1
|
Shi R, Ran L, Tian Y, Guo W, Zhao L, Jin S, Cheng J, Zhang Z, Ma Y. Prospects and challenges of neoantigen applications in oncology. Int Immunopharmacol 2024; 143:113329. [PMID: 39405926 DOI: 10.1016/j.intimp.2024.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Neoantigen, unique peptides resulting from tumor-specific mutations, represent a promising frontier in oncology for personalized cancer immunotherapy. Their unique features allow for the development of highly specific and effective cancer treatments, which can potentially overcome the limitations of conventional therapies. This paper explores the current prospects and challenges associated with the application of neoantigens in oncology. We examine the latest advances in neoantigen identification, vaccine development, and adoptive T cell therapy. Additionally, we discuss the obstacles related to neoantigen heterogeneity, immunogenicity prediction, and the tumor microenvironment. Through a comprehensive analysis of current research and clinical trials, this paper aims to provide a detailed overview of how neoantigens could revolutionize cancer treatment and the hurdles that must be overcome to realize their full potential.
Collapse
Affiliation(s)
- Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Ling Ran
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Yuan Tian
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Wei Guo
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China
| | - Lifang Zhao
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Shaoju Jin
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Jiang Cheng
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Zhe Zhang
- School of Sciences, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongchao Ma
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China.
| |
Collapse
|
2
|
Bresser K, Nicolet BP, Jeko A, Wu W, Loayza-Puch F, Agami R, Heck AJR, Wolkers MC, Schumacher TN. Gene and protein sequence features augment HLA class I ligand predictions. Cell Rep 2024; 43:114325. [PMID: 38870014 DOI: 10.1016/j.celrep.2024.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.
Collapse
Affiliation(s)
- Kaspar Bresser
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Benoit P Nicolet
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation lab, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Anita Jeko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation lab, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Ton N Schumacher
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Hu YD, Wu K, Liu YJ, Zhang Q, Shen H, Ji J, Fang D, Xi SY. LY6/PLAUR domain containing 3 (LYPD3) maintains melanoma cell stemness and mediates an immunosuppressive microenvironment. Biol Direct 2023; 18:72. [PMID: 37924160 PMCID: PMC10623712 DOI: 10.1186/s13062-023-00424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Malignant melanoma is a highly heterogeneous skin cancer with the highest mortality rate among dermatological cancers. Catenins form functional networks in the nucleus to regulate gene expression and determine cell fate. Dysregulation of catenin expression correlates with the malignant characteristics of the tumor. We aimed to investigate the regulatory mechanisms of catenins in melanoma and to further define the function of catenin-related molecular signaling in the tumor microenvironment. METHODS In this study, a bioinformatics approach combined with experimental validation was used to explore the potential tumor biology mechanisms of catenin-related signaling. RESULTS Melanoma patients can be divided into two catenin clusters. Patients defined by high Junction Plakoglobin (JUP), Plakophilin 1 (PKP1), Plakophilin 3 (PKP3) levels (C2) had shorter survival time than other patients (C1). We demonstrated that JUP regulates Anterior Gradient 2 (AGR2)/LY6/PLAUR Domain Containing 3 (LYPD3) to maintain melanoma stemness and promotes glycolysis. We also found that LYPD3 was co-expressed with S100A9 and associated with immunosuppressive tumor microenvironment (TME). CONCLUSION The JUP/AGR2/LYPD3 signaling axis plays an important role in the malignant features of melanoma. Targeting the JUP/AGR2/LYPD3 signaling axis can help develop promising drugs.
Collapse
Affiliation(s)
- Yi-Dou Hu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Ke Wu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Jin Ji
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Dong Fang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Song-Yang Xi
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| |
Collapse
|
4
|
Martinez-Sanz P, Laurent ARG, Slot E, Hoogenboezem M, Bąbała N, van Bruggen R, Rongvaux A, Flavell RA, Tytgat GAM, Franke K, Matlung HL, Kuijpers TW, Amsen D, Karrich JJ. Humanized MISTRG as a preclinical in vivo model to study human neutrophil-mediated immune processes. Front Immunol 2023; 14:1105103. [PMID: 36969261 PMCID: PMC10032520 DOI: 10.3389/fimmu.2023.1105103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionMISTRG mice have been genetically modified to allow development of a human myeloid compartment from engrafted human CD34+ haemopoietic stem cells, making them particularly suited to study the human innate immune system in vivo. Here, we characterized the human neutrophil population in these mice to establish a model that can be used to study the biology and contribution in immune processes of these cells in vivo.Methods and resultsWe could isolate human bone marrow neutrophils from humanized MISTRG mice and confirmed that all neutrophil maturation stages from promyelocytes (CD11b–CD16–) to end-stage segmented cells (CD11b+CD16+) were present. We documented that these cells possessed normal functional properties, including degranulation, reactive oxygen species production, adhesion, and antibody-dependent cellular cytotoxicity towards antibody-opsonized tumor cells ex vivo. The acquisition of functional capacities positively correlated with the maturation state of the cell. We found that human neutrophils were retained in the bone marrow of humanized MISTRG mice during steady state. However, the mature segmented CD11b+CD16+ human neutrophils were released from the bone marrow in response to two well-established neutrophil-mobilizing agents (i.e., G-CSF and/or CXCR4 antagonist Plerixafor). Moreover, the neutrophil population in the humanized MISTRG mice actively reacted to thioglycolate-induced peritonitis and could infiltrate implanted human tumors, as shown by flow cytometry and fluorescent microscopy.DiscussionThese results show that functional human neutrophils are generated and can be studied in vivo using the humanized MISTRG mice, providing a model to study the various functions of neutrophils in inflammation and in tumors.
Collapse
Affiliation(s)
- Paula Martinez-Sanz
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Adrien R. G. Laurent
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Edith Slot
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nikolina Bąbała
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anthony Rongvaux
- Department of Immunology, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Godelieve A. M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, Utrecht, Netherlands
| | - Katka Franke
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Rheumatology and Infectious Diseases, Emma Children's Hospital, Department of Pediatric Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Derk Amsen
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Julien J. Karrich
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| |
Collapse
|
5
|
To N, Evans RPT, Pearce H, Kamarajah SK, Moss P, Griffiths EA. Current and Future Immunotherapy-Based Treatments for Oesophageal Cancers. Cancers (Basel) 2022; 14:3104. [PMID: 35804876 PMCID: PMC9265112 DOI: 10.3390/cancers14133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Oesophageal cancer is a disease that causes significant morbidity and mortality worldwide, and the prognosis of this condition has hardly improved in the past few years. Standard treatment includes a combination of chemotherapy, radiotherapy and surgery; however, only a proportion of patients go on to treatment intended to cure the disease due to the late presentation of this disease. New treatment options are of utmost importance, and immunotherapy is a new option that has the potential to transform the landscape of this disease. This treatment is developed to act on the changes within the immune system caused by cancer, including checkpoint inhibitors, which have recently shown great promise in the treatment of this disease and have recently been included in the adjuvant treatment of oesophageal cancer in many countries worldwide. This review will outline the mechanisms by which cancer evades the immune system in those diagnosed with oesophageal cancer and will summarize current and ongoing trials that focus on the use of our own immune system to combat disease.
Collapse
Affiliation(s)
- Natalie To
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Richard P. T. Evans
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Sivesh K. Kamarajah
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Ewen A. Griffiths
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| |
Collapse
|
6
|
Granhøj JS, Witness Præst Jensen A, Presti M, Met Ö, Svane IM, Donia M. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opin Biol Ther 2022; 22:627-641. [PMID: 35414331 DOI: 10.1080/14712598.2022.2064711] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a highly personalized type of cancer immunotherapy. TIL-based ACT exploits naturally occurring TILs, derived from the patients' tumor. This treatment has shown consistent clinical responses in melanoma, and recent results point toward a potential use in multiple cancer diagnoses. However, several limitations have restricted the clinical development and adaptation of TIL-based ACT. AREAS COVERED In this review, we present the principles of TIL-based ACT and discuss the most significant limitations for therapeutic efficacy and its widespread application. The topics of therapeutic resistance (both innate and acquired), treatment-related toxicity, and the novel research topic of metabolic barriers in the tumor microenvironment (TME) are covered. EXPERT OPINION There are many ongoing areas of research focusing on improving clinical efficacy and optimizing TIL-based ACT. Many strategies have shown great potential, particularly strategies advancing TIL efficacy (such as increasing and harnessing ex vivo the sub-population of tumor-reactive TILs) and manufacturing processes. Novel approaches can help overcome current limitations and potentially result in TIL-based ACT entering the mainstream of cancer therapy across tumor types.
Collapse
Affiliation(s)
- Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Agnete Witness Præst Jensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
7
|
Goncharov MM, Bryushkova EA, Sharaev NI, Skatova VD, Baryshnikova AM, Sharonov GV, Karnaukhov V, Vakhitova MT, Samoylenko IV, Demidov LV, Lukyanov S, Chudakov DM, Serebrovskaya EO. Pinpointing the tumor-specific T-cells via TCR clusters. eLife 2022; 11:77274. [PMID: 35377314 PMCID: PMC9023053 DOI: 10.7554/elife.77274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lysed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: (1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); (2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; (3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.
Collapse
Affiliation(s)
- Mikhail M Goncharov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Nikita I Sharaev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Valeria D Skatova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasiya M Baryshnikova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - George V Sharonov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim Karnaukhov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Maria T Vakhitova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor V Samoylenko
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Lev V Demidov
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Dmitriy M Chudakov
- Department of genomics of adaptive immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | | |
Collapse
|
8
|
Bund V, Azaïs H, Bibi-Triki S, Lecointre L, Betrian SB, Angeles MA, Eberst L, Faller E, Boisramé T, Bendifallah S, Akladios C, Deluche É. Basics of immunotherapy for epithelial ovarian cancer. J Gynecol Obstet Hum Reprod 2021; 51:102283. [PMID: 34875397 DOI: 10.1016/j.jogoh.2021.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers. Despite excellent responses to standard treatment in approximately 70% of patients, most of them will relapse within 5 years of initial treatment and many of them will develop chemotherapy-resistant disease. It is then important to find other means of treatment for these patients such as immunotherapy or targeted therapy. To understand immunotherapy, it is important to explain the dynamic interplay between cancer and the immune system. Compared to traditional tumor therapies, immunotherapy acts primarily on the immune system or the tumor microenvironment but not directly on the tumor cells, and it may also promote synergistic anti-tumor actions as part of a combined treatment. The aim of this narrative review is to provide a basic understanding of immunotherapy the interest of this treatment in EOC, and to present the main ongoing studies that could change patient management in the future.
Collapse
Affiliation(s)
- Virginie Bund
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
| | - Henri Azaïs
- Department of Gynecologic and Breast Oncological Surgery, Georges-Pompidou European Hospital, APHP. Centre, France.
| | - Sabrina Bibi-Triki
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
| | - Lise Lecointre
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; IHU-Strasbourg (Institut Hospitalo-Universitaire), Strasbourg, France.
| | - Sarah Bétrian Betrian
- Medical oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer, Toulouse, France.
| | - Martina Aida Angeles
- Department of Gynecologic and Breast Oncological Surgery, European Georges-Pompidou Hospital, APHP. Centre, France.
| | - Lauriane Eberst
- Department of Oncology, Institut de Cancérologie de Strasbourg (ICANS), Strasbourg, France.
| | - Emilie Faller
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Thomas Boisramé
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | | | - Chérif Akladios
- Department of Gynecologic Surgery, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; I.R.C.A.D - Institut de Recherche contre les Cancers de l'Appareil Digestif. 67000 Strasbourg, France.
| | - Élise Deluche
- Medical oncology Department, Limoges University Hospital, France.
| | | |
Collapse
|
9
|
Est-Witte SE, Livingston NK, Omotoso MO, Green JJ, Schneck JP. Nanoparticles for generating antigen-specific T cells for immunotherapy. Semin Immunol 2021; 56:101541. [PMID: 34922816 PMCID: PMC8900015 DOI: 10.1016/j.smim.2021.101541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
T cell therapy shows promise as an immunotherapy in both immunostimulatory and immunosuppressive applications. However, the forms of T cell-based therapy that are currently in the clinic, such as adoptive cell transfer and vaccines, are limited by cost, time-to-treatment, and patient variability. Nanoparticles offer a modular, universal platform to improve the efficacy of various T cell therapies as nanoparticle properties can be easily modified for enhanced cell targeting, organ targeting, and cell internalization. Nanoparticles can enhance or even replace endogenous cells during each step of generating an antigen-specific T cell response - from antigen presentation and T cell activation to T cell maintenance. In this review, we discuss the unique applications of nanoparticles for antigen-specific T cell therapy, focusing on nanoparticles as vaccines (to activate endogenous antigen presenting cells (APCs)), as artificial Antigen Presenting Cells (aAPCs, to directly activate T cells), and as drug delivery vehicles (to support activated T cells).
Collapse
Affiliation(s)
- Savannah E Est-Witte
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, USA, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, USA, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary O Omotoso
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, USA, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Jonathan P Schneck
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Pathology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Banerjee A, Li D, Guo Y, Mahgoub B, Paragas L, Slobin J, Mei Z, Manafi A, Hata A, Li K, Shi L, Westwick J, Slingluff C, Lazear E, Krupnick AS. Retargeting IL-2 Signaling to NKG2D-Expressing Tumor-Infiltrating Leukocytes Improves Adoptive Transfer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:333-343. [PMID: 34155069 PMCID: PMC8688582 DOI: 10.4049/jimmunol.2000926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Ex vivo expansion followed by reinfusion of tumor-infiltrating leukocytes (TILs) has been used successfully for the treatment of multiple malignancies. Most protocols rely on the use of the cytokine IL-2 to expand TILs prior to reinfusion. In addition, TIL administration relies on systemic administration of IL-2 after reinfusion to support transferred cell survival. The use of IL-2, however, can be problematic because of its preferential expansion of regulatory T and myeloid cells as well as its systemic side effects. In this study, we describe the use of a novel IL-2 mutant retargeted to NKG2D rather than the high-affinity IL-2R for TIL-mediated immunotherapy in a murine model of malignant melanoma. We demonstrate that the NKG2D-retargeted IL-2 (called OMCPmutIL-2) preferentially expands TIL-resident CTLs, such as CD8+ T cells, NK cells, and γδT cells, whereas wild-type IL-2 provides a growth advantage for CD4+Foxp3+ T cells as well as myeloid cells. OMCPmutIL-2-expanded CTLs express higher levels of tumor-homing receptors, such as LFA-1, CD49a, and CXCR3, which correlate with TIL localization to the tumor bed after i.v. injection. Consistent with this, OMCPmutIL-2-expanded TILs provided superior tumor control compared with those expanded in wild-type IL-2. Our data demonstrate that adoptive transfer immunotherapy can be improved by rational retargeting of cytokine signaling to NKG2D-expressing CTLs rather than indiscriminate expansion of all TILs.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Surgery, University of Virginia, Charlottesville, VA;
| | - Dongge Li
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Yizhan Guo
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Bayan Mahgoub
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Lea Paragas
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | | - Zhongcheng Mei
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Amir Manafi
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Atsushi Hata
- Department of Surgery, University of Virginia, Charlottesville, VA
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kang Li
- The First Affiliated Hospital of Xi'an, Jiaotong University, Shaanxi, China; and
| | - Lei Shi
- The First Affiliated Hospital of Xi'an, Jiaotong University, Shaanxi, China; and
| | | | - Craig Slingluff
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | | - Alexander Sasha Krupnick
- Department of Surgery, University of Virginia, Charlottesville, VA;
- Courier Therapeutics, Houston, TX
| |
Collapse
|
11
|
Ferrall L, Lin KY, Roden RBS, Hung CF, Wu TC. Cervical Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2021; 27:4953-4973. [PMID: 33888488 DOI: 10.1158/1078-0432.ccr-20-2833] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
It is a sad fact that despite being almost completely preventable through human papillomavirus (HPV) vaccination and screening, cervical cancer remains the fourth most common cancer to affect women worldwide. Persistent high-risk HPV (hrHPV) infection is the primary etiologic factor for cervical cancer. Upward of 70% of cases are driven by HPV types 16 and 18, with a dozen other hrHPVs associated with the remainder of cases. Current standard-of-care treatments include radiotherapy, chemotherapy, and/or surgical resection. However, they have significant side effects and limited efficacy against advanced disease. There are a few treatment options for recurrent or metastatic cases. Immunotherapy offers new hope, as demonstrated by the recent approval of programmed cell death protein 1-blocking antibody for recurrent or metastatic disease. This might be augmented by combination with antigen-specific immunotherapy approaches, such as vaccines or adoptive cell transfer, to enhance the host cellular immune response targeting HPV-positive cancer cells. As cervical cancer progresses, it can foster an immunosuppressive microenvironment and counteract host anticancer immunity. Thus, approaches to reverse suppressive immune environments and bolster effector T-cell functioning are likely to enhance the success of such cervical cancer immunotherapy. The success of nonspecific immunostimulants like imiquimod against genital warts also suggest the possibility of utilizing these immunotherapeutic strategies in cervical cancer prevention to treat precursor lesions (cervical intraepithelial neoplasia) and persistent hrHPV infections against which the licensed prophylactic HPV vaccines have no efficacy. Here, we review the progress and challenges in the development of immunotherapeutic approaches for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Louise Ferrall
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland
| | - Ken Y Lin
- Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Richard B S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland. .,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
12
|
Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Front Immunol 2020; 11:1215. [PMID: 32695101 PMCID: PMC7333784 DOI: 10.3389/fimmu.2020.01215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mutation-derived neoantigens are taking central stage as a determinant in eliciting effective antitumor immune responses following adoptive T-cell therapies. These mutations are patient-specific, and their targeting calls for highly personalized pipelines. The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have spurred interest in generating T-cell infusion products that have been selectively enriched in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step, prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the overall response rates achieved to date by adoptive T-cell therapies in metastatic cancer patients. Here we provide an overview of the main technologies [i.e., peptide major histocompatibility complex (pMHC) multimers, cytokine capture, and activation markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities (or tumor reactivity). The unique technical and regulatory challenges faced by such highly specialized and patient-specific manufacturing T-cell platforms are also discussed.
Collapse
Affiliation(s)
- Valentina Bianchi
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Boos LA, Leslie I, Larkin J. Metastatic melanoma: therapeutic agents in preclinical and early clinical development. Expert Opin Investig Drugs 2020; 29:739-753. [PMID: 32401070 DOI: 10.1080/13543784.2020.1769066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Advanced melanoma historically had a very poor outcome but targeted therapies and immune checkpoint inhibitors (IC) have changed the course of the disease and made durable responses possible. However, most patients will develop progressive disease, so further strategies to overcome treatment resistance are needed. Areas covered: Current treatment strategies and landmark trials are discussed. Novel targeted agents, immune checkpoint inhibitors, and further immune-modulatory drugs, cancer vaccines and tumor infiltrating lymphocytes and their potential role in the treatment of melanoma are described. Current trials investigating these emerging agents and treatment strategies were searched for on ClinicalTrials.gov and are presented on the background of the current literature explaining the rationale for employing these new agents and strategies. Combinations of tumor-directed agents with those causing immune augmentation as well as a new adjuvant and neoadjuvant strategies are discussed. Expert opinion: Questions regarding treatment combination, personalization, and sequence of treatment will become increasingly important and will be guided by new biomarkers. New treatment settings will broaden the patient selection and will highlight the need for further discussions regarding toxicity in long-term survivorship.
Collapse
Affiliation(s)
- Laura Amanda Boos
- Department of Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust , London, UK
| | - Isla Leslie
- Department of Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust , London, UK
| | - James Larkin
- Department of Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust , London, UK
| |
Collapse
|
15
|
Etxeberria I, Olivera I, Bolaños E, Cirella A, Teijeira Á, Berraondo P, Melero I. Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cell Mol Immunol 2020; 17:576-586. [PMID: 32433539 PMCID: PMC7264123 DOI: 10.1038/s41423-020-0464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene engineering and combinatorial approaches with other cancer immunotherapy agents may confer capabilities enabling full tumor rejection by adoptive T cell therapy (ACT). The provision of proper costimulatory receptor activity and cytokine stimuli, along with the repression of inhibitory mechanisms, will conceivably make the most of these treatment strategies. In this sense, T cells can be genetically manipulated to become refractory to suppressive mechanisms and exhaustion, last longer and differentiate into memory T cells while endowed with the ability to traffic to malignant tissues. Their antitumor effects can be dramatically augmented with permanent or transient gene transfer maneuvers to express or delete/repress genes. A combination of such interventions seeks the creation of the ultimate bionic T cell, perfected to seek and destroy cancer cells upon systemic or local intratumor delivery.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Asunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
16
|
Osella-Abate S, Conti L, Annaratone L, Senetta R, Bertero L, Licciardello M, Caliendo V, Picciotto F, Quaglino P, Cassoni P, Ribero S. Phenotypic characterisation of immune cells associated with histological regression in cutaneous melanoma. Pathology 2019; 51:487-493. [PMID: 31266597 DOI: 10.1016/j.pathol.2019.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 10/26/2022]
Abstract
Histological regression and tumour infiltrating lymphocytes represent an early sign of activation of the immune system against primary melanoma. The first phenomenon has been especially discussed in the literature because of its prognostic role, but no clear agreement on its evaluation has been reached. Immunotherapy of advanced stage melanoma has recently shown promising results; an improved understanding of the initial interplay between melanoma cells and the immune system would potentially help tailor treatment for patients. Seventy consecutive melanomas with regression were analysed to identify a prognostic cut-off value of regression extension. Then, we compared the immune infiltrate between regressed and not regressed areas of these regressed melanomas, assessing CD3, CD4, CD8, CD20, CD123, PD1 and FOXP3/CD25 expression. The immune infiltrate of these cases was further compared with 28 control melanomas without regression. A regression extension of 10% represented a reliable cut-off to distinguish two different risk categories in regressed melanomas. Regressed areas were less infiltrated by CD4/CD25, FOXP3/CD4 or PD1/CD4 compared to not regressed areas of each sample. These lymphocyte subsets are associated with anergy and hamper the immune CD8+ response towards the cancer cells. Moreover, the relevance of these findings was further supported by the observation that not regressed controls were significantly more infiltrated by these anergic immune cell subsets compared to the regressed cases. These results help understand the real meaning of regression in melanoma. Moreover, the association here identified between specific immunomodulatory immune cell subsets and regression could help in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Simona Osella-Abate
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Luca Conti
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Laura Annaratone
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Rebecca Senetta
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Luca Bertero
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy
| | - Matteo Licciardello
- Department of Medical Sciences, Section of Dermatology, University of Turin, Torino, Italy
| | - Virginia Caliendo
- Dermatologic Surgery Section, Department of Oncology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Franco Picciotto
- Dermatologic Surgery Section, Department of Oncology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Torino, Italy
| | - Paola Cassoni
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Torino, Italy.
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Torino, Italy; Dermatologic Surgery Section, Department of Oncology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
17
|
Abstract
The phenotype and functionalities of the major immune cell subsets including myeloid cells, macrophages, dendritic cells, and T cells are altered in the ovarian cancer microenvironment. Immunosuppressive networks including inhibitory B7 family members and regulatory T cell-associated adenosine pathway have been defined in human ovarian cancer. In this review, the authors integrate emerging information on immunosuppressive mechanisms and T cell phenotype and discuss strategies of immunotherapeutic and vaccine regimens. Finally, crucial points regarding design of immuno-oncology clinical trials are reviewed.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, BSRB 5448, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Janice Rebecca Liu
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, L4604 WH, 1500 East Medical Center, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, BSRB 5071, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA.
| |
Collapse
|
18
|
Westergaard MCW, Andersen R, Chong C, Kjeldsen JW, Pedersen M, Friese C, Hasselager T, Lajer H, Coukos G, Bassani-Sternberg M, Donia M, Svane IM. Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. Br J Cancer 2019. [PMID: 30718808 DOI: 10.1038/s41416-019-0384-y] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Solid malignancies are frequently infiltrated with T cells. The success of adoptive cell transfer (ACT) with expanded tumour-infiltrating lymphocytes (TILs) in melanoma warrants its testing in other cancer types. In this preclinical study, we investigated whether clinical-grade TILs could be manufactured from ovarian cancer (OC) tumour specimens. METHODS Thirty-four tumour specimens were obtained from 33 individual patients with OC. TILs were analysed for phenotype, antigen specificity and functionality. RESULTS Minimally expanded TILs (Young TILs) were successfully established from all patients. Young TILs contained a high frequency of CD3+ cells with a variable CD4/CD8 ratio. TILs could be expanded to clinical numbers. Importantly, recognition of autologous tumour cells was demonstrated in TILs in >50% of the patients. We confirmed with mass spectrometry the presentation of multiple tumour antigens, including peptides derived from the cancer-testis antigen GAGE, which could be recognised by antigen-specific TILs. Antigen-specific TILs could be isolated and further expanded in vitro. CONCLUSION These findings support the hypothesis that patients with OC can benefit from ACT with TILs and led to the initiation of a pilot clinical trial at our institution . TRIAL REGISTRATION clinicaltrials.gov: NCT02482090.
Collapse
Affiliation(s)
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Chong
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julie Westerlin Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Pedersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lajer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark. .,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Westergaard MCW, Andersen R, Chong C, Kjeldsen JW, Pedersen M, Friese C, Hasselager T, Lajer H, Coukos G, Bassani-Sternberg M, Donia M, Svane IM. Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. Br J Cancer 2019; 120:424-434. [PMID: 30718808 PMCID: PMC6461863 DOI: 10.1038/s41416-019-0384-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Solid malignancies are frequently infiltrated with T cells. The success of adoptive cell transfer (ACT) with expanded tumour-infiltrating lymphocytes (TILs) in melanoma warrants its testing in other cancer types. In this preclinical study, we investigated whether clinical-grade TILs could be manufactured from ovarian cancer (OC) tumour specimens. METHODS Thirty-four tumour specimens were obtained from 33 individual patients with OC. TILs were analysed for phenotype, antigen specificity and functionality. RESULTS Minimally expanded TILs (Young TILs) were successfully established from all patients. Young TILs contained a high frequency of CD3+ cells with a variable CD4/CD8 ratio. TILs could be expanded to clinical numbers. Importantly, recognition of autologous tumour cells was demonstrated in TILs in >50% of the patients. We confirmed with mass spectrometry the presentation of multiple tumour antigens, including peptides derived from the cancer-testis antigen GAGE, which could be recognised by antigen-specific TILs. Antigen-specific TILs could be isolated and further expanded in vitro. CONCLUSION These findings support the hypothesis that patients with OC can benefit from ACT with TILs and led to the initiation of a pilot clinical trial at our institution . TRIAL REGISTRATION clinicaltrials.gov: NCT02482090.
Collapse
Affiliation(s)
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Chong
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julie Westerlin Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Pedersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lajer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Ganesh S, Shui X, Craig KP, Park J, Wang W, Brown BD, Abrams MT. RNAi-Mediated β-Catenin Inhibition Promotes T Cell Infiltration and Antitumor Activity in Combination with Immune Checkpoint Blockade. Mol Ther 2018; 26:2567-2579. [PMID: 30274786 PMCID: PMC6225018 DOI: 10.1016/j.ymthe.2018.09.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Wnt/β-catenin signaling mediates cancer immune evasion and resistance to immune checkpoint therapy, in part by blocking cytokines that trigger immune cell recruitment. Inhibition of β-catenin may be an effective strategy for increasing the low response rate to these effective medicines in numerous cancer populations. DCR-BCAT is a nanoparticle drug product containing a chemically optimized RNAi trigger targeting CTNNB1, the gene that encodes β-catenin. In syngeneic mouse tumor models, β-catenin inhibition with DCR-BCAT significantly increased T cell infiltration and potentiated the sensitivity of the tumors to checkpoint inhibition. The combination of DCR-BCAT and immunotherapy yielded significantly greater tumor growth inhibition (TGI) compared to monotherapy in B16F10 melanoma, 4T1 mammary carcinoma, Neuro2A neuroblastoma, and Renca renal adenocarcinoma. Response to the RNAi-containing combination therapy was not dependent on Wnt activation status of the tumor. Importantly, this drug combination was associated with elevated levels of biomarkers of T cell-mediated cytotoxicity. Finally, when CTLA-4 and PD-1 antibodies were combined with DCR-BCAT in MMTV-Wnt1 transgenic mice, a genetic model of spontaneous Wnt-driven tumors, complete regressions were achieved in the majority of treated subjects. These data support RNAi-mediated β-catenin inhibition as an effective strategy to increase response rates to cancer immunotherapy.
Collapse
MESH Headings
- Animals
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Combined Modality Therapy
- Female
- Humans
- Immunotherapy/methods
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Transgenic
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- T-Lymphocytes/immunology
- Wnt Signaling Pathway/genetics
- Wnt1 Protein/genetics
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
Collapse
Affiliation(s)
- Shanthi Ganesh
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA.
| | - Xue Shui
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Kevin P Craig
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Jihye Park
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Weimin Wang
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Bob D Brown
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Marc T Abrams
- Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| |
Collapse
|
21
|
Rohaan MW, van den Berg JH, Kvistborg P, Haanen JBAG. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J Immunother Cancer 2018; 6:102. [PMID: 30285902 PMCID: PMC6171186 DOI: 10.1186/s40425-018-0391-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
The treatment of metastatic melanoma patients with autologous tumor-infiltrating lymphocytes (TIL) shows robust, reproducible, clinical responses in clinical trials executed in several specialized centers over the world. Even in the era of targeted therapy and immune checkpoint inhibition, TIL therapy can be an additional and clinically relevant treatment line. This review provides an overview of the clinical experiences with TIL therapy thus far, including lymphodepleting regimens, the use of interleukin-2 (IL-2) and the associated toxicity. Characteristics of the TIL products and the antigen recognition pattern will be discussed, as well as the current and upcoming production strategies, including the selective expansion of specific fractions from the cell product. In addition, the future potential of TIL therapy in melanoma and other tumor types will be covered.
Collapse
Affiliation(s)
- Maartje W Rohaan
- Department of Medical Oncology, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Joost H van den Berg
- Biotherapeutics Unit, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Andersen R, Westergaard MCW, Kjeldsen JW, Müller A, Pedersen NW, Hadrup SR, Met Ö, Seliger B, Kromann-Andersen B, Hasselager T, Donia M, Svane IM. T-cell Responses in the Microenvironment of Primary Renal Cell Carcinoma-Implications for Adoptive Cell Therapy. Cancer Immunol Res 2018; 6:222-235. [PMID: 29301752 DOI: 10.1158/2326-6066.cir-17-0467] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
In vitro expansion of large numbers of highly potent tumor-reactive T cells appears a prerequisite for effective adoptive cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TIL) as shown in metastatic melanoma (MM). We therefore sought to determine whether renal cell carcinomas (RCC) are infiltrated with tumor-reactive T cells that could be efficiently employed for adoptive transfer immunotherapy. TILs and autologous tumor cell lines (TCL) were successfully generated from 22 (92%) and 17 (77%) of 24 consecutive primary RCC specimens and compared with those generated from metastatic melanoma. Immune recognition of autologous TCLs or fresh tumor digests was observed in CD8+ TILs from 82% of patients (18/22). Cytotoxicity assays confirmed the tumoricidal capacity of RCC-TILs. The overall expansion capacity of RCC-TILs was similar to MM-TILs. However, the magnitude, polyfunctionality, and ability to expand in classical expansion protocols of CD8+ T-cell responses was lower compared with MM-TILs. The RCC-TILs that did react to the tumor were functional, and antigen presentation and processing of RCC tumors was similar to MM-TILs. Direct recognition of tumors with cytokine-induced overexpression of human leukocyte antigen class II was observed from CD4+ T cells (6/12; 50%). Thus, TILs from primary RCC specimens could be isolated, expanded, and could recognize tumors. However, immune responses of expanded CD8+ RCC-TILs were typically weaker than MM-TILs and displayed a mono-/oligofunctional pattern. The ability to select, enrich, and expand tumor-reactive polyfunctional T cells may be critical in developing effective ACT with TILs for RCC. In summary, TILs isolated from primary RCC specimens could recognize tumors. However, their immune responses were weaker than MM-TILs and displayed a mono-/oligofunctional pattern. The ability to select and expand polyfunctional T cells may improve cell therapy for RCC. Cancer Immunol Res; 6(2); 222-35. ©2018 AACR.
Collapse
Affiliation(s)
- Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Julie Westerlin Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Anja Müller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Natasja Wulff Pedersen
- Division for Immunology and Vaccinology, Technical University of Denmark, Lyngby, Denmark
| | - Sine Reker Hadrup
- Division for Immunology and Vaccinology, Technical University of Denmark, Lyngby, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Thomas Hasselager
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark. .,Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Herlev, Denmark. .,Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
23
|
Bethune MT, Joglekar AV. Personalized T cell-mediated cancer immunotherapy: progress and challenges. Curr Opin Biotechnol 2017; 48:142-152. [DOI: 10.1016/j.copbio.2017.03.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
|
24
|
Kim HJ, Kim HJ. Current status and future prospects for human papillomavirus vaccines. Arch Pharm Res 2017; 40:1050-1063. [PMID: 28875439 DOI: 10.1007/s12272-017-0952-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023]
Abstract
Cervical cancer is the fourth most frequent cancer among women worldwide. Human papillomaviruses (HPVs) cause almost all cervical cancers in low-income countries. Three prophylactic HPV virus-like particle-based vaccines have been licensed to date, and they have all shown high efficacy and reliable safety profiles. However, isolated safety issues have resulted in a reluctance to use these vaccinations. In addition, the high prices of the vaccinations have caused the inequitable distribution of the vaccine: the prices are unaffordable for low-income countries. Meanwhile, great effort has been put into the development of therapeutic HPV vaccines, including protein/peptide-, live vector-, DNA- and cell-based vaccines. These new vaccines have considerable therapeutic potential but limited practical use. The development of immune checkpoint inhibitors and personalized immunotherapy remain challenges for future study. In this article, the current status of the licensed vaccines, therapeutic HPV vaccines and biosimilars, and new platforms for HPV vaccines, are reviewed, and safety issues related to the licensed vaccines are discussed. In addition, the prospects for HPV vaccines are considered.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
25
|
Schober K, Busch DH. TIL 2.0: More effective and predictive T-cell products by enrichment for defined antigen specificities. Eur J Immunol 2017; 46:1335-9. [PMID: 27280482 DOI: 10.1002/eji.201646436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022]
Abstract
Adoptive transfer of in vitro-expanded T cells derived from tumor-infiltrating lymphocytes (TILs) in melanoma patients started the era of tumor immunotherapy three decades ago. The approach has demonstrated remarkable clinical responses in several studies since. Reinfusion of TIL-derived T cells represents a highly personalized form of immunotherapy, taking into account the enormous interindividual tumor heterogeneity. However, despite its successes, TIL therapy does not lead to objective clinical responses in all cases. It is thus crucial to find out which tumor antigens are particularly valuable targets and to develop strategies to enhance the reactivity of T-cell products toward them. In this issue of the European Journal of Immunology, Kelderman et al. [Eur. J. Immunol. 2016. 46: 1351-1360] present a platform for the generation of antigen-specific TIL therapy. Combining recently developed technologies for clinical identification and enrichment of antigen-specific CD8(+) T cells, such as MHC Streptamers and UV-mediated peptide exchange, the authors could enrich T-cell populations with defined antigen specificities from melanoma-derived TILs. This T-cell product showed higher reactivity against autologous tumor cell lines than bulk TIL-derived T cells. The novel platform might enable the generation of more effective and predictable TIL-derived T-cell products for future clinical applications.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.,DZIF - National Centre for Infection Research, Munich, Germany.,Focus Group "Clinical Cell Processing and Purification,", Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
26
|
Santos JM, Havunen R, Siurala M, Cervera‐Carrascon V, Tähtinen S, Sorsa S, Anttila M, Karell P, Kanerva A, Hemminki A. Adenoviral production of interleukin‐2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int J Cancer 2017; 141:1458-1468. [DOI: 10.1002/ijc.30839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/05/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Joao Manuel Santos
- TILT Biotherapeutics LtdHelsinki Finland
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
| | - Riikka Havunen
- TILT Biotherapeutics LtdHelsinki Finland
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
| | - Mikko Siurala
- TILT Biotherapeutics LtdHelsinki Finland
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
| | - Víctor Cervera‐Carrascon
- TILT Biotherapeutics LtdHelsinki Finland
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
| | - Siri Tähtinen
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
| | - Suvi Sorsa
- TILT Biotherapeutics LtdHelsinki Finland
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
| | - Marjukka Anttila
- Pathology Unit, Finnish Food Safety Authority (EVIRA)Helsinki Finland
| | - Pauliina Karell
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki Finland
| | - Anna Kanerva
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
- Department of Obstetrics and GynecologyHelsinki University Hospital Finland
| | - Akseli Hemminki
- TILT Biotherapeutics LtdHelsinki Finland
- Department of PathologyFaculty of Medicine, Cancer Gene Therapy Group, University of Helsinki Finland
- Helsinki University Hospital Comprehensive Cancer CenterHelsinki Finland
| |
Collapse
|
27
|
Li Pira G, Di Cecca S, Biagini S, Girolami E, Cicchetti E, Bertaina V, Quintarelli C, Caruana I, Lucarelli B, Merli P, Pagliara D, Brescia LP, Bertaina A, Montanari M, Locatelli F. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy. Front Immunol 2017; 8:332. [PMID: 28386262 PMCID: PMC5362590 DOI: 10.3389/fimmu.2017.00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification.
Collapse
Affiliation(s)
- Giuseppina Li Pira
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Stefano Di Cecca
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Simone Biagini
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Elia Girolami
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Elisabetta Cicchetti
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy; Department of "Medicina Clinica e Chirurgia", University of Naples Federico II, Naples, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Barbarella Lucarelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Daria Pagliara
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Letizia Pomponia Brescia
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Alice Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Mauro Montanari
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics, University of Pavia, Pavia, Italy
| |
Collapse
|
28
|
Yang A, Farmer E, Lin J, Wu TC, Hung CF. The current state of therapeutic and T cell-based vaccines against human papillomaviruses. Virus Res 2016; 231:148-165. [PMID: 27932207 DOI: 10.1016/j.virusres.2016.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
Abstract
Human papillomavirus (HPV) is known to be a necessary factor for many gynecologic malignancies and is also associated with a subset of head and neck malignancies. This knowledge has created the opportunity to control these HPV-associated cancers through vaccination. However, despite the availability of prophylactic HPV vaccines, HPV infections remain extremely common worldwide. In addition, while prophylactic HPV vaccines have been effective in preventing infection, they are ineffective at clearing pre-existing HPV infections. Thus, there is an urgent need for therapeutic and T cell-based vaccines to treat existing HPV infections and HPV-associated lesions and cancers. Unlike prophylactic vaccines, which generate neutralizing antibodies, therapeutic, and T cell-based vaccines enhance cell-mediated immunity against HPV antigens. Our review will cover various therapeutic and T cell-based vaccines in development for the treatment of HPV-associated diseases. Furthermore, we review the strategies to enhance the efficacy of therapeutic vaccines and the latest clinical trials on therapeutic and T cell-based HPV vaccines.
Collapse
Affiliation(s)
- Andrew Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD USA
| | - Emily Farmer
- Department of Pathology, Johns Hopkins University, Baltimore, MD USA
| | - John Lin
- Department of Pathology, Johns Hopkins University, Baltimore, MD USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD USA; Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD USA; Department of Oncology, Johns Hopkins University, Baltimore, MD USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD USA; Department of Oncology, Johns Hopkins University, Baltimore, MD USA.
| |
Collapse
|
29
|
Liu J, Blake SJ, Yong MCR, Harjunpää H, Ngiow SF, Takeda K, Young A, O'Donnell JS, Allen S, Smyth MJ, Teng MWL. Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discov 2016; 6:1382-1399. [PMID: 27663893 DOI: 10.1158/2159-8290.cd-16-0577] [Citation(s) in RCA: 615] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
Immunotherapy has recently entered a renaissance phase with the approval of multiple agents for the treatment of cancer. Immunotherapy stands ready to join traditional modalities, including surgery, chemotherapy, radiation, and hormone therapy, as a pillar of cancer treatment. Although immunotherapy has begun to have success in advanced cancer treatment, its scheduling and efficacy with surgery to treat earlier stages of cancer and prevent distant metastases have not been systematically examined. Here, we have used two models of spontaneously metastatic breast cancers in mice to illustrate the significantly greater therapeutic power of neoadjuvant, compared with adjuvant, immunotherapies in the context of primary tumor resection. Elevated and sustained peripheral tumor-specific immune responses underpinned the outcome, and blood sampling of tumor-specific CD8+ T cells immediately prior to and post surgery may provide a predictor of outcome. These data now provide a strong rationale to extensively test and compare neoadjuvant immunotherapy in humans. SIGNIFICANCE We demonstrate the significantly greater therapeutic efficacy of neoadjuvant, compared with adjuvant, immunotherapies to eradicate distant metastases following primary tumor resection. Elevated and sustained peripheral tumor-specific immune responses underpinned the outcome, and blood sampling of tumor-specific CD8+ T cells immediately prior to and post surgery may provide a predictor of outcome. Cancer Discov; 6(12); 1382-99. ©2016 AACR.See related commentary by Melero et al., p. 1312This article is highlighted in the In This Issue feature, p. 1293.
Collapse
Affiliation(s)
- Jing Liu
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Stephen J Blake
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michelle C R Yong
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Heidi Harjunpää
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Shin Foong Ngiow
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Arabella Young
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Jake S O'Donnell
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Stacey Allen
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. .,School of Medicine, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
30
|
Abstract
Lung cancer is the second most prevalent cancer in both women and men with some 221,200 new cases and 158,040 deaths reported in 2015. Almost 90% of these are non-small cell lung cancer (NSCLC) and these patients have a very poor prognosis. Recently a new treatment option for NSCLC appeared that strongly improved treatment responses-immunotherapy. Here we review the various forms of immunotherapy and how immune modification of proteasomes in lung cancer may support the immune system in controlling NSCLC. These immunoproteasomes then support recognition of NSCLC and may act as a biomarker for selecting responding patients to immunotherapy.
Collapse
Affiliation(s)
- Menno Spits
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, NL, The Netherlands;; Department of Chemical Immunology, Leiden University Medical Center LUMC, Leiden, NL, The Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, NL, The Netherlands;; Department of Chemical Immunology, Leiden University Medical Center LUMC, Leiden, NL, The Netherlands
| |
Collapse
|
31
|
Wargo JA, Reddy SM, Reuben A, Sharma P. Monitoring immune responses in the tumor microenvironment. Curr Opin Immunol 2016; 41:23-31. [PMID: 27240055 DOI: 10.1016/j.coi.2016.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022]
Abstract
Immune monitoring in the tumor microenvironment allows for important insights into immune mechanisms of response and resistance to various cancer treatments; however clinical challenges exist using current strategies. Significant questions remain regarding monitoring of archival versus fresh tissue, assessment of static versus dynamic markers, evaluation of limited tissue samples, and the translation of insights gained from immunologically 'hot' tumors such as melanoma to other 'cold' tumor microenvironments prevalent in other cancer types. Current and emerging immune monitoring strategies will be examined herein, and genomic-based assays complementing these techniques will also be discussed. Finally, host genomic and external environmental factors influencing anti-tumor immune responses will be considered, including the role of the gut microbiome. Though optimal immune monitoring techniques are in evolution, great promise exists in recent advances that will help guide patient selection as far as type, sequence, and combination of therapeutic regimens to enhance anti-tumor immunity and clinical responses.
Collapse
Affiliation(s)
- Jennifer A Wargo
- Department of Surgical Oncology, Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sangeetha M Reddy
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Unit 463, Houston, TX 77030, USA
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Unit 1374, Houston, TX 77030, USA.
| |
Collapse
|