1
|
Saeed F, Adamopoulos IE. Pathogenesis of psoriatic arthritis: new insights from a bone marrow perspective. Curr Opin Rheumatol 2025; 37:136-141. [PMID: 39470182 PMCID: PMC11779588 DOI: 10.1097/bor.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Psoriatic arthritis is an immune-mediated disease that primarily affects the skin and joints. It falls under the umbrella term of rheumatic diseases, which describes a group of closely related yet distinct disorders with many common underlying molecular pathways. Despite the distinct clinical manifestation of each disorder, the shared therapeutic strategies attest to the commonality of cellular and molecular underpinnings. Herein we provide a concise yet comprehensive overview of the interleukin (IL)-23/IL-17 axis and its involvement in mechanistic pathways leading to the pathogenesis of this dual skin and joint clinical manifestation which is characteristic of psoriatic arthritis and other rheumatic diseases. RECENT FINDINGS The interconnection between activated innate immune cells and adaptive immunity has transformed current thinking to include other organs such as the bone marrow as potential tissue of disease origin. A plethora of animal models and genetic studies converge on the critical role of IL-23/IL-17 axis, and highlight the importance of myeloid cell activation as common pathways between autoinflammatory and autoimmune diseases and chronic inflammation. These findings underscore the intricate immune mechanisms involved in inflammatory arthritis and highlight molecular mechanisms in disease pathogenesis. SUMMARY These insights pave the way for the development of novel diagnostic and therapeutic strategies, with a focus on translating these findings into improved clinical practice.
Collapse
Affiliation(s)
- Fatima Saeed
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Iannis E. Adamopoulos
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Jose AM, Rasool M. A glimpse on the role of IL-21 in psoriatic arthritis pathogenesis. Life Sci 2024; 350:122766. [PMID: 38834097 DOI: 10.1016/j.lfs.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory arthropathy affecting the skin, entheses, and joints. Over the past decade, experimental evidence has revealed the activation of several immune cells and signaling cascades in modulating the pathophysiology of PsA. Recently, targeted therapies have been developed to combat the severity of disease. However, with diverse etiologies, flareups, and relapses, there has been an increased prevalence and mortality associated with PsA in recent years. Therefore, it is imperative to investigate new potential mediators and combination therapies to manage PsA pathogenesis. IL-21, an immunomodulatory cytokine, has pleiotropic effects on immune cells and the protein cascades involved in PsA pathogenesis. Recently, emerging evidence of increased IL-21 levels in patients with PsA has engendered much enthusiasm for its potential as a therapeutic target. Here, we unmasked IL-21 as a significant modulator of PsA pathogenesis and reviewed the comorbidities associated with the disease, further cataloging future therapeutic modalities to ameliorate PsA progression.
Collapse
Affiliation(s)
- Ann Miriam Jose
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
3
|
Neurath L, Sticherling M, Schett G, Fagni F. Targeting cytokines in psoriatic arthritis. Cytokine Growth Factor Rev 2024; 78:1-13. [PMID: 39068140 DOI: 10.1016/j.cytogfr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.
Collapse
Affiliation(s)
- Laura Neurath
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Sticherling
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Dermatology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
4
|
Zalesak M, Danisovic L, Harsanyi S. Psoriasis and Psoriatic Arthritis-Associated Genes, Cytokines, and Human Leukocyte Antigens. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:815. [PMID: 38792999 PMCID: PMC11123327 DOI: 10.3390/medicina60050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In recent years, research has intensified in exploring the genetic basis of psoriasis (PsO) and psoriatic arthritis (PsA). Genome-wide association studies (GWASs), including tools like ImmunoChip, have significantly deepened our understanding of disease mechanisms by pinpointing risk-associated genetic loci. These efforts have elucidated biological pathways involved in PsO pathogenesis, particularly those related to the innate immune system, antigen presentation, and adaptive immune responses. Specific genetic loci, such as TRAF3IP2, REL, and FBXL19, have been identified as having a significant impact on disease development. Interestingly, different genetic variants at the same locus can predispose individuals to either PsO or PsA (e.g., IL23R and deletion of LCE3B and LCE3C), with some variants being uniquely linked to PsA (like HLA B27 on chromosome 6). This article aims to summarize known and new data on the genetics of PsO and PsA, their associated genes, and the involvement of the HLA system and cytokines.
Collapse
Affiliation(s)
- Marek Zalesak
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| |
Collapse
|
5
|
Nazimek K, Bryniarski K. Macrophage Functions in Psoriasis: Lessons from Mouse Models. Int J Mol Sci 2024; 25:5306. [PMID: 38791342 PMCID: PMC11121292 DOI: 10.3390/ijms25105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a systemic autoimmune/autoinflammatory disease that can be well studied in established mouse models. Skin-resident macrophages are classified into epidermal Langerhans cells and dermal macrophages and are involved in innate immunity, orchestration of adaptive immunity, and maintenance of tissue homeostasis due to their ability to constantly shift their phenotype and adapt to the current microenvironment. Consequently, both macrophage populations play dual roles in psoriasis. In some circumstances, pro-inflammatory activated macrophages and Langerhans cells trigger psoriatic inflammation, while in other cases their anti-inflammatory stimulation results in amelioration of the disease. These features make macrophages interesting candidates for modern therapeutic strategies. Owing to the significant progress in knowledge, our review article summarizes current achievements and indicates future research directions to better understand the function of macrophages in psoriasis.
Collapse
Affiliation(s)
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
6
|
Li J, Li J, Lin C, Zhou J, Wang J, Wang F, Li H, Zhou Z. Genetically proxied PCSK9 inhibition is associated with reduced psoriatic arthritis risk. Inflamm Res 2024; 73:475-484. [PMID: 38341813 PMCID: PMC10894168 DOI: 10.1007/s00011-024-01850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Lipid pathways play a crucial role in psoriatic arthritis development, and some lipid-lowering drugs are believed to have therapeutic benefits due to their anti-inflammatory properties. Traditional observational studies face issues with confounding factors, complicating the interpretation of causality. This study seeks to determine the genetic link between these medications and the risk of psoriatic arthritis. METHODS This drug target study utilized the Mendelian randomization strategy. We harnessed high-quality data from population-level genome-wide association studies sourced from the UK Biobank and FinnGen databases. The inverse variance-weighted method, complemented by robust pleiotropy methods, was employed. We examined the causal relationships between three lipid-lowering agents and psoriatic arthritis to unveil the underlying mechanisms. RESULTS A significant association was observed between genetically represented proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and a decreased risk of psoriatic arthritis (odds ratio [OR]: 0.51; 95% CI 0.14-0.88; P < 0.01). This association was further corroborated in an independent dataset (OR 0.60; 95% CI 0.25-0.94; P = 0.03). Sensitivity analyses affirmed the absence of statistical evidence for pleiotropic or genetic confounding biases. However, no substantial associations were identified for either 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors or Niemann-Pick C1-like 1 inhibitors. CONCLUSIONS This Mendelian randomization analysis underscores the pivotal role of PCSK9 in the etiology of psoriatic arthritis. Inhibition of PCSK9 is associated with reduced psoriatic arthritis risk, highlighting the potential therapeutic benefits of existing PCSK9 inhibitors.
Collapse
Affiliation(s)
- Junhong Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Guangming District, The Seventh Affiliated Hospital, Sun Yat-Sen University, 66 Gongchang Road, Shenzhen, 518107, China
- Department of Orthopaedics and Trauma, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, 650091, China
| | - Jianfeng Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Guangming District, The Seventh Affiliated Hospital, Sun Yat-Sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Chengkai Lin
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Guangming District, The Seventh Affiliated Hospital, Sun Yat-Sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Jiaxiang Zhou
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Guangming District, The Seventh Affiliated Hospital, Sun Yat-Sen University, 66 Gongchang Road, Shenzhen, 518107, China
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, 264003, China
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Guangming District, The Seventh Affiliated Hospital, Sun Yat-Sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Haizhen Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Guangming District, The Seventh Affiliated Hospital, Sun Yat-Sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Guangming District, The Seventh Affiliated Hospital, Sun Yat-Sen University, 66 Gongchang Road, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Yan K, Liang Y. Decreased TLR7 expression was associated with airway eosinophilic inflammation and lung function in asthma: evidence from machine learning approaches and experimental validation. Eur J Med Res 2024; 29:116. [PMID: 38341589 PMCID: PMC10858610 DOI: 10.1186/s40001-023-01622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Asthma is a global public health concern. The underlying pathogenetic mechanisms of asthma were poorly understood. This study aims to explore potential biomarkers associated with asthma and analyze the pathological role of immune cell infiltration in the disease. METHODS The gene expression profiles of induced sputum were obtained from Gene Expression Omnibus datasets (GSE76262 and GSE137268) and were combined for analysis. Toll-like receptor 7 (TLR7) was identified as the core gene by the intersection of two different machine learning algorithms, namely, least absolute shrinkage and selector operation (LASSO) regression and support vector machine-recursive feature elimination (SVM-RFE), and the top 10 core networks based on Cytohubba. CIBERSORT algorithm was used to analyze the difference of immune cell infiltration between asthma and healthy control groups. Finally, the expression level of TLR7 was validated in induced sputum samples of patients with asthma. RESULTS A total of 320 differential expression genes between the asthma and healthy control groups were screened, including 184 upregulated genes and 136 downregulated genes. TLR7 was identified as the core gene after combining the results of LASSO regression, SVM-RFE algorithm, and top 10 hub genes. Significant differences were observed in the distribution of 13 out of 22 infiltrating immune cells in asthma. TLR7 was found to be closely related to the level of several infiltrating immune cells. TLR7 mRNA levels were downregulated in asthmatic patients compared with healthy controls (p = 0.0049). The area under the curve of TLR7 for the diagnosis of asthma was 0.7674 (95% CI 0.631-0.904, p = 0.006). Moreover, TLR7 mRNA levels were negatively correlated with exhaled nitric oxide fraction (r = - 0.3268, p = 0.0347) and the percentage of peripheral blood eosinophils (%) (r = - 0.3472, p = 0.041), and positively correlated with forced expiratory volume in the first second (FEV1) (% predicted) (r = 0.3960, p = 0.0071) and FEV1/forced vital capacity (r = 0.3213, p = 0.0314) in asthmatic patients. CONCLUSIONS Decreased TLR7 in the induced sputum of eosinophilic asthmatic patients was involved in immune cell infiltration and airway inflammation, which may serve as a new biomarker for the diagnosis of eosinophilic asthma.
Collapse
Affiliation(s)
- Kemin Yan
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuxia Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Ummarino A, Pensado-López A, Migliore R, Alcaide-Ruggiero L, Calà N, Caputo M, Gambaro FM, Anfray C, Ronzoni FL, Kon E, Allavena P, Torres Andón F. An in vitro model for osteoarthritis using long-cultured inflammatory human macrophages repeatedly stimulated with TLR agonists. Eur J Immunol 2023; 53:e2350507. [PMID: 37713238 DOI: 10.1002/eji.202350507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Osteoarthritis (OA) is characterized by an abundance of inflammatory M1-like macrophages damaging local tissues. The search for new potential drugs for OA suffers from the lack of appropriate methods of long-lasting inflammation. Here we developed and characterized an in vitro protocol of long-lasting culture of primary human monocyte-derived macrophages differentiated with a combination of M-CSF+GM-CSF that optimally supported long-cultured macrophages (LC-Mϕs) for up to 15 days, unlike their single use. Macrophages repeatedly stimulated for 15 days with the TLR2 ligand Pam3CSK4 (LCS-Mϕs), showed sustained levels over time of IL-6, CCL2, and CXCL8, inflammatory mediators that were also detected in the synovial fluids of OA patients. Furthermore, macrophages isolated from the synovia of two OA patients showed an expression profile of inflammation-related genes similar to that of LCS-Mϕs, validating our protocol as a model of chronically activated inflammatory macrophages. Next, to confirm that these LCS-Mϕs could be modulated by anti-inflammatory compounds, we employed dexamethasone and/or celecoxib, two drugs widely used in OA treatment, that significantly inhibited the production of inflammatory mediators. This easy-to-use in vitro protocol of long-lasting inflammation with primary human macrophages could be useful for the screening of new compounds to improve the therapy of inflammatory disorders.
Collapse
Affiliation(s)
- Aldo Ummarino
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Nicholas Calà
- IRCCS Humanitas Research Hospital, Milan, Italy
- Etromapmacs Pole, Agorà Biomedical Sciences, Foggia, Italy
| | - Michele Caputo
- IRCCS Humanitas Research Hospital, Milan, Italy
- Etromapmacs Pole, Agorà Biomedical Sciences, Foggia, Italy
| | | | | | - Flavio L Ronzoni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Fernando Torres Andón
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Oncology, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario de A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|
9
|
Wang Z, Qin Z, Wang J, Xu X, Zhang M, Liang Y, Huang Y, Yu Z, Gong Y, Zhou L, Qiu Y, Ma M, Li D, Li B. Engineering extracellular vesicles with macrophage membrane fusion for ameliorating imiquimod-induced psoriatic skin inflammation. J DERMATOL TREAT 2023; 34:2220445. [PMID: 38073229 DOI: 10.1080/09546634.2023.2220445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/02/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Herein, we developed an engineered extracellular vehicle (EV)-based method for ameliorating inflammatory responses in psoriasis. METHODS EVs, derived from annexin A1 (ANXA1) overexpressing T cells, were co-extruded with M2 macrophage membrane to obtain engineered EVs. In vitro, the effect of engineered EVs on macrophage polarization was evaluated by real-time PCR. In imiquimod (IMQ)-induced psoriasis-like mouse model, the efficacy of engineered EVs in ameliorating psoriatic inflammation was evaluated by Psoriasis Area and Severity Index (PASI) score and immunohistochemistry staining after subcutaneous injection of EVs. RESULTS The engineered EVs not only preserved the high stability of M2 macrophage membrane but also retained the macrophage reprogramming potential of ANXA1 overexpressed in T cells. In the psoriasis-like mouse model, subcutaneous injection of engineered EVs successfully reduced the PASI score and the levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Along with high biosafety, the administration of EVs also rescued the histomorphological changes of spleen, liver, and kidney. CONCLUSIONS The engineered EVs exhibited the potential to alleviate inflammation of psoriasis, providing new insights and potential strategies for the immunotherapies of psoriasis.
Collapse
Affiliation(s)
- Zeng Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhizhen Qin
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiadie Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinqi Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxin Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyue Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Luxian Zhou
- Research Centre, Shanghai Archgene Biotechnology Co., Ltd, Shanghai, China
| | - Yiran Qiu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
| | - Minglu Ma
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Integrated TCM and Western Medicine, School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Lee BW, Moon SJ. Inflammatory Cytokines in Psoriatic Arthritis: Understanding Pathogenesis and Implications for Treatment. Int J Mol Sci 2023; 24:11662. [PMID: 37511421 PMCID: PMC10381020 DOI: 10.3390/ijms241411662] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Psoriatic arthritis (PsA) is a persistent, inflammatory disease that affects individuals with psoriasis, arthritis, and enthesitis. Research has demonstrated that inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-23 (IL-23), and interleukin-17 (IL-17) play a pivotal role in both the onset and progression of PsA. These cytokines are generated by activated immune cells and stimulate the attraction of inflammatory cells to the synovium and joint tissues, resulting in the deterioration of cartilage and bone. The blocking of these cytokines has become a successful treatment strategy for PsA, as biological drugs that inhibit TNF-α, IL-23, and IL-17 have demonstrated notable clinical benefits. The association between PsA and other types of inflammatory cytokines or chemokines, excluding TNF-α, IL-23, and IL-17, has been extensively investigated in numerous studies. These findings may provide a chance for the discovery of novel therapeutic agents targeting other molecules, distinct from the currently approved biologics and targeted synthetic disease-modifying anti-rheumatic drugs. In this review, we discuss the current understanding of the role of inflammatory cytokines in PsA pathogenesis and clinical implications of targeting these cytokines for PsA treatment.
Collapse
Affiliation(s)
- Bong-Woo Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea
| |
Collapse
|
11
|
Collin-Faure V, Vitipon M, Torres A, Tanyeres O, Dalzon B, Rabilloud T. The internal dose makes the poison: higher internalization of polystyrene particles induce increased perturbation of macrophages. Front Immunol 2023; 14:1092743. [PMID: 37251378 PMCID: PMC10213243 DOI: 10.3389/fimmu.2023.1092743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Plastics are emerging pollutants of great concern. Macroplastics released in the environment degrade into microplastics and nanoplastics. Because of their small size, these micro and nano plastic particles can enter the food chain and contaminate humans with still unknown biological effects. Plastics being particulate pollutants, they are handled in the human body by scavenger cells such as macrophages, which are important players in the innate immune system. Using polystyrene as a model of micro and nanoplastics, with size ranging from under 100 nm to 6 microns, we have showed that although non-toxic, polystyrene nano and microbeads alter the normal functioning of macrophages in a size and dose-dependent manner. Alterations in the oxidative stress, lysosomal and mitochondrial functions were detected, as well as changes in the expression of various surface markers involved in the immune response such as CD11a/b, CD18, CD86, PD-L1, or CD204. For each beads size tested, the alterations were more pronounced for the cell subpopulation that had internalized the highest number of beads. Across beads sizes, the alterations were more pronounced for beads in the supra-micron range than for beads in the sub-micron range. Overall, this means that internalization of high doses of polystyrene favors the emergence of subpopulations of macrophages with an altered phenotype, which may not only be less efficient in their functions but also alter the fine balance of the innate immune system.
Collapse
|
12
|
Sun Q, Hu S, Lou Z, Gao J. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomed Pharmacother 2023; 161:114469. [PMID: 37002572 DOI: 10.1016/j.biopha.2023.114469] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammatory dermatosis is characterized by persistent inflammatory infiltration and hard repair of diseased skin. As a member of the human innate immune cells, macrophages usually show different phenotypes in different diseases. The macrophage phenotype (M1/M2) imbalance caused by the increase of M1 macrophages or the decrease of M2 macrophages is common in inflammatory dermatosis. In recent years, with the deepening research on inflammatory skin diseases, more and more natural medicines/traditional Chinese medicines (TCMs), represented by Shikonin and Angelica Dahurica, have shown their therapeutic effects by affecting the polarization of macrophages. This review introduced macrophage polarization in different inflammatory dermatosis, such as psoriasis. Then summarized the natural medicines/TCMs that have potential therapeutic effects so far and introduced their mechanisms of action and the proteins/signal pathways involved. We found that the TCMs with therapeutic effects listed in this review are closely related to the theory of five flavors and four properties of Chinese medicinal, and most of them are bitter, acrid and sweet. Bitter TCMs have antipyretic, anti-inflammatory and antibacterial effects, which may improve the persistent inflammation of M1 macrophage infiltration. Acrid TCMs have the effect of promoting blood circulation, while sweet TCMs have the effect of nourishing. These 2 flavors may accelerate the repair of skin lesions of inflammatory dermatosis by affecting M2 macrophages. In conclusion, we hope to provide sufficient knowledge for natural medicine research and the development of inflammatory dermatosis related to macrophage phenotype imbalance.
Collapse
Affiliation(s)
- Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China.
| |
Collapse
|
13
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Zeng X, Chen B, Wang L, Sun Y, Jin Z, Liu X, Ouyang L, Liao Y. Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression. Bioact Mater 2023; 19:653-665. [PMID: 35600974 PMCID: PMC9109129 DOI: 10.1016/j.bioactmat.2022.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is one of the major global health concerns in patients with diabetes. Overactivation of pro-inflammatory M1 macrophages is associated with delayed wound healing in diabetes. miR-29ab1 plays a critical role in diabetes-related macrophage inflammation. Hence, inhibition of inflammation and regulation of miR-29 expression have been implicated as new points for skin wound healing. In this study, the traditional Chinese medicine, puerarin, was introduced to construct an injectable and self-healing chitosan@puerarin (C@P) hydrogel. The C@P hydrogel promoted diabetic wound healing and accelerated angiogenesis, which were related to the inhibition of the miR-29 mediated inflammation response. Compared to healthy subjects, miR-29a and miR-29b1 were ectopically increased in the skin wound of the diabetic model, accompanied by upregulated M1-polarization, and elevated levels of IL-1β and TNF-α. Further evaluations by miR-29ab1 knockout mice exhibited superior wound healing and attenuated inflammation. The present results suggested that miR-29ab1 is essential for diabetic wound healing by regulating the inflammatory response. Suppression of miR-29ab1 by the C@P hydrogel has the potential for improving medical approaches for wound repair. A chitosan based hydrogel containing puerarin was constructed for promoting diabetic wound healing. Chitosan@Puerarin hydrogel accelerated skin repair through inhibiting M1-polarization and reducing IL-1β and TNF-α. miR-29 a/b1 was found to be ectopic increased in the skin-wound of diabetic model. miR-29 a/b1 was inhibited by Chitosan@Puerarin in diabetic wound healing.
Collapse
|
15
|
Bai LK, Su YZ, Wang XX, Bai B, Zhang CQ, Zhang LY, Zhang GL. Synovial Macrophages: Past Life, Current Situation, and Application in Inflammatory Arthritis. Front Immunol 2022; 13:905356. [PMID: 35958604 PMCID: PMC9361854 DOI: 10.3389/fimmu.2022.905356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory arthritis is an inflammatory disease that involves the joints and surrounding tissues. Synovial hyperplasia often presents when joints become inflamed due to immune cell infiltration. Synovial membrane is an important as well as a highly specific component of the joint, and its lesions can lead to degeneration of the joint surface, causing pain and joint disability or affecting the patients’ quality of life in severe cases. Synovial macrophages (SMs) are one of the cellular components of the synovial membrane, which not only retain the function of macrophages to engulf foreign bodies in the joint cavity, but also interact with synovial fibroblasts (SFs), T cells, B cells, and other inflammatory cells to promote the production of a variety of pro-inflammatory cytokines and chemokines, such as TNF-α, IL-1β, IL-8, and IL-6, which are involved in the pathogenic process of inflammatory arthritis. SMs from different tissue sources have differently differentiated potentials and functional expressions. This article provides a summary on studies pertaining to SMs in inflammatory arthritis, and explores their role in its treatment, in order to highlight novel treatment modalities for the disease.
Collapse
Affiliation(s)
- Lin-Kun Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Ya-Zhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xue-Xue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Bing Bai
- First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Cheng-Qiang Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Li-Yun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Gai-Lian Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
- *Correspondence: Gai-Lian Zhang,
| |
Collapse
|
16
|
Laborde CM, Larzabal L, González-Cantero Á, Castro-Santos P, Díaz-Peña R. Advances of Genomic Medicine in Psoriatic Arthritis. J Pers Med 2022; 12:jpm12010035. [PMID: 35055350 PMCID: PMC8780979 DOI: 10.3390/jpm12010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriatic arthritis (PsA) is a common type of inflammatory arthritis found in up to 40% of patients with psoriasis. Although early diagnosis is important for reducing the risk of irreversible structural damage, there are no adequate screening tools for this purpose, and there are no clear markers of predisposition to the disease. Much evidence indicates that PsA disorder is complex and heterogeneous, where genetic and environmental factors converge to trigger inflammatory events and the development of the disease. Nevertheless, the etiologic events that underlie PsA are complex and not completely understood. In this review, we describe the existing data in PsA in order to highlight the need for further research in this disease to progress in the knowledge of its pathobiology and to obtain early diagnosis tools for these patients.
Collapse
Affiliation(s)
| | | | - Álvaro González-Cantero
- Department of Dermatology, Hospital Universitario Ramon y Cajal, 28034 Madrid, Spain;
- Faculty of Medicine, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, 28223 Pozuelo de Alarcón, 28034 Madrid, Spain
| | - Patricia Castro-Santos
- Immunology, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Roberto Díaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
- Correspondence: or ; Tel.: +34-981-955-073
| |
Collapse
|
17
|
Batko B. Exploring the Diverse Immune and Genetic Landscape of Psoriatic Arthritis. J Clin Med 2021; 10:jcm10245926. [PMID: 34945224 PMCID: PMC8706996 DOI: 10.3390/jcm10245926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Psoriatic arthritis (PsA) is characterized by delays in diagnosis and modest effect of treatment in terms of joint response. An understanding of molecular pathomechanisms may aid in developing diagnostic and prognostic models. Genetic susceptibility (e.g., HLA class I genes, IL-23-related genes) can be responsible for the pattern of psoriatic manifestations and affinity for tissue involvement. Gene expression analysis indicates an inflammatory profile that is distinct for PsA, but disparate across tissues. This has clinical implications, as for example, dual blockade of IL-17A and IL-17F can lead to superior clinical effects if there is differential expression of IL-17 receptors in tissues. Structural and functional impairment of barrier tissue, including host-microbiome interactions, may be the source of immune activation. Interplay between different cell populations of innate and adaptive immunity is emerging, potentially providing a link between the transition of skin-to-joint disease. Th17 subsets, IL-17A, IL-17F and IL-23 are crucial in PsA pathogenesis, with both clinical and experimental evidence suggesting a differential molecular landscape in cutaneous and articular compartments.
Collapse
Affiliation(s)
- Bogdan Batko
- Department of Rheumatology and Immunology, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University, 30-705 Krakow, Poland
| |
Collapse
|
18
|
Umar S, Palasiewicz K, Volin MV, Zanotti B, Al-Awqati M, Sweiss N, Shahrara S. IRAK4 inhibitor mitigates joint inflammation by rebalancing metabolism malfunction in RA macrophages and fibroblasts. Life Sci 2021; 287:120114. [PMID: 34732329 PMCID: PMC10020992 DOI: 10.1016/j.lfs.2021.120114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Recent studies show a connection between glycolysis and inflammatory response in rheumatoid arthritis (RA) macrophages (MΦs) and fibroblasts (FLS). Yet, it is unclear which pathways could be targeted to rebalance RA MΦs and FLS metabolic reprogramming. To identify novel targets that could normalize RA metabolic reprogramming, TLR7-mediated immunometabolism was characterized in RA MΦs, FLS and experimental arthritis. We uncovered that GLUT1, HIF1α, cMYC, LDHA and lactate were responsible for the TLR7-potentiated metabolic rewiring in RA MΦs and FLS, which was negated by IRAK4i. While in RA FLS, HK2 was uniquely expanded by TLR7 and negated by IRAK4i. Conversely, TLR7-driven hypermetabolism, non-oxidative PPP (CARKL) and oxidative phosphorylation (PPARγ) were narrowly dysregulated in TLR7-activated RA MΦs and FLS and was reversed by IRAK4i. Consistently, IRAK4i therapy disrupted arthritis mediated by miR-Let7b/TLR7 along with impairing a broad-range of glycolytic intermediates, GLUT1, HIF1α, cMYC, HK2, PFKFB3, PKM2, PDK1 and RAPTOR. Notably, inhibition of the mutually upregulated glycolytic metabolites, HIF1α and cMYC, was capable of mitigating TLR7-induced inflammatory imprint in RA MΦs and FLS. In keeping with IRAK4i, treatment with HIF1i and cMYCi intercepted TLR7-enhanced IRF5 and IRF7 in RA MΦs, distinct from RA FLS. Interestingly, in RA MΦs and FLS, IRAK4i counteracted TLR7-induced CARKL reduction in line with HIF1i. Whereas, cMYCi in concordance with IRAK4i, overturned oxidative phosphorylation via PPARγ in TLR7-activated RA MΦs and FLS. The blockade of IRAK4 and its interconnected intermediates can rebalance the metabolic malfunction by obstructing glycolytic and inflammatory phenotypes in RA MΦs and FLS.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, United States of America
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, United States of America
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, United States of America.
| |
Collapse
|
19
|
Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song Y, He R, Yuan S, Chen T, Hu M, Pan Y, Ma R, Liu H, Wei F. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol 2021; 140:186-195. [PMID: 34735867 DOI: 10.1016/j.molimm.2021.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022]
Abstract
Macrophages are highly plastic cells critical for the development of rheumatoid arthritis (RA). Macrophages exhibit a high degree of pro-inflammatory plasticity in RA, accompanied by a metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis. 2-deoxyglucose (2-DG), a glycolysis inhibitor, has previously been shown to exhibit anti-inflammatory and anti-arthritic properties. However, the specific mechanisms of inflammatory modulation by 2-DG remain unclear. This study used 2-DG to treat rats with adjuvant arthritis (AA) and investigated its specific anti-arthritic mechanisms in the murine-derived macrophage cell line RAW264.7 in vitro. 2-DG reduced the arthritis index as well as alleviated cellular infiltration, synovial hyperplasia, and bone erosion in AA rats. Moreover, 2-DG treatment modulated peritoneal macrophage polarization, increasing levels of the arginase1 (Arg1) and decreasing expression of the inducible nitric oxide synthase (iNOS). 2-DG activated AMP-activated protein kinase (AMPK) via phosphorylation and reduced activation of the nuclear factor κB (NF-κB) in peritoneal macrophages of AA rats. In vitro, we verified that 2-DG promoted macrophage transition from M1 to M2-type by upregulating the expression of p-AMPKα and suppressing NF-κB activation in LPS-stimulated RAW264.7 cells. LPS-induced macrophages exhibited a metabolic shift from glycolysis to OXPHOS following 2-DG treatment, as observed by reduced extracellular acidification rate (ECAR), lactate export, glucose consumption, as well as an elevated oxygen consumption rate (OCR) and intracellular ATP concentration. Importantly, changes in polarization and metabolism in response to 2-DG were dampened after AMPKα knockdown. These findings indicate that the anti-arthritic 2-DG effect is mediated by a modulation of macrophage polarization in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Rui He
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Siqi Yuan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Tao Chen
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Mengru Hu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yousheng Pan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ran Ma
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
20
|
Blanco LP, Wang X, Carlucci PM, Torres-Ruiz JJ, Romo-Tena J, Sun HW, Hafner M, Kaplan MJ. RNA Externalized by Neutrophil Extracellular Traps Promotes Inflammatory Pathways in Endothelial Cells. Arthritis Rheumatol 2021; 73:2282-2292. [PMID: 33983685 PMCID: PMC8589882 DOI: 10.1002/art.41796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neutrophil extracellular traps (NETs) are extracellular lattices composed of nucleic material bound to neutrophil granule proteins. NETs may play pathogenic roles in the development and severity of autoimmune diseases such as systemic lupus erythematosus (SLE), at least in part, through induction of type I interferon (IFN) responses via externalization of oxidized immunostimulatory DNA. A distinct subset of SLE proinflammatory neutrophils (low-density granulocytes [LDGs]) displays enhanced ability to form proinflammatory NETs that damage the vasculature. We undertook this study to assess whether NET-bound RNA can contribute to inflammatory responses in endothelial cells (ECs) and the pathways that mediate this effect. METHODS Expression of newly synthesized and total RNA was quantified in NETs from healthy controls and lupus patients. The ability of ECs to take up NET-bound RNA and downstream induction of type I IFN responses were quantified. RNAs present in NETs were sequenced and specific small RNAs were tested for induction of endothelial type I IFN pathways. RESULTS NETs extruded RNA that was internalized by ECs, and this was enhanced when NET-bound nucleic acids were oxidized, particularly in lupus LDG-derived NETs. Internalization of NET-bound RNA by ECs was dependent on endosomal Toll-like receptors (TLRs) and the actin cytoskeleton and induced type I IFN-stimulated genes (ISGs). This ISG induction was dependent on NET-associated microRNA let-7b, a small RNA expressed at higher levels in LDG-derived NETs, which acted as a TLR-7 agonist. CONCLUSION These findings highlight underappreciated roles for small RNAs externalized in NETs in the induction of proinflammatory responses in vascular cells, with implications for lupus vasculopathy.
Collapse
Affiliation(s)
- Luz P. Blanco
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xinghao Wang
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Philip M. Carlucci
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jose Jiram Torres-Ruiz
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jorge Romo-Tena
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Medical Science PhD Program, School of Medicine, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
21
|
The Cell-Permeable Derivative of the Immunoregulatory Metabolite Itaconate, 4-Octyl Itaconate, Is Anti-Fibrotic in Systemic Sclerosis. Cells 2021; 10:cells10082053. [PMID: 34440821 PMCID: PMC8393335 DOI: 10.3390/cells10082053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to skin fibrosis. Altered metabolism has recently been described in autoimmune diseases and SSc. Itaconate is a product of the Krebs cycle intermediate cis-aconitate and is an immunomodulator. This work examines the role of the cell-permeable derivative of itaconate, 4-octyl itaconate (4-OI), in SSc. SSc and healthy dermal fibroblasts were exposed to 4-OI. The levels of collagen Nrf2-target genes and pro-inflammatory cytokines interleukin 6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) were determined. Levels of reactive oxygen species (ROS) as well as the gene expression of collagen and Cellular Communication Network Factor 2 (CCN2) were measured after transforming growth factor beta 1 (TGF-β1) stimulation in the presence or absence of 4-OI. Wild-type or Nrf2-knockout (Nrf2-KO) mouse embryonic fibroblasts (MEFs) were also treated with 4-OI to determine the role of Nrf2 in 4-OI-mediated effects. 4-OI reduced the levels of collagen in SSc dermal fibroblasts. Incubation with 4-OI led to activation of Nrf2 and its target genes heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). 4-OI activated antioxidant response element (ARE)-dependent gene expression, reduced inflammatory cytokine release and reduced TGF-β1-induced collagen and ROS production in dermal fibroblasts. The effects of 4-OI are dependent on Nrf2. The cell-permeable derivative of itaconate 4-OI is anti-fibrotic through upregulation of Nrf2 and could be a potential therapeutic option in an intractable disease.
Collapse
|
22
|
Carvalho AL, Hedrich CM. The Molecular Pathophysiology of Psoriatic Arthritis-The Complex Interplay Between Genetic Predisposition, Epigenetics Factors, and the Microbiome. Front Mol Biosci 2021; 8:662047. [PMID: 33869291 PMCID: PMC8047476 DOI: 10.3389/fmolb.2021.662047] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a symmetric autoimmune/inflammatory disease that primarily affects the skin. In a significant proportion of cases, it is accompanied by arthritis that can affect any joint, the spine, and/or include enthesitis. Psoriasis and psoriatic arthritis are multifactor disorders characterized by aberrant immune responses in genetically susceptible individuals in the presence of additional (environmental) factors, including changes in microbiota and/or epigenetic marks. Epigenetic changes can be heritable or acquired (e.g., through changes in diet/microbiota or as a response to therapeutics) and, together with genetic factors, contribute to disease expression. In psoriasis, epigenetic alterations are mainly related to cell proliferation, cytokine signaling and microbial tolerance. Understanding the complex interplay between heritable and acquired pathomechanistic factors contributing to the development and maintenance of psoriasis is crucial for the identification and validation of diagnostic and predictive biomarkers, and the introduction of individualized effective and tolerable new treatments. This review summarizes the current understanding of immune activation, genetic, and environmental factors that contribute to the pathogenesis of psoriatic arthritis. Particular focus is on the interactions between these factors to propose a multifactorial disease model.
Collapse
Affiliation(s)
- Ana L Carvalho
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|