (I.C.)
| | - Biagio De Angelis
- Department of Onco-hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital–IRCCS, 00146 Rome, Italy; (M.P.); (F.D.B.); (B.D.A.); (C.Q.); (I.C.)
| | - Concetta Quintarelli
- Department of Onco-hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital–IRCCS, 00146 Rome, Italy; (M.P.); (F.D.B.); (B.D.A.); (C.Q.); (I.C.)
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 81100 Naples, Italy
| | - Ignazio Caruana
- Department of Onco-hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital–IRCCS, 00146 Rome, Italy; (M.P.); (F.D.B.); (B.D.A.); (C.Q.); (I.C.)
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Children’s Hospital of Würzburg, 97080 Würzburg, Germany
| | - Emmanuel de Billy
- Department of Onco-hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital–IRCCS, 00146 Rome, Italy; (M.P.); (F.D.B.); (B.D.A.); (C.Q.); (I.C.)
- Correspondence: ; Tel.: +39-06-6859-3516
| |
Collapse
|
41
|
Oda SK, Anderson KG, Ravikumar P, Bonson P, Garcia NM, Jenkins CM, Zhuang S, Daman AW, Chiu EY, Bates BM, Greenberg PD. A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. J Exp Med 2020; 217:e20191166. [PMID: 32860705 PMCID: PMC7953733 DOI: 10.1084/jem.20191166] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Adoptive T cell therapy (ACT) with genetically modified T cells has shown impressive results against some hematologic cancers, but efficacy in solid tumors can be limited by restrictive tumor microenvironments (TMEs). For example, Fas ligand is commonly overexpressed in TMEs and induces apoptosis in tumor-infiltrating, Fas receptor-positive lymphocytes. We engineered immunomodulatory fusion proteins (IFPs) to enhance ACT efficacy, combining an inhibitory receptor ectodomain with a costimulatory endodomain to convert negative into positive signals. We developed a Fas-4-1BB IFP that replaces the Fas intracellular tail with costimulatory 4-1BB. Fas-4-1BB IFP-engineered murine T cells exhibited increased pro-survival signaling, proliferation, antitumor function, and altered metabolism in vitro. In vivo, Fas-4-1BB ACT eradicated leukemia and significantly improved survival in the aggressive KPC pancreatic cancer model. Fas-4-1BB IFP expression also enhanced primary human T cell function in vitro. Thus, Fas-4-1BB IFP expression is a novel strategy to improve multiple T cell functions and enhance ACT against solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Shannon K. Oda
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Pranali Ravikumar
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Patrick Bonson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Nicolas M. Garcia
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cody M. Jenkins
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Summer Zhuang
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Andrew W. Daman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Edison Y. Chiu
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Breanna M. Bates
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Philip D. Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine/Oncology, University of Washington, Seattle, WA
| |
Collapse
|
42
|
Rostamian H, Fallah-Mehrjardi K, Khakpoor-Koosheh M, Pawelek JM, Hadjati J, Brown CE, Mirzaei HR. A metabolic switch to memory CAR T cells: Implications for cancer treatment. Cancer Lett 2020; 500:107-118. [PMID: 33290868 DOI: 10.1016/j.canlet.2020.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
Therapeutic efficacy of chimeric antigen receptor (CAR) T cells is associated with their expansion, persistence and effector function. Although CAR T cell therapy has shown remarkable therapeutic effects in hematological malignancies, its therapeutic efficacy has been limited in some types of cancers - in particular, solid tumors - partially due to the cells' inability to persist and the acquisition of T cell dysfunction within a harsh immunosuppressive tumor microenvironment. Therefore, it would be expected that generation of CAR T cells with intrinsic properties for functional longevity, such as the cells with early-memory phenotypes, could beneficially enhance antitumor immunity. Furthermore, because the metabolic pathways of CAR T cells help determine cellular differentiation and lifespan, therapies targeting such pathways like glycolysis and oxidative phosphorylation, can alter CAR T cell fate and durability within tumors. Here we discuss how reprogramming of CAR T cell metabolism and metabolic switch to memory CAR T cells influences their antitumor activity. We also offer potential strategies for targeting these metabolic circuits in the setting of adoptive CAR T cell therapy, aiming to better unleash the potential of adoptive CAR T cell therapy in the clinic.
Collapse
Affiliation(s)
- Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Fallah-Mehrjardi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, 91010, USA; Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA, 91010, USA.
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Peña-Asensio J, Sanz-de-Villalobos E, Miquel J, Larrubia JR. Tumor necrosis family receptor superfamily member 9/tumor necrosis factor receptor-associated factor 1 pathway on hepatitis C viral persistence and natural history. World J Hepatol 2020; 12:754-765. [PMID: 33200014 PMCID: PMC7643212 DOI: 10.4254/wjh.v12.i10.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is an excellent immunological model for understanding the mechanisms developed by non-cytopathic viruses and tumors to evade the adaptative immune response. The antigen-specific cytotoxic T cell response is essential for keeping HCV under control, but during persistent infection, these cells become exhausted or even deleted. The exhaustion process is progressive and depends on the infection duration and level of antigenemia. During high antigenic load and long duration of infection, T cells become extremely exhausted and ultimately disappear due to apoptosis. The development of exhaustion involves the impairment of positive co-stimulation induced by regulatory cytokines, such as transforming growth factor beta 1. This cytokine downregulates tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1), the signal transducer of the T cell co-stimulatory molecule TNFR superfamily member 9 (known as 4-1BB). This impairment correlates with the low reactivity of T cells and an exhaustion phenotype. Treatment with interleukin-7 in vitro restores TRAF1 expression and rescues T cell effector function. The process of TRAF1 loss and its in vitro recovery is hierarchical, and more affected by severe disease progression. In conclusion, TRAF1 dynamics on T cells define a new pathogenic model that describes some aspects of the natural history of HCV, and sheds light on novel immunotherapy strategies for chronic viral infections and cancer.
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Department of Systems Biology, Guadalajara University Hospital. University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Juan Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| |
Collapse
|
44
|
Poltorak MP, Graef P, Tschulik C, Wagner M, Cletiu V, Dreher S, Borjan B, Fraessle SP, Effenberger M, Turk M, Busch DH, Plitzko J, Kugler DG, Ragan S, Schmidt T, Stemberger C, Germeroth L. Expamers: a new technology to control T cell activation. Sci Rep 2020; 10:17832. [PMID: 33082362 PMCID: PMC7575567 DOI: 10.1038/s41598-020-74595-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022] Open
Abstract
T cell activation is a cornerstone in manufacturing of T cell-based therapies, and precise control over T cell activation is important in the development of the next generation T-cell based therapeutics. This need cannot be fulfilled by currently available methods for T cell stimulation, in particular not in a time dependent manner. Here, we describe a modular activation reagent called Expamers, which addresses these limitations. Expamers are versatile stimuli that are intended for research and clinical use. They are readily soluble and can be rapidly bound and removed from the cell surface, allowing nearly instantaneous initiation and termination of activation signal, respectively. Hence, Expamers enable precise regulation of T cell stimulation duration and provide promise of control over T cell profiles in future products. Expamers can be easily adopted to different T cell production formats and have the potential to increase efficacy of T cell immunotherapeutics.
Collapse
Affiliation(s)
- Mateusz P Poltorak
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany.
| | - Patricia Graef
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Claudia Tschulik
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Michaela Wagner
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Vlad Cletiu
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Stefan Dreher
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Bojana Borjan
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Simon P Fraessle
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Manuel Effenberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Martin Turk
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Juergen Plitzko
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - David G Kugler
- Juno Therapeutics Inc., a Bristol-Myers Squibb Company, 400 Dexter Avenue North, Suite 1200, Seattle, WA, 98109, USA
| | - Seamus Ragan
- Juno Therapeutics Inc., a Bristol-Myers Squibb Company, 400 Dexter Avenue North, Suite 1200, Seattle, WA, 98109, USA
| | - Thomas Schmidt
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Christian Stemberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Lothar Germeroth
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| |
Collapse
|
45
|
Hu BS, Tang T, Jia JL, Xie BC, Wu TL, Sheng YY, Xue YZ, Tang HM. CD137 agonist induces gastric cancer cell apoptosis by enhancing the functions of CD8 + T cells via NF-κB signaling. Cancer Cell Int 2020; 20:513. [PMID: 33093811 PMCID: PMC7576737 DOI: 10.1186/s12935-020-01605-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background CD137 is a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis, has not been studied. Methods Foxp3+ and CD8+ T cells in GCs were investigated using immunohistochemistry (IHC). CD137 expression in GCs was detected using flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cell proliferation and p65 expression was examined using flow cytometry. P65 nuclear translocation was analyzed using IF. IL-10, TGF-β, IFN-γ, perforin and granzyme B were detected using real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with a CD137 agonist in vitro. Apoptosis of primary GC cells was detected using flow cytometry. Results Our data demonstrated that GC tumors showed characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. The CD137 agonist promoted CD8+ T cell proliferation and increased the secretion of IFN-γ, perforin and granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that the CD137 agonist induced NF-κB nuclear translocation in CD8+ T cells. Conclusion Our results demonstrated that a CD137 agonist induced primary GC cell apoptosis by enhancing CD8+ T cells via activation of NF-κB signaling.
Collapse
Affiliation(s)
- Ben-Shun Hu
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Tian Tang
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| | - Jun-Li Jia
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| | - Bi-Chen Xie
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Tie-Long Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Ying-Yue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Yu-Zheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Hua-Min Tang
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| |
Collapse
|
46
|
Da Silva DM, Enserro DM, Mayadev JS, Skeate JG, Matsuo K, Pham HQ, Lankes HA, Moxley KM, Ghamande SA, Lin YG, Schilder RJ, Birrer MJ, Kast WM. Immune Activation in Patients with Locally Advanced Cervical Cancer Treated with Ipilimumab Following Definitive Chemoradiation (GOG-9929). Clin Cancer Res 2020; 26:5621-5630. [PMID: 32816895 DOI: 10.1158/1078-0432.ccr-20-0776] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/07/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE A phase I clinical trial (GOG-9929) examined the safety and efficacy of adjuvant immune-modulation therapy with the checkpoint inhibitor ipilimumab [anti-CTL antigen-4 (anti-CTLA-4)] following chemoradiation therapy (CRT) for newly diagnosed node-positive human papillomavirus (HPV)-related cervical cancer. To better understand the mechanism of action and to identify predictive biomarkers, immunologic and viral correlates were assessed before, during, and after treatment. PATIENTS AND METHODS Twenty-one patients who received CRT and ≥2 doses of ipilimumab and 5 patients who received CRT only were evaluable for translational endpoints. Circulating T-cell subsets were evaluated by multiparameter flow cytometry. Cytokines were evaluated by multiplex ELISA. HPV-specific T cells were evaluated in a subset of patients by IFNγ ELISpot. RESULTS Expression of the activation markers ICOS and PD-1 significantly increased on T-cell subsets following CRT and were sustained or increased following ipilimumab treatment. Combined CRT/ipilimumab treatment resulted in a significant expansion of both central and effector memory T-cell populations. Genotype-specific E6/E7-specific T-cell responses increased post-CRT in 1 of 8 HPV16+ patients and in 2 of 3 HPV18+ patients. Elevation in levels of tumor-promoting circulating cytokines (TNFα, IL6, IL8) post-CRT was significantly associated with worse progression-free survival. CONCLUSIONS Our data indicate that CRT alone and combined with ipilimumab immunotherapy show immune-modulating activity in women with locally advanced cervical cancer and may be a promising therapeutic option for the enhancement of antitumor immune cell function after primary CRT for this population at high risk for recurrence and metastasis. Several key immune biomarkers were identified that were associated with clinical response.
Collapse
Affiliation(s)
- Diane M Da Silva
- Department of Obstetrics & Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Danielle M Enserro
- Clinical Trial Development Division, NRG Oncology, Philadelphia, Pennsylvania.,Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jyoti S Mayadev
- Department of Radiation Medicine and Applied Sciences, UC San Diego Medical Center, La Jolla, California
| | - Joseph G Skeate
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Koji Matsuo
- Department of Obstetrics & Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Huyen Q Pham
- Department of Obstetrics & Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Heather A Lankes
- Operations Center-Philadelphia East, NRG Oncology, Philadelphia, Pennsylvania.,Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Katherine M Moxley
- Department of Obstetrics & Gynecology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma
| | - Sharad A Ghamande
- Department of Gynecology/Oncology, Augusta University Medical Center, Augusta, Georgia
| | - Yvonne G Lin
- Department of Obstetrics & Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Russell J Schilder
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - W Martin Kast
- Department of Obstetrics & Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
47
|
Jackson Z, Roe A, Sharma AA, Lopes FBTP, Talla A, Kleinsorge-Block S, Zamborsky K, Schiavone J, Manjappa S, Schauner R, Lee G, Liu R, Caimi PF, Xiong Y, Krueger W, Worden A, Kadan M, Schneider D, Orentas R, Dropulic B, Sekaly RP, de Lima M, Wald DN, Reese JS. Automated Manufacture of Autologous CD19 CAR-T Cells for Treatment of Non-hodgkin Lymphoma. Front Immunol 2020; 11:1941. [PMID: 32849651 PMCID: PMC7427107 DOI: 10.3389/fimmu.2020.01941] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T cell) targeting CD19 are effective against several subtypes of CD19-expressing hematologic malignancies. Centralized manufacturing has allowed rapid expansion of this cellular therapy, but it may be associated with treatment delays due to the required logistics. We hypothesized that point of care manufacturing of CAR-T cells on the automated CliniMACS Prodigy® device allows reproducible and fast delivery of cells for the treatment of patients with non-Hodgkin lymphoma. Here we describe cell manufacturing results and characterize the phenotype and effector function of CAR-T cells used in a phase I/II study. We utilized a lentiviral vector delivering a second-generation CD19 CAR construct with 4-1BB costimulatory domain and TNFRSF19 transmembrane domain. Our data highlight the successful generation of CAR-T cells at numbers sufficient for all patients treated, a shortened duration of production from 12 to 8 days followed by fresh infusion into patients, and the detection of CAR-T cells in patient circulation up to 1-year post-infusion.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Automation
- Cell Culture Techniques
- Cell Engineering
- Cells, Cultured
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/therapy
- Mice, Inbred NOD
- Phenotype
- Point-of-Care Systems
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Transplantation, Autologous
- Treatment Outcome
- Workload
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Anne Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | | | | | - Aarthi Talla
- The Alan Turing Institute, British Library, London, United Kingdom
| | - Sarah Kleinsorge-Block
- Stem Cell Transplantation Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States
| | - Kayla Zamborsky
- Stem Cell Transplantation Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States
| | - Jennifer Schiavone
- Stem Cell Transplantation Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States
| | - Shivaprasad Manjappa
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Ruifu Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Paolo F. Caimi
- Stem Cell Transplantation Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Ying Xiong
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Winfried Krueger
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Andrew Worden
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Mike Kadan
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Dina Schneider
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Rimas Orentas
- Department of Pediatrics, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Boro Dropulic
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Marcos de Lima
- Stem Cell Transplantation Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jane S. Reese
- Stem Cell Transplantation Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
48
|
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, Umana P, Klein C, Laubli H, Kashyap AS, Zippelius A. Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. J Immunother Cancer 2020; 8:e000238. [PMID: 32616554 PMCID: PMC7333869 DOI: 10.1136/jitc-2019-000238] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The costimulatory receptor 4-1BB (CD137, TNFRSF9) plays an important role in sustaining effective T cell immune responses and is investigated as target for cancer therapy. Systemic 4-1BB directed therapies elicit toxicity or low efficacy, which significantly hampered advancement of 4-1BB-based immunotherapy. Therefore, targeted delivery of 4-1BB agonist to the tumor side is needed for eliciting antitumor efficacy while avoiding systemic toxicity. METHODS We analyzed the immunostimulatory properties of a fibroblast activation protein (FAP)-targeted 4-1BB agonist (FAP-4-1BBL) by assessing tumor-infiltrating lymphocytes' (TIL) activity from patients with non-small cell lung cancer and epithelial ovarian cancer. RESULTS Combination treatment with FAP-4-1BBL and T cell receptor stimulation by either anti-CD3 or T cell bispecific antibodies significantly enhanced TIL activation and effector functions, including T cell proliferation, secretion of proinflammatory cytokines and cytotoxicity. Notably, costimulation with FAP-4-1BBL led to de novo secretion of interleukin (IL)-13. This was associated with cytokine-mediated tumor cell apoptosis, which was partially dependent on IL-13 alpha 1/2 receptors and STAT6 phosphorylation. CONCLUSIONS Our study provides mechanistic insights into T cell stimulation induced by FAP-4-1BBL in primary human tumors and supports the investigation of FAP-4-1BBL compound in early clinical trials.
Collapse
Affiliation(s)
- Marta Trüb
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Franziska Uhlenbrock
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Petra Herzig
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Marina Bacac
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | | | - Daniela Thommen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Robert Rosenberg
- Department of Surgery, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | | | - Mark Wiese
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Didier Lardinois
- Division of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Pablo Umana
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Heinz Laubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Abhishek S Kashyap
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
49
|
Foda BM, Ciecko AE, Serreze DV, Ridgway WM, Geurts AM, Chen YG. The CD137 Ligand Is Important for Type 1 Diabetes Development but Dispensable for the Homeostasis of Disease-Suppressive CD137 + FOXP3 + Regulatory CD4 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2887-2899. [PMID: 32295876 PMCID: PMC7296588 DOI: 10.4049/jimmunol.1900485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 03/31/2020] [Indexed: 01/25/2023]
Abstract
CD137 modulates type 1 diabetes (T1D) progression in NOD mice. We previously showed that CD137 expression in CD4 T cells inhibits T1D, but its expression in CD8 T cells promotes disease development by intrinsically enhancing the accumulation of β-cell-autoreactive CD8 T cells. CD137 is expressed on a subset of FOXP3+ regulatory CD4 T cells (Tregs), and CD137+ Tregs are the main source of soluble CD137. Soluble CD137 suppresses T cells in vitro by binding to the CD137 ligand (CD137L) upregulated on activated T cells. To further study how the opposing functions of CD137 are regulated, we successfully targeted Tnfsf9 (encoding CD137L) in NOD mice using the CRISPR/Cas9 system (designated NOD.Tnfsf9 -/-). Relative to wild-type NOD mice, T1D development in the NOD.Tnfsf9 -/- strain was significantly delayed, and mice developed less insulitis and had reduced frequencies of β-cell-autoreactive CD8 T cells. Bone marrow chimera experiments showed that CD137L-deficient hematopoietic cells were able to confer T1D resistance. Adoptive T cell transfer experiments showed that CD137L deficiency on myeloid APCs was associated with T1D suppression. Conversely, lack of CD137L on T cells enhanced their diabetogenic activity. Furthermore, neither CD137 nor CD137L was required for the development and homeostasis of FOXP3+ Tregs. However, CD137 was critical for the in vivo T1D-suppressive activity of FOXP3+ Tregs, suggesting that the interaction between CD137 and CD137L regulates their function. Collectively, our results provide new insights into the complex roles of CD137-CD137L interaction in T1D.
Collapse
Affiliation(s)
- Bardees M Foda
- Department of Molecular Genetics and Enzymology, National Research Centre, Dokki, 12622, Egypt
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ashley E Ciecko
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Aron M Geurts
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226; and
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226;
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
50
|
Immunological Basis of Genesis of Hepatocellular Carcinoma: Unique Challenges and Potential Opportunities through Immunomodulation. Vaccines (Basel) 2020; 8:vaccines8020247. [PMID: 32456200 PMCID: PMC7349974 DOI: 10.3390/vaccines8020247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
A majority of hepatocellular carcinoma (HCC) develops in the setting of persistent chronic inflammation as immunological mechanisms have been shown to play a vital role in the initiation, growth and progression of tumours. The index review has been intended to highlight ongoing immunological changes in the hepatic parenchyma responsible for the genesis and progression of HCC. The in-situ vaccine effect of radiofrequency (RF) is through generation tumour-associated antigens (TAAs), following necrosis and apoptosis of tumour cells, which not only re-activates the antitumour immune response but can also act in synergism with checkpoint inhibitors to generate a superlative effect with intent to treat primary cancer and distant metastasis. An improved understanding of oncogenic responses of immune cells and their integration into signaling pathways of the tumour microenvironment will help in modulating the antitumour immune response. Finally, we analyzed contemporary literature and summarised the recent advances made in the field of targeted immunotherapy involving checkpoint inhibitors along with RF application with the intent to reinstate antitumour immunity and outline future directives in very early and early stages of HCC.
Collapse
|