1
|
Zhang X, Wang J, Tan Y, Chen C, Tang S, Zhao S, Qin Q, Huang H, Duan S. Nanobodies in cytokine‑mediated immunotherapy and immunoimaging (Review). Int J Mol Med 2024; 53:12. [PMID: 38063273 DOI: 10.3892/ijmm.2023.5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokines are the main regulators of innate and adaptive immunity, mediating communications between the cells of the immune system and regulating biological functions, including cell motility, differentiation, growth and apoptosis. Cytokines and cytokine receptors have been used in the treatment of tumors and autoimmune diseases, and to intervene in cytokine storms. Indeed, the use of monoclonal antibodies to block cytokine‑receptor interactions, as well as antibody‑cytokine fusion proteins has exhibited immense potential for the treatment of tumors and autoimmune diseases. Compared with these traditional types of antibodies, nanobodies not only maintain a high affinity and specificity, but also have the advantages of high thermal stability, a high capacity for chemical manipulation, low immunogenicity, good tissue permeability, rapid clearance and economic production. Thus, nanobodies have extensive potential for use in the diagnosis and treatment of cytokine‑related diseases. The present review summarizes the application of nanobodies in cytokine‑mediated immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ying Tan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Chaoting Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shuang Tang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Qiuhong Qin
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hansheng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
2
|
Mulazzani E, Kong K, Aróstegui JI, Ng AP, Ranathunga N, Abeysekera W, Garnham AL, Ng SL, Baker PJ, Jackson JT, Lich JD, Hibbs ML, Wicks IP, Louis C, Masters SL. G-CSF drives autoinflammation in APLAID. Nat Immunol 2023; 24:814-826. [PMID: 36997670 PMCID: PMC10154231 DOI: 10.1038/s41590-023-01473-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023]
Abstract
Missense mutations in PLCG2 can cause autoinflammation with phospholipase C gamma 2-associated antibody deficiency and immune dysregulation (APLAID). Here, we generated a mouse model carrying an APLAID mutation (p.Ser707Tyr) and found that inflammatory infiltrates in the skin and lungs were only partially ameliorated by removing inflammasome function via the deletion of caspase-1. Also, deleting interleukin-6 or tumor necrosis factor did not fully prevent APLAID mutant mice from autoinflammation. Overall, these findings are in accordance with the poor response individuals with APLAID have to treatments that block interleukin-1, JAK1/2 or tumor necrosis factor. Cytokine analysis revealed increased granulocyte colony-stimulating factor (G-CSF) levels as the most distinct feature in mice and individuals with APLAID. Remarkably, treatment with a G-CSF antibody completely reversed established disease in APLAID mice. Furthermore, excessive myelopoiesis was normalized and lymphocyte numbers rebounded. APLAID mice were also fully rescued by bone marrow transplantation from healthy donors, associated with reduced G-CSF production, predominantly from non-hematopoietic cells. In summary, we identify APLAID as a G-CSF-driven autoinflammatory disease, for which targeted therapy is feasible.
Collapse
Affiliation(s)
- Elisabeth Mulazzani
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Klara Kong
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Juan I Aróstegui
- Department of Immunology, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Ashley P Ng
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Clinical Haematology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Nishika Ranathunga
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Waruni Abeysekera
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alexandra L Garnham
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sze-Ling Ng
- Immunology Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Paul J Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jacob T Jackson
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - John D Lich
- Immunology Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Monash University, Clayton, Victoria, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Rheumatology Unit, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Cho Y, Joshi R, Lowe P, Copeland C, Ribeiro M, Morel C, Catalano D, Szabo G. Granulocyte colony-stimulating factor attenuates liver damage by M2 macrophage polarization and hepatocyte proliferation in alcoholic hepatitis in mice. Hepatol Commun 2022; 6:2322-2339. [PMID: 35997009 PMCID: PMC9426408 DOI: 10.1002/hep4.1925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Massive inflammation and liver failure are main contributors to the high mortality in alcohol-associated hepatitis (AH). In recent clinical trials, granulocyte colony-stimulating factor (G-CSF) therapy improved liver function and survival in patients with AH. However, the mechanisms of G-CSF-mediated beneficial effects in AH remain elusive. In this study, we evaluated effects of in vivo G-CSF administration, using a mouse model of AH. G-CSF treatment significantly reduced liver damage in alcohol-fed mice even though it increased the numbers of liver-infiltrating immune cells, including neutrophils and inflammatory monocytes. Moreover, G-CSF promoted macrophage polarization toward an M2-like phenotype and increased hepatocyte proliferation, which was indicated by an increased Ki67-positive signal colocalized with hepatocyte nuclear factor 4 alpha (HNF-4α) and cyclin D1 expression in hepatocytes. We found that G-CSF increased G-CSF receptor expression and resulted in reduced levels of phosphorylated β-catenin in hepatocytes. In the presence of an additional pathogen-associated molecule, lipopolysaccharide (LPS), which is significantly increased in the circulation and liver of patients with AH, the G-CSF-induced hepatoprotective effects were abolished in alcohol-fed mice. We still observed increased Ki67-positive signals in alcohol-fed mice following G-CSF treatment; however, Ki67 and HNF-4α did not colocalize in LPS-challenged mice. Conclusion: G-CSF treatment increases immune cell populations, particularly neutrophil counts, and promotes M2-like macrophage differentiation in the liver. More importantly, G-CSF treatment reduces alcohol-induced liver injury and promotes hepatocyte proliferation in alcohol-fed mice. These data provide new insights into the understanding of mechanisms mediated by G-CSF and its therapeutic effects in AH.
Collapse
Affiliation(s)
- Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Radhika Joshi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Lowe
- Emergency Medicine, Massachusetts General Hospital, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Morel
- Advanced Pathology Service, Invicro, Boston, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Martin KR, Wong HL, Witko-Sarsat V, Wicks IP. G-CSF - A double edge sword in neutrophil mediated immunity. Semin Immunol 2021; 54:101516. [PMID: 34728120 DOI: 10.1016/j.smim.2021.101516] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/23/2021] [Indexed: 11/15/2022]
Abstract
Neutrophils are vital for the innate immune system's control of pathogens and neutrophil deficiency can render the host susceptible to life-threatening infections. Neutrophil responses must also be tightly regulated because excessive production, recruitment or activation of neutrophils can cause tissue damage in both acute and chronic inflammatory diseases. Granulocyte colony stimulating factor (G-CSF) is a key regulator of neutrophil biology, from production, differentiation, and release of neutrophil precursors in the bone marrow (BM) to modulating the function of mature neutrophils outside of the BM, particularly at sites of inflammation. G-CSF acts by binding to its cognate cell surface receptor on target cells, causing the activation of intracellular signalling pathways mediating the proliferation, differentiation, function, and survival of cells in the neutrophil lineage. Studies in humans and mice demonstrate that G-CSF contributes to protecting the host against infection, but conversely, it can play a deleterious role in inflammatory diseases. As such, neutrophils and the G-CSF pathway may provide novel therapeutic targets. This review will focus on understanding the role G-CSF plays in the balance between effective neutrophil mediated host defence versus neutrophil-mediated inflammation and tissue damage in various inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Katherine R Martin
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Huon L Wong
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | | | - Ian P Wicks
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
5
|
Neves EGA, Koh CC, Padilha da Silva JL, Passos LSA, Villani FNA, Dos Santos JSC, Menezes CAS, Silva VR, Tormin JPAS, Evangelista GFB, Carvalho ATD, Rocha MODC, Nascimento B, Gollob KJ, Nunes MDCP, Dutra WO. Systemic cytokines, chemokines and growth factors reveal specific and shared immunological characteristics in infectious cardiomyopathies. Cytokine 2021; 148:155711. [PMID: 34592495 DOI: 10.1016/j.cyto.2021.155711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022]
Abstract
Heart disease is a major cause of death worldwide. Chronic Chagas cardiomyopathy (CCC) caused by infection with Trypanosoma cruzi leading to high mortality in adults, and rheumatic heart disease (RHD), resulting from infection by Streptococcus pyogenes affecting mainly children and young adults, are amongst the deadliest heart diseases in low-middle income countries. Despite distinct etiology, the pathology associated with both diseases is a consequence of inflammation. Here we compare systemic immune profile in patients with these cardiopathies, to identify particular and common characteristics in these infectious heart diseases. We evaluated the expression of 27 soluble factors, employing single and multivariate analysis combined with machine-learning approaches. We observed that, while RHD and CCC display higher levels of circulating mediators than healthy individuals, CCC is associated with stronger immune activation as compared to RHD. Despite distinct etiologies, univariate analysis showed that expression of TNF, IL-17, IFN-gamma, IL-4, CCL4, CCL3, CXCL8, CCL11, CCL2, PDGF-BB were similar between CCC and RHD, consistent with their inflammatory nature. Network analysis revealed common inflammatory pathways between CCC and RHD, while highlighting the broader reach of the inflammatory response in CCC. The final multivariate model showed a 100% discrimination power for the combination of the cytokines IL-12p70, IL-1Ra, IL-4, and IL-7 between CCC and RHD groups. Thus, while clear immunological distinctions were identified between CCC and RHD, similarities indicate shared inflammatory pathways in these infectious heart diseases. These results contribute to understanding the pathogenesis of CCC and RHD and may impact the design of immune-based therapies for these and other inflammatory cardiopathies that may also share immunological characteristics.
Collapse
Affiliation(s)
- Eula G A Neves
- Cell-cell Interactions Laboratory, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina C Koh
- Cell-cell Interactions Laboratory, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Lívia S A Passos
- Cell-cell Interactions Laboratory, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cristiane A S Menezes
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vicente R Silva
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P A S Tormin
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Manoel Otávio da Costa Rocha
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Nascimento
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kenneth John Gollob
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil
| | - Maria do Carmo P Nunes
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walderez O Dutra
- Cell-cell Interactions Laboratory, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil.
| |
Collapse
|
6
|
Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 2021; 136:111228. [PMID: 33454595 PMCID: PMC7836924 DOI: 10.1016/j.biopha.2021.111228] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron overload is increasingly implicated as a contributor to the pathogenesis of COVID-19. Indeed, several of the manifestations of COVID-19, such as inflammation, hypercoagulation, hyperferritinemia, and immune dysfunction are also reminiscent of iron overload. Although iron is essential for all living cells, free unbound iron, resulting from iron dysregulation and overload, is very reactive and potentially toxic due to its role in the generation of reactive oxygen species (ROS). ROS react with and damage cellular lipids, nucleic acids, and proteins, with consequent activation of either acute or chronic inflammatory processes implicated in multiple clinical conditions. Moreover, iron-catalyzed lipid damage exerts a direct causative effect on the newly discovered nonapoptotic cell death known as ferroptosis. Unlike apoptosis, ferroptosis is immunogenic and not only leads to amplified cell death but also promotes a series of reactions associated with inflammation. Iron chelators are generally safe and are proven to protect patients in clinical conditions characterized by iron overload. There is also an abundance of evidence that iron chelators possess antiviral activities. Furthermore, the naturally occurring iron chelator lactoferrin (Lf) exerts immunomodulatory as well as anti-inflammatory effects and can bind to several receptors used by coronaviruses thereby blocking their entry into host cells. Iron chelators may consequently be of high therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Hosam M Habib
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Sahar Ibrahim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Aamnah Zaim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Wissam H Ibrahim
- Office of Institutional Effectiveness, United Arab Emirates University, P. O. Box 15551, Al Ain, UAE.
| |
Collapse
|
7
|
Sultan S, Alalmie A, Noorwali A, Alyamani A, Shaabad M, Alfakeeh S, Bahmaid A, Ahmed F, Pushparaj P, Kalamegam G. Resveratrol promotes chondrogenesis of human Wharton’s jelly stem cells in a hyperglycemic state by modulating the expression of inflammation-related cytokines. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1835739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Alalmie
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulwahab Noorwali
- Stem Cell Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Biochemistry, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Alyamani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal Shaabad
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saadiah Alfakeeh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan Bahmaid
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
8
|
Li Z, Xiao G, Lyu M, Wang Y, He S, Du H, Wang X, Feng Y, Zhu Y. Shuxuening injection facilitates neurofunctional recovery via down-regulation of G-CSF-mediated granulocyte adhesion and diapedesis pathway in a subacute stroke mouse model. Biomed Pharmacother 2020; 127:110213. [PMID: 32417690 DOI: 10.1016/j.biopha.2020.110213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Post-stroke neural damage is a serious health concern which does not yet have an effective treatment. We have shown previously that Shuxuening injection (SXNI), a Ginkgo biloba extract-based natural medicine, protects brain after an acute ischemic stroke, but its efficacy for post-stroke recovery is not known. This study was to investigate whether SXNI can improve the prognosis of stroke at a subacute phase. Mice with cerebral ischemia-reperfusion injury (CIRI) were established by middle cerebral artery occlusion (MCAO), and drugs or saline were injected by the tail vein every 12 h after reperfusion. The therapeutic effect of SXNI was evaluated by survival rate, modified neurologic severity scores (mNSS), open-field test, locomotive gait patterns, cerebral infarction volume, brain edema and histopathological changes. Subsequently, a combined method of RNA-seq and Ingenuity® Pathway Analysis (IPA) was performed to identify key targets and pathways of SXNI facilitating the prognosis of stroke in mouse brain. The results of the transcriptome analysis were verified by real time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), western blot (WB) and immunohistochemistry (IHC). The experimental results showed that in the new subacute stroke model, SXNI markedly improves the survival rate, neurological and motor functions and histopathological changes, and significantly reduces cerebral infarction and edema volume. RNA-seq analysis of subacute stroke mice with or without SXNI (3 mL/kg) indicated 963 differentially expressed genes (DEGs) with a fold change ≥ 1.5 and a P-value ≤ 0.01. IPA analysis of DEGs showed that granulocyte adhesion and diapedesis ranked first in the pathway ranking, and the most critical gene regulated by SXNI was G-csf. Simultaneously, RT-PCR, ELISA, WB and IHC results demonstrated that SXNI not only obviously reduced the mRNA expression levels of key genes G-csf, Sele and Mac-1 in this pathway, but also significantly decreased the protein expression levels of G-CSF in serum and E-selectin and MAC-1 in brain tissues. In summary, our research suggested that SXNI can exert a remarkable neurofunctional therapeutic effect on stroke mice via down-regulating G-CSF to inhibit granulocyte adhesion and diapedesis. This study provides experimental evidence that SXNI may fulfill the need for stroke medicine targeting specifically at the recovery stage.
Collapse
Affiliation(s)
- Zhixiong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Hongxia Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Xintong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China.
| |
Collapse
|
9
|
L. Salem M, A. Abdul B E, A. Zidan AA, M. Elghara R. Stem Cell Mobilization with G-CSF and Cyclophosphamide Ameliorated Collagen-Induced Arthritis in Wistar Rats. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.223.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Kegerreis BJ, Catalina MD, Geraci NS, Bachali P, Lipsky PE, Grammer AC. Genomic Identification of Low-Density Granulocytes and Analysis of Their Role in the Pathogenesis of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2019; 202:3309-3317. [PMID: 31019061 DOI: 10.4049/jimmunol.1801512] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of low-density granulocytes (LDGs) with a heightened capacity for spontaneous NETosis, but the contribution of LDGs to SLE pathogenesis remains unclear. To characterize LDGs in human SLE, gene expression profiles derived from isolated LDGs were characterized by weighted gene coexpression network analysis, and a 92-gene module was identified. The LDG gene signature was enriched in genes related to neutrophil degranulation and cell cycle regulation. This signature was assessed in gene expression datasets from two large-scale SLE clinical trials to study associations between LDG enrichment, SLE manifestations, and treatment regimens. LDG enrichment in the blood was associated with corticosteroid treatment as well as anti-dsDNA, low serum complement, renal manifestations, and vasculitis, but the latter two of these associations were dependent on concomitant corticosteroid treatment. In addition, LDG enrichment was associated with enrichment of gene signatures induced by type I IFN and TNF irrespective of corticosteroid treatment. Notably, LDG enrichment was not found in numerous tissues affected by SLE. Comparison with relevant reference datasets indicated that LDG enrichment is likely reflective of increased granulopoiesis in the bone marrow and not peripheral neutrophil activation. The results have uncovered important determinants of the appearance of LDGs in SLE and have emphasized the likely role of LDGs in specific aspects of lupus pathogenesis.
Collapse
Affiliation(s)
- Brian J Kegerreis
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Michelle D Catalina
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Nicholas S Geraci
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Prathyusha Bachali
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Amrie C Grammer
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| |
Collapse
|
11
|
Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019; 24:molecules24071323. [PMID: 30987256 PMCID: PMC6480387 DOI: 10.3390/molecules24071323] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin (Lf), a cationic glycoprotein able to chelate two ferric irons per molecule, is synthesized by exocrine glands and neutrophils. Since the first anti-microbial function attributed to Lf, several activities have been discovered, including the relevant anti-inflammatory one, especially associated to the down-regulation of pro-inflammatory cytokines, as IL-6. As high levels of IL-6 are involved in iron homeostasis disorders, Lf is emerging as a potent regulator of iron and inflammatory homeostasis. Here, the role of Lf against aseptic and septic inflammation has been reviewed. In particular, in the context of aseptic inflammation, as anemia of inflammation, preterm delivery, Alzheimer’s disease and type 2 diabetes, Lf administration reduces local and/or systemic inflammation. Moreover, Lf oral administration, by decreasing serum IL-6, reverts iron homeostasis disorders. Regarding septic inflammation occurring in Chlamydia trachomatis infection, cystic fibrosis and inflammatory bowel disease, Lf, besides the anti-inflammatory activity, exerts a significant activity against bacterial adhesion, invasion and colonization. Lastly, a critical analysis of literature in vitro data reporting contradictory results on the Lf role in inflammatory processes, ranging from pro- to anti-inflammatory activity, highlighted that they depend on cell models, cell metabolic status, stimulatory or infecting agents as well as on Lf iron saturation degree, integrity and purity.
Collapse
Affiliation(s)
- Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|
12
|
Ijaz H, Qureshi J, Tulain UR, Iqbal F, Danish Z, Fayyaz A, Sethi A. Lipid particulate drug delivery systems: a review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.16.00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hira Ijaz
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Junaid Qureshi
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Furqan Iqbal
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeeshan Danish
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ahad Fayyaz
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Sethi
- College of Pharmacy, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
|
14
|
Lee MC, McCubbin JA, Christensen AD, Poole DP, Rajasekhar P, Lieu T, Bunnett NW, Garcia-Caraballo S, Erickson A, Brierley SM, Saleh R, Achuthan A, Fleetwood AJ, Anderson RL, Hamilton JA, Cook AD. G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3565-3575. [PMID: 28320832 PMCID: PMC10069442 DOI: 10.4049/jimmunol.1602127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
Abstract
G-CSF or CSF-3, originally defined as a regulator of granulocyte lineage development via its cell surface receptor (G-CSFR), can play a role in inflammation, and hence in many pathologies, due to its effects on mature lineage populations. Given this, and because pain is an extremely important arthritis symptom, the efficacy of an anti-G-CSFR mAb for arthritic pain and disease was compared with that of a neutrophil-depleting mAb, anti-Ly6G, in both adaptive and innate immune-mediated murine models. Pain and disease were ameliorated in Ag-induced arthritis, zymosan-induced arthritis, and methylated BSA/IL-1 arthritis by both prophylactic and therapeutic anti-G-CSFR mAb treatment, whereas only prophylactic anti-Ly6G mAb treatment was effective. Efficacy for pain and disease correlated with reduced joint neutrophil numbers and, importantly, benefits were noted without necessarily the concomitant reduction in circulating neutrophils. Anti-G-CSFR mAb also suppressed zymosan-induced inflammatory pain. A new G-CSF-driven (methylated BSA/G-CSF) arthritis model was established enabling us to demonstrate that pain was blocked by a cyclooxygenase-2 inhibitor, suggesting an indirect effect on neurons. Correspondingly, dorsal root ganglion neurons cultured in G-CSF failed to respond to G-CSF in vitro, and Csf3r gene expression could not be detected in dorsal root ganglion neurons by single-cell RT-PCR. These data suggest that G-CSFR/G-CSF targeting may be a safe therapeutic strategy for arthritis and other inflammatory conditions, particularly those in which pain is important, as well as for inflammatory pain per se.
Collapse
Affiliation(s)
- Ming-Chin Lee
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - James A McCubbin
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Anne D Christensen
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pradeep Rajasekhar
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Surgery, Columbia University, New York, NY 10032
| | - Sonia Garcia-Caraballo
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andelain Erickson
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Stuart M Brierley
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Reem Saleh
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Andrew J Fleetwood
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; and.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia;
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
15
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Lennard Richard ML, Brandon D, Lou N, Sato S, Caldwell T, Nowling TK, Gilkeson G, Zhang XK. Acetylation impacts Fli-1-driven regulation of granulocyte colony stimulating factor. Eur J Immunol 2016; 46:2322-2332. [PMID: 27431361 DOI: 10.1002/eji.201646315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/22/2016] [Accepted: 07/15/2016] [Indexed: 11/07/2022]
Abstract
Fli-1 has emerged as a critical regulator of inflammatory mediators, including MCP-1, CCL5, and IL-6. The cytokine, granulocyte colony stimulating factor (G-CSF) regulates neutrophil precursor maturation and survival, and activates mature neutrophils. Previously, a significant decrease in neutrophil infiltration into the kidneys of Fli-1+/- lupus-prone mice was observed. In this study, a significant decrease in G-CSF protein expression was detected in stimulated murine and human endothelial cells when expression of Fli-1 was inhibited. The murine G-CSF promoter contains numerous putative Fli-1 binding sites and several regions within the proximal promoter are significantly enriched for Fli-1 binding. Transient transfection assays indicate that Fli-1 drives transcription from the G-CSF promoter and mutation of the Fli-1 DNA binding domain resulted in a 94% loss of transcriptional activation. Mutation of a known acetylation site, led to a significant increase in G-CSF promoter activation. The histone acetyltransferases p300/CBP and p300/CBP associated factor (PCAF) significantly decrease Fli-1 specific activation of the G-CSF promoter. Thus, acetylation appears to be an important mechanism behind Fli-1 driven activation of the G-CSF promoter. These results further support the theory that Fli-1 plays a major role in the regulation of several inflammatory mediators, ultimately affecting inflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Mara L Lennard Richard
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Danielle Brandon
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Ning Lou
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA.,Jinan Central Hospital, Shandong University, Jinan, Shangdong, China
| | - Shuzo Sato
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Tomika Caldwell
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Gilkeson
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA.,Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Xian K Zhang
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA. .,Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
17
|
Valenti P, Frioni A, Rossi A, Ranucci S, De Fino I, Cutone A, Rosa L, Bragonzi A, Berlutti F. Aerosolized bovine lactoferrin reduces neutrophils and pro-inflammatory cytokines in mouse models of Pseudomonas aeruginosa lung infections. Biochem Cell Biol 2016; 95:41-47. [PMID: 28129511 DOI: 10.1139/bcb-2016-0050] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lactoferrin (Lf), an iron-chelating glycoprotein of innate immunity, produced by exocrine glands and neutrophils in infection/inflammation sites, is one of the most abundant defence molecules in airway secretions. Lf, a pleiotropic molecule, exhibits antibacterial and anti-inflammatory functions. These properties may play a relevant role in airway infections characterized by exaggerated inflammatory response, as in Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) subjects. To verify the Lf role in Pseudomonas aeruginosa lung infection, we evaluated the efficacy of aerosolized bovine Lf (bLf) in mouse models of P. aeruginosa acute and chronic lung infections. C57BL/6NCrl mice were challenged with 106 CFUs of P. aeruginosa PAO1 (acute infection) or MDR-RP73 strain (chronic infection) by intra-tracheal administration. In both acute and chronic infections, aerosolized bLf resulted in nonsignificant reduction of bacterial load but significant decrease of the neutrophil recruitment and pro-inflammatory cytokine levels. Moreover, in chronic infection the bLf-treated mice recovered body weight faster and to a higher extent than the control mice. These findings add new insights into the benefits of bLf as a mediator of general health and its potential therapeutic applications.
Collapse
Affiliation(s)
- Piera Valenti
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Alessandra Frioni
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Alice Rossi
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Antimo Cutone
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Luigi Rosa
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Alessandra Bragonzi
- b Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Berlutti
- a Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Christensen AD, Haase C, Cook AD, Hamilton JA. K/BxN Serum-Transfer Arthritis as a Model for Human Inflammatory Arthritis. Front Immunol 2016; 7:213. [PMID: 27313578 PMCID: PMC4889615 DOI: 10.3389/fimmu.2016.00213] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/29/2022] Open
Abstract
The K/BxN serum-transfer arthritis (STA) model is a murine model in which the immunological mechanisms occurring in rheumatoid arthritis (RA) and other arthritides can be studied. To induce K/BxN STA, serum from arthritic transgenic K/BxN mice is transferred to naive mice and manifestations of arthritis occur a few days later. The inflammatory response in the model is driven by autoantibodies against the ubiquitously expressed self-antigen, glucose-6-phosphate isomerase (G6PI), leading to the formation of immune complexes that drive the activation of different innate immune cells such as neutrophils, macrophages, and possibly mast cells. The pathogenesis further involves a range of immune mediators including cytokines, chemokines, complement factors, Toll-like receptors, Fc receptors, and integrins, as well as factors involved in pain and bone erosion. Hence, even though the K/BxN STA model mimics only the effector phase of RA, it still involves a wide range of relevant disease mediators. Additionally, as a murine model for arthritis, the K/BxN STA model has some obvious advantages. First, it has a rapid and robust onset of arthritis with 100% incidence in genetically identical animals. Second, it can be induced in a wide range of strain backgrounds and can therefore also be induced in gene-deficient strains to study the specific importance of disease mediators. Even though G6PI might not be an essential autoantigen, for example, in RA, the K/BxN STA model is a useful tool to understand how autoantibodies, in general, drive the progression of arthritis by interacting with downstream components of the innate immune system. Finally, the model has also proven useful as a model wherein arthritic pain can be studied. Taken together, these features make the K/BxN STA model a relevant one for RA, and it is a potentially valuable tool, especially for the preclinical screening of new therapeutic targets for RA and perhaps other forms of inflammatory arthritis. Here, we describe the molecular and cellular pathways in the development of K/BxN STA focusing on the recent advances in the understanding of the important mechanisms. Additionally, this review provides a comparison of the K/BxN STA model to some other arthritis models.
Collapse
Affiliation(s)
- Anne D Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia; Novo Nordisk A/S, Måløv, Denmark
| | | | - Andrew D Cook
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| | - John A Hamilton
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
19
|
Németh T, Mócsai A, Lowell CA. Neutrophils in animal models of autoimmune disease. Semin Immunol 2016; 28:174-86. [PMID: 27067180 DOI: 10.1016/j.smim.2016.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/21/2023]
Abstract
Neutrophils have traditionally been thought to play only a peripheral role in the genesis of many autoimmune and inflammatory diseases. However, recent studies in a variety of animal models suggest that these cells are central to the initiation and propagation of autoimmunity. The use of mouse models, which allow either deletion of neutrophils or the targeting of specific neutrophil functions, has revealed the many complex ways these cells contribute to autoimmune/inflammatory processes. This includes generation of self antigens through the process of NETosis, regulation of T-cell and dendritic cell activation, production of cytokines such as BAFF that stimulate self-reactive B-cells, as well as indirect effects on epithelial cell stability. In comparing the many different autoimmune models in which neutrophils have been examined, a number of common underlying themes emerge - such as a role for neutrophils in stimulating vascular permeability in arthritis, encephalitis and colitis. The use of animal models has also stimulated the development of new therapeutics that target neutrophil functions, such as NETosis, that may prove beneficial in human disease. This review will summarize neutrophil contributions in a number of murine autoimmune/inflammatory disease models.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|