1
|
Ozulumba T, Montalbine AN, Ortiz-Cárdenas JE, Pompano RR. New tools for immunologists: models of lymph node function from cells to tissues. Front Immunol 2023; 14:1183286. [PMID: 37234163 PMCID: PMC10206051 DOI: 10.3389/fimmu.2023.1183286] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The lymph node is a highly structured organ that mediates the body's adaptive immune response to antigens and other foreign particles. Central to its function is the distinct spatial assortment of lymphocytes and stromal cells, as well as chemokines that drive the signaling cascades which underpin immune responses. Investigations of lymph node biology were historically explored in vivo in animal models, using technologies that were breakthroughs in their time such as immunofluorescence with monoclonal antibodies, genetic reporters, in vivo two-photon imaging, and, more recently spatial biology techniques. However, new approaches are needed to enable tests of cell behavior and spatiotemporal dynamics under well controlled experimental perturbation, particularly for human immunity. This review presents a suite of technologies, comprising in vitro, ex vivo and in silico models, developed to study the lymph node or its components. We discuss the use of these tools to model cell behaviors in increasing order of complexity, from cell motility, to cell-cell interactions, to organ-level functions such as vaccination. Next, we identify current challenges regarding cell sourcing and culture, real time measurements of lymph node behavior in vivo and tool development for analysis and control of engineered cultures. Finally, we propose new research directions and offer our perspective on the future of this rapidly growing field. We anticipate that this review will be especially beneficial to immunologists looking to expand their toolkit for probing lymph node structure and function.
Collapse
Affiliation(s)
- Tochukwu Ozulumba
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Alyssa N. Montalbine
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer E. Ortiz-Cárdenas
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia (UVA) Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
2
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
3
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
4
|
Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol Life Sci 2022; 79:275. [PMID: 35505125 PMCID: PMC9063628 DOI: 10.1007/s00018-022-04303-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022]
Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA.,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA. .,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
5
|
Harlé G, Kowalski C, Dubrot J, Brighouse D, Clavel G, Pick R, Bessis N, Niven J, Scheiermann C, Gannagé M, Hugues S. Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity. J Exp Med 2021; 218:212000. [PMID: 33861848 PMCID: PMC8056750 DOI: 10.1084/jem.20201776] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphatic endothelial cells (LECs) present peripheral tissue antigens to induce T cell tolerance. In addition, LECs are the main source of sphingosine-1-phosphate (S1P), promoting naive T cell survival and effector T cell exit from lymph nodes (LNs). Autophagy is a physiological process essential for cellular homeostasis. We investigated whether autophagy in LECs modulates T cell activation in experimental arthritis. Whereas genetic abrogation of autophagy in LECs does not alter immune homeostasis, it induces alterations of the regulatory T cell (T reg cell) population in LNs from arthritic mice, which might be linked to MHCII-mediated antigen presentation by LECs. Furthermore, inflammation-induced autophagy in LECs promotes the degradation of Sphingosine kinase 1 (SphK1), resulting in decreased S1P production. Consequently, in arthritic mice lacking autophagy in LECs, pathogenic Th17 cell migration toward LEC-derived S1P gradients and egress from LNs are enhanced, as well as infiltration of inflamed joints, resulting in exacerbated arthritis. Our results highlight the autophagy pathway as an important regulator of LEC immunomodulatory functions in inflammatory conditions.
Collapse
Affiliation(s)
- Guillaume Harlé
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Kowalski
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Clavel
- Institut National de la Santé et de la Recherche Médicale, UMR 1125, Université Sorbonne Paris Cité, Université Paris, Paris, France
| | - Robert Pick
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Natacha Bessis
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jennifer Niven
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Monique Gannagé
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Walsh SM, Sheridan RM, Lucas ED, Doan TA, Ware BC, Schafer J, Fu R, Burchill MA, Hesselberth JR, Tamburini BAJ. Molecular tracking devices quantify antigen distribution and archiving in the murine lymph node. eLife 2021; 10:e62781. [PMID: 33843587 PMCID: PMC8116055 DOI: 10.7554/elife.62781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a 'molecular tracking device' to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.
Collapse
Affiliation(s)
- Shannon M Walsh
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Erin D Lucas
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Thu A Doan
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| | - Brian C Ware
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Johnathon Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Matthew A Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
- RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Beth Ann Jiron Tamburini
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
7
|
Zou M, Wiechers C, Huehn J. Lymph node stromal cell subsets-Emerging specialists for tailored tissue-specific immune responses. Int J Med Microbiol 2021; 311:151492. [PMID: 33676241 DOI: 10.1016/j.ijmm.2021.151492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
The effective priming of adaptive immune responses depends on the precise dispatching of lymphocytes and antigens into and within lymph nodes (LNs), which are strategically dispersed throughout the body. Over the past decade, a growing body of evidence has advanced our understanding of lymph node stromal cells (LNSCs) from viewing them as mere accessory cells to seeing them as critical cellular players for the modulation of adaptive immune responses. In this review, we summarize current advances on the pivotal roles that LNSCs play in orchestrating adaptive immune responses during homeostasis and infection, and highlight the imprinting of location-specific information by micro-environmental cues into LNSCs, thereby tailoring tissue-specific immune responses.
Collapse
Affiliation(s)
- Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
8
|
Langsten KL, Kim JH, Sarver AL, Dewhirst M, Modiano JF. Comparative Approach to the Temporo-Spatial Organization of the Tumor Microenvironment. Front Oncol 2019; 9:1185. [PMID: 31788448 PMCID: PMC6854022 DOI: 10.3389/fonc.2019.01185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complex ecosystem in which tumor cells reside and interact, termed the tumor microenvironment (TME), encompasses all cells and components associated with a neoplasm that are not transformed cells. Interactions between tumor cells and the TME are complex and fluid, with each facet coercing the other, largely, into promoting tumor progression. While the TME in humans is relatively well-described, a compilation and comparison of the TME in our canine counterparts has not yet been described. As is the case in humans, dog tumors exhibit greater heterogeneity than what is appreciated in laboratory animal models, although the current level of knowledge on similarities and differences in the TME between dogs and humans, and the practical implications of that information, require further investigation. This review summarizes some of the complexities of the human and mouse TME and interjects with what is known in the dog, relaying the information in the context of the temporo-spatial organization of the TME. To the authors' knowledge, the development of the TME over space and time has not been widely discussed, and a comprehensive review of the canine TME has not been done. The specific topics covered in this review include cellular invasion and interactions within the TME, metabolic derangements in the TME and vascular invasion, and the involvement of the TME in tumor spread and metastasis.
Collapse
Affiliation(s)
- Kendall L Langsten
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Aaron L Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Mark Dewhirst
- Radiation Oncology Department, Duke University Medical School, Durham, NC, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Griffin JD, Song JY, Huang A, Sedlacek AR, Flannagan KL, Berkland CJ. Antigen-specific immune decoys intercept and exhaust autoimmunity to prevent disease. Biomaterials 2019; 222:119440. [PMID: 31450159 DOI: 10.1016/j.biomaterials.2019.119440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Relapsing-remitting patterns of many autoimmune diseases such as multiple sclerosis (MS) are perpetuated by a recurring circuit of adaptive immune cells that amplify in secondary lymphoid organs (SLOs) and traffic to compartments where antigen is abundant to elicit damage. Some of the most effective immunotherapies impede the migration of immune cells through this circuit, however, broadly suppressing immune cell migration can introduce life-threatening risks for patients. We developed antigen-specific immune decoys (ASIDs) to mimic tissues targeted in autoimmunity and selectively intercept autoimmune cells to preserve host tissue. Using Experimental Autoimmune Encephalomyelitis (EAE) as a model, we conjugated autoantigen PLP139-151 to a microporous collagen scaffold. By subcutaneously implanting ASIDs after induction but prior to the onset of symptoms, mice were protected from paralysis. ASID implants were rich with autoimmune cells, however, reactivity to cognate antigen was substantially diminished and apoptosis was prevalent. ASID-implanted mice consistently exhibited engorged spleens when disease normally peaked. In addition, splenocyte antigen-presenting cells were highly activated in response to PLP rechallenge, but CD3+ and CD19 + effector subsets were significantly decreased, suggesting exhaustion. ASID-implanted mice never developed EAE relapse symptoms even though the ASID material had long since degraded, suggesting exhausted autoimmune cells did not recover functionality. Together, data suggested ASIDs were able to sequester and exhaust immune cells in an antigen-specific fashion, thus offering a compelling approach to inhibit the migration circuit underlying autoimmunity.
Collapse
Affiliation(s)
- J Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | - Jimmy Y Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Alexander R Sedlacek
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - Kaitlin L Flannagan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
10
|
Mehta D, Granstein RD. Immunoregulatory Effects of Neuropeptides on Endothelial Cells: Relevance to Dermatological Disorders. Dermatology 2019; 235:175-186. [PMID: 30808842 DOI: 10.1159/000496538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/31/2018] [Indexed: 11/19/2022] Open
Abstract
Many skin diseases, including psoriasis and atopic dermatitis, have a neurogenic component. In this regard, bidirectional interactions between components of the nervous system and multiple target cells in the skin and elsewhere have been receiving increasing attention. Neuropeptides released by sensory nerves that innervate the skin can directly modulate functions of keratinocytes, Langerhans cells, dermal dendritic cells, mast cells, dermal microvascular endothelial cells and infiltrating immune cells. As a result, neuropeptides and neuropeptide receptors participate in a complex, interdependent network of mediators that modulate the skin immune system, skin inflammation, and wound healing. In this review, we will focus on recent studies demonstrating the roles of α-melanocyte-stimulating hormone, calcitonin gene-related peptide, substance P, somatostatin, vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, and nerve growth factor in modulating inflammation and immunity in the skin through their effects on dermal microvascular endothelial cells.
Collapse
Affiliation(s)
- Devina Mehta
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
12
|
Finlon JM, Burchill MA, Tamburini BAJ. Digestion of the Murine Liver for a Flow Cytometric Analysis of Lymphatic Endothelial Cells. J Vis Exp 2019. [PMID: 30663671 DOI: 10.3791/58621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Within the liver, lymphatic vessels are found within the portal triad, and their described function is to remove interstitial fluid from the liver to the lymph nodes where cellular debris and antigens can be surveyed. We are very interested in understanding how the lymphatic vasculature might be involved in inflammation and immune cell function within the liver. However, very little has been published establishing digestion protocols for the isolation of lymphatic endothelial cells (LECs) from the liver or specific markers that can be used to evaluate liver LECs on a per cell basis. Therefore, we optimized a method for the digestion and staining of the liver in order to evaluate the LEC population in the liver. We are confident that the method outlined here will be useful for the identification and isolation of LECs from the liver and will strengthen our understanding of how LECs respond to the liver microenvironment.
Collapse
Affiliation(s)
- Jeffrey M Finlon
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine
| | - Matthew A Burchill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine
| | - Beth A Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
13
|
Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol 2018; 48:1607-1620. [PMID: 30160302 DOI: 10.1002/eji.201646789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
There are over 10 trillion endothelial cells (EC) that line the vasculature of the human body. These cells not only have specialized functions in the maintenance of homeostasis within the circulation and various tissues but they also have a major role in immune function. EC also represent an important replicative niche for a subset of viral, bacterial, and parasitic organisms that are present in the blood or lymph; however, there are major gaps in our knowledge regarding how pathogens interact with EC and how this influences disease outcome. In this article, we review the literature on EC-pathogen interactions and their role in innate and adaptive mechanisms of resistance to infection and highlight opportunities to address prominent knowledge gaps.
Collapse
Affiliation(s)
- Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Lertjuthaporn S, Cicala C, Van Ryk D, Liu M, Yolitz J, Wei D, Nawaz F, Doyle A, Horowitch B, Park C, Lu S, Lou Y, Wang S, Pan R, Jiang X, Villinger F, Byrareddy SN, Santangelo PJ, Morris L, Wibmer CK, Biris K, Mason RD, Gorman J, Hiatt J, Martinelli E, Roederer M, Fujikawa D, Gorini G, Franchini G, Arakelyan A, Ansari AA, Pattanapanyasat K, Kong XP, Fauci AS, Arthos J. Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to α4β7. PLoS Pathog 2018; 14:e1007278. [PMID: 30153309 PMCID: PMC6130882 DOI: 10.1371/journal.ppat.1007278] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/10/2018] [Accepted: 08/12/2018] [Indexed: 01/16/2023] Open
Abstract
The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4β7, a gut-homing receptor. Using both cell-surface expressed α4β7 and a soluble α4β7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4β7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4β7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4β7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4β7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4β7. It includes the canonical LDV/I α4β7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4β7 interactions. These mAbs recognize conformations absent from the β- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4β7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Allison Doyle
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Brooke Horowitch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yang Lou
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Constantinos Kurt Wibmer
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristin Biris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Joseph Hiatt
- Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Dai Fujikawa
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Giacomo Gorini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Kovit Pattanapanyasat
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
15
|
Lucas ED, Finlon JM, Burchill MA, McCarthy MK, Morrison TE, Colpitts TM, Tamburini BAJ. Type 1 IFN and PD-L1 Coordinate Lymphatic Endothelial Cell Expansion and Contraction during an Inflammatory Immune Response. THE JOURNAL OF IMMUNOLOGY 2018; 201:1735-1747. [PMID: 30045970 DOI: 10.4049/jimmunol.1800271] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Lymph node (LN) expansion during an immune response is a complex process that involves the relaxation of the fibroblastic network, germinal center formation, and lymphatic vessel growth. These processes require the stromal cell network of the LN to act deliberately to accommodate the influx of immune cells to the LN. The molecular drivers of these processes are not well understood. Therefore, we asked whether the immediate cytokines type 1 IFN produced during viral infection influence the lymphatic network of the LN in mice. We found that following an IFN-inducing stimulus such as viral infection or polyI:C, programmed cell death ligand 1 (PD-L1) expression is dynamically upregulated on lymphatic endothelial cells (LECs). We found that reception of type 1 IFN by LECs is important for the upregulation of PD-L1 of mouse and human LECs and the inhibition of LEC expansion in the LN. Expression of PD-L1 by LECs is also important for the regulation of LN expansion and contraction after an IFN-inducing stimulus. We demonstrate a direct role for both type 1 IFN and PD-L1 in inhibiting LEC division and in promoting LEC survival. Together, these data reveal a novel mechanism for the coordination of type 1 IFN and PD-L1 in manipulating LEC expansion and survival during an inflammatory immune response.
Collapse
Affiliation(s)
- Erin D Lucas
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jeffrey M Finlon
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Matthew A Burchill
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Mary K McCarthy
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Tonya M Colpitts
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118; and.,Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Beth A Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
16
|
Al-Soudi A, Kaaij MH, Tas SW. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmun Rev 2017; 16:951-962. [PMID: 28698091 DOI: 10.1016/j.autrev.2017.07.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023]
Abstract
The endothelium is crucially important for the delivery of oxygen and nutrients throughout the body under homeostatic conditions. However, it also contributes to pathology, including the initiation and perpetuation of inflammation. Understanding the function of endothelial cells (ECs) in inflammatory diseases and molecular mechanisms involved may lead to novel approaches to dampen inflammation and restore homeostasis. In this article, we discuss the various functions of ECs in inflammation with a focus on pathological angiogenesis, attraction of immune cells, antigen presentation, immunoregulatory properties and endothelial-to-mesenchymal transition (EndMT). We also review the current literature on approaches to target these processes in ECs to modulate immune responses and advance anti-inflammatory therapies.
Collapse
Affiliation(s)
- A Al-Soudi
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M H Kaaij
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: implications for in vivo targeted vaccine delivery. Gene Ther 2017; 24:370-375. [PMID: 28540936 DOI: 10.1038/gt.2017.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/24/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
Abstract
Targeting transgene expression specifically to antigen-presenting cells (APCs) has been put forward as a promising strategy to direct the immune system towards immunity. We developed the nanobody-display technology to restrict the tropism of lentiviral vectors (LVs) to APCs. However, we observed that immunization with APC-targeted LVs (DC2.1-LVs) did not evoke strong antigen-specific T-cell immunity when compared to immunization with broad tropism LVs (VSV.G-LVs). In this study, we report that VSV.G-LVs are more immunogenic than DC2.1-LVs because they transduce stromal cells, which has a role in activating antigen-specific T cells. Moreover, VSV.G-LVs trigger a pro-inflammatory innate immune response through transduction of APCs and stromal cells, while DC2.1-LVs trigger a type I interferon response with anti-viral capacity. These findings question the rationale of targeting LVs to APCs and argue for the development of VSV.G-LVs with an improved safety profile.
Collapse
|
18
|
Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation's fire? Exp Biol Med (Maywood) 2017; 242:884-895. [PMID: 28346012 DOI: 10.1177/1535370217697385] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lymphangiogenesis is a recognized hallmark of inflammatory processes in tissues and organs as diverse as the skin, heart, bowel, and airways. In clinical and animal models wherein the signaling processes of lymphangiogenesis are manipulated, most studies demonstrate that an expanded lymphatic vasculature is necessary for the resolution of inflammation. The fundamental roles that lymphatics play in fluid clearance and immune cell trafficking from the periphery make these results seemingly obvious as a mechanism of alleviating locally inflamed environments: the lymphatics are simply providing a drain. Depending on the tissue site, lymphangiogenic mechanism, or induction timeframe, however, evidence shows that inflammation-associated lymphangiogenesis (IAL) may worsen the pathology. Recent studies have identified lymphatic endothelial cells themselves to be local regulators of immune cell activity and its consequential phenotypes - a more active role in inflammation regulation than previously thought. Indeed, results focusing on the immunocentric roles of peripheral lymphatic function have revealed that the basic drainage task of lymphatic vessels is a complex balance of locally processed and transported antigens as well as interstitial cytokine and immune cell signaling: an interplay that likely defines the function of IAL. This review will summarize the latest findings on how IAL impacts a series of disease states in various tissues in both preclinical models and clinical studies. This discussion will serve to highlight some emerging areas of lymphatic research in an attempt to answer the question relevant to an array of scientists and clinicians of whether IAL helps to fuel or extinguish inflammation. Impact statement Inflammatory progression is present in acute and chronic tissue pathologies throughout the body. Lymphatic vessels play physiological roles relevant to all medical fields as important regulators of fluid balance, immune cell trafficking, and immune identity. Lymphangiogenesis is often concurrent with inflammation and can potentially aide or worsen disease progression. How new lymphatic vessels impact inflammation and by which mechanism is an important consideration in current and future clinical therapies targeting inflammation and/or vasculogenesis. This review identifies, across a range of tissue-specific pathologies, the current understanding of inflammation-associated lymphangiogenesis in the progression or resolution of inflammation.
Collapse
Affiliation(s)
- Gabriella R Abouelkheir
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Bradley D Upchurch
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Joseph M Rutkowski
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| |
Collapse
|
19
|
Abstract
Germinal centers (GC) are the main sites where antigen-activated B-cell clones expand and undergo immunoglobulin gene hypermutation and selection. Iterations of this process will lead to affinity maturation, replicating Darwinian evolution on the cellular level. GC B-cell selection can lead to four different outcomes: further expansion and evolution, apoptosis (non-selection), or output from the GC with differentiation into memory B cells or plasma cells. T-helper cells in GC have been shown to have a central role in regulating B-cell selection by sensing the density of major histocompatibility complex (MHC):peptide antigen complexes. Antigen is provided on follicular dendritic cells in the form of immune complex. Antibody on these immune complexes regulates antigen accessibility by shielding antigen from B-cell receptor access. Replacement of antibody on immune complexes by antibody generated from GC-derived plasma cell output will gradually reduce the availability of antigen. This antibody feedback can lead to a situation where a slow rise in selection stringency caused by a changing environment leads to directional evolution toward higher affinity antibody.
Collapse
Affiliation(s)
- Yang Zhang
- Institute for Immunology and ImmunotherapyUniversity of Birmingham Medical SchoolBirminghamUK
| | - Laura Garcia‐Ibanez
- Institute for Immunology and ImmunotherapyUniversity of Birmingham Medical SchoolBirminghamUK
| | - Kai‐Michael Toellner
- Institute for Immunology and ImmunotherapyUniversity of Birmingham Medical SchoolBirminghamUK
| |
Collapse
|