1
|
Zhang H, Thai PN, Shivnaraine RV, Ren L, Wu X, Siepe DH, Liu Y, Tu C, Shin HS, Caudal A, Mukherjee S, Leitz J, Wen WTL, Liu W, Zhu W, Chiamvimonvat N, Wu JC. Multiscale drug screening for cardiac fibrosis identifies MD2 as a therapeutic target. Cell 2024; 187:7143-7163.e22. [PMID: 39413786 PMCID: PMC11645214 DOI: 10.1016/j.cell.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/13/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Cardiac fibrosis impairs cardiac function, but no effective clinical therapies exist. To address this unmet need, we employed a high-throughput screening for antifibrotic compounds using human induced pluripotent stem cell (iPSC)-derived cardiac fibroblasts (CFs). Counter-screening of the initial candidates using iPSC-derived cardiomyocytes and iPSC-derived endothelial cells excluded hits with cardiotoxicity. This screening process identified artesunate as the lead compound. Following profibrotic stimuli, artesunate inhibited proliferation, migration, and contraction in human primary CFs, reduced collagen deposition, and improved contractile function in 3D-engineered heart tissues. Artesunate also attenuated cardiac fibrosis and improved cardiac function in heart failure mouse models. Mechanistically, artesunate targeted myeloid differentiation factor 2 (MD2) and inhibited MD2/Toll-like receptor 4 (TLR4) signaling pathway, alleviating fibrotic gene expression in CFs. Our study leverages multiscale drug screening that integrates a human iPSC platform, tissue engineering, animal models, in silico simulations, and multiomics to identify MD2 as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | | | - Lu Ren
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H Siepe
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye Sook Shin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Jeremy Leitz
- Greenstone Biosciences, Palo Alto, CA 94305, USA
| | - Wilson Tan Lek Wen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenjuan Zhu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Basic Medical Sciences and Translational Cardiovascular Research Center, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Li X, Li X, Huang P, Zhang F, Du JK, Kong Y, Shao Z, Wu X, Fan W, Tao H, Zhou C, Shao Y, Jin Y, Ye M, Chen Y, Deng J, Shao J, Yue J, Cheng X, Chinn YE. Acetylation of TIR domains in the TLR4-Mal-MyD88 complex regulates immune responses in sepsis. EMBO J 2024; 43:4954-4983. [PMID: 39294473 PMCID: PMC11535217 DOI: 10.1038/s44318-024-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Activation of the Toll-like receptor 4 (TLR4) by bacterial endotoxins in macrophages plays a crucial role in the pathogenesis of sepsis. However, the mechanism underlying TLR4 activation in macrophages is still not fully understood. Here, we reveal that upon lipopolysaccharide (LPS) stimulation, lysine acetyltransferase CBP is recruited to the TLR4 signalosome complex leading to increased acetylation of the TIR domains of the TLR4 signalosome. Acetylation of the TLR4 signalosome TIR domains significantly enhances signaling activation via NF-κB rather than IRF3 pathways. Induction of NF-κB signaling is responsible for gene expression changes leading to M1 macrophage polarization. In sepsis patients, significantly elevated TLR4-TIR acetylation is observed in CD16+ monocytes combined with elevated expression of M1 macrophage markers. Pharmacological inhibition of HDAC1, which deacetylates the TIR domains, or CBP play opposite roles in sepsis. Our findings highlight the important role of TLR4-TIR domain acetylation in the regulation of the immune responses in sepsis, and we propose this reversible acetylation of TLR4 signalosomes as a potential therapeutic target for M1 macrophages during the progression of sepsis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China.
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China.
- Life Science Research Institute, Zhejiang University, Hangzhou, China.
| | - Xiangrong Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengpeng Huang
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Facai Zhang
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Juanjuan K Du
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying Kong
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqiang Shao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xinxing Wu
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weijiao Fan
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Houquan Tao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chuanzan Zhou
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Shao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanling Jin
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meihua Ye
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jong Deng
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jicheng Yue
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| | - Y Eugene Chinn
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China.
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China.
| |
Collapse
|
3
|
Pizzuto M, Hurtado-Navarro L, Molina-Lopez C, Soubhye J, Gelbcke M, Rodriguez-Lopez S, Ruysschaert JM, Schroder K, Pelegrin P. Ornithine lipid is a partial TLR4 agonist and NLRP3 activator. Cell Rep 2024; 43:114788. [PMID: 39340778 DOI: 10.1016/j.celrep.2024.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Gram-negative bacterial lipopolysaccharides (LPSs) trigger inflammatory reactions through Toll-like receptor 4 (TLR4) and prime myeloid cells for inflammasome activation. In phosphate-limited environments, bacteria reduce LPS and other phospholipid production and synthesize phosphorus-free alternatives such as amino-acid-containing lipids like the ornithine lipid (OL). This adaptive strategy conserves phosphate for other essential cellular processes and enhances bacterial survival in host environments. While OL is implicated in bacterial pathogenicity, the mechanism is unclear. Using primary murine macrophages and human mononuclear cells, we elucidate that OL activates TLR4 and induces potassium efflux-dependent nucleotide-binding domain and leucine-rich repeat-containing pyrin protein 3 (NLRP3) activation. OL upregulates the expression of NLRP3 and pro-interleukin (IL)-1β and induces cytokine secretion in primed and unprimed cells. By contrast, in the presence of LPS, OL functions as a partial TLR4 antagonist and reduces LPS-induced cytokine secretion. We thus suggest that in phosphate-depleted environments, OL replaces LPS bacterial immunogenicity, while constitutively present OL may allow bacteria to escape immune surveillance.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; Structure and Function of Biological Membranes Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia.
| | - Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Cristina Molina-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Jalal Soubhye
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre De Bruxelles, 1050 Brussels, Belgium
| | - Michel Gelbcke
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre De Bruxelles, 1050 Brussels, Belgium
| | - Silvia Rodriguez-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
4
|
Dong H, Gao X, Li H, Gao J, Zhang L. Protective effects of flavonoids against intracerebral and subarachnoid hemorrhage (Review). Exp Ther Med 2024; 28:350. [PMID: 39071910 PMCID: PMC11273248 DOI: 10.3892/etm.2024.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Intracerebral hemorrhage (ICH), known as non-traumatic cerebrovascular rupture and hemorrhage, often occurs in the deep basal brain segment. It is known for its high morbidity and mortality rates. Subarachnoid hemorrhage (SAH) is a clinical syndrome caused by the rupture of blood vessels at the base or surface of the brain that allows blood to flow directly into the subarachnoid space. It progresses quickly and typically manifests at younger ages compared with ICH. ICH and SAH are both devastating events in the category of hemorrhagic strokes and are attracting increasing attention from researchers. Flavonoids, being important natural molecules, have remarkable anti-inflammatory and antioxidant effects. Flavonoids have extensive biological activities in inflammation and oxidative stress (OS), and have protective effects in vascular function associated with cerebrovascular diseases. They have an impact on the onset of ICH and SAH by targeting various pathways, including the suppression of inflammation and OS. Recently, the role of flavonoid compounds in ICH and SAH has also received increasing interest. Thus, to serve as a resource for the prevention and treatment of ICH and SAH, the present review provided an overview of the research on flavonoid compounds in the prevention of brain damage after these two conditions have occurred.
Collapse
Affiliation(s)
- Hanpeng Dong
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Xiaojin Gao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Haixia Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Jing Gao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, Shandong 264005, P.R. China
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
5
|
Guevara-Cruz M, Hernández-Gómez KG, Condado-Huerta C, González-Salazar LE, Peña-Flores AK, Pichardo-Ontiveros E, Serralde-Zúñiga AE, Sánchez-Tapia M, Maya O, Medina-Vera I, Noriega LG, López-Barradas A, Rodríguez-Lima O, Mata I, Olin-Sandoval V, Torres N, Tovar AR, Velázquez-Villegas LA. Intermittent fasting, calorie restriction, and a ketogenic diet improve mitochondrial function by reducing lipopolysaccharide signaling in monocytes during obesity: A randomized clinical trial. Clin Nutr 2024; 43:1914-1928. [PMID: 39003957 DOI: 10.1016/j.clnu.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota. METHODS AND FINDINGS A randomized controlled clinical trial was conducted in which individuals with obesity were assigned to one of the 4 groups for 1 month. Subsequently, the subjects received rifaximin and continued with the assigned diet for another month. The oxygen consumption rate (OCR) was evaluated in isolated monocytes, as was the gut microbiota composition in feces and anthropometric and biochemical parameters. Forty-four subjects completed the study, and those who underwent CR, IF and KD interventions had an increase in the maximal respiration OCR (p = 0.025, n2p = 0.159 [0.05, 0.27] 95% confidence interval) in monocytes compared to that in the AL group. The improvement in mitochondrial function was associated with a decrease in monocyte dependence on glycolysis after the IF and KD interventions. Together, diet and rifaximin increased the gut microbiota diversity in the IF and KD groups (p = 0.0001), enriched the abundance of Phascolarctobacterium faecium (p = 0.019) in the CR group and Ruminococcus bromii (p = 0.020) in the CR and KD groups, and reduced the abundance of lipopolysaccharide (LPS)-producing bacteria after CR, IF and KD interventions compared to the AL group at the end of the study according to ANCOVA with covariate adjustment. Spearman's correlation between the variables measured highlighted LPS as a potential modulator of the observed effects. In line with this findings, serum LPS and intracellular signaling in monocytes decreased with the three interventions (CR, p = 0.002; IF, p = 0.001; and KD, p = 0.001) compared to those in the AL group at the end of the study. CONCLUSIONS We conclude that these dietary interventions positively regulate mitochondrial bioenergetic health and improve the metabolic profile of monocytes in individuals with obesity via modulation of the gut microbiota. Moreover, the evaluation of mitochondrial function in monocytes could be used as an indicator of metabolic and inflammatory status, with potential applications in future clinical trials. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov (NCT05200468).
Collapse
Affiliation(s)
- Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Karla G Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Citlally Condado-Huerta
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Luis E González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Ana Karen Peña-Flores
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Aurora E Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Otoniel Maya
- Chalmers e-Commons. Chalmers University of Technology, Gotemburg, Vastra Gotaland, Sweden
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Irma Mata
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Viridiana Olin-Sandoval
- Laboratorio 43. Departamento de Biotecnología y Bioingeniería, Cinvestav-Zacatenco, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Wang C, Cui X, Dong Z, Liu Y, Xia P, Wang X, Zhang Z, Yu S, Wu S, Liu H, Zong S, Lu Z. Attenuated memory impairment and neuroinflammation in Alzheimer's disease by aucubin via the inhibition of ERK-FOS axis. Int Immunopharmacol 2024; 126:111312. [PMID: 38043266 DOI: 10.1016/j.intimp.2023.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Alzheimer's disease (AD) is a degenerative illness accompanied by cognitive and memory loss. In addition to the widely accepted, convincing amyloid cascade hypothesis, the activation of glial cells and neuroinflammation, especially the microglia-mediated neuroinflammation, has an essential role in the development and progression of AD. Therefore, the anti-inflammatory treatment is becoming a promising therapeutic strategy. Aucubin (Au) is a natural product derived from many plants with anti-inflammatory and antioxidant activities. Up to now, no research has been conducted to investigate the anti-inflammatory effects of Au and its neuroprotective quality on AD and the potential molecular mechanisms of its medical roles. In our study, the results of network pharmacology revealed the potential therapeutic effect of Au on AD. The results of studies in vivo showed that Au improved the behaviors, counteracted cognitive and memory deficits, and ameliorated AD-like pathological features of the mouse brain, e.g., the deposition of Aβ plaques, neuronal damage, and inflammatory responses induced by glial cell overactivation, in APP/PS1 mice. The transcriptome sequencing further confirmed that the pathological symptoms of AD could be reversed by inhibiting the ERK/FOS axis to alleviate the inflammatory response. The in vitro experiments revealed that Au suppressed the BV2 cell activation, inhibited the phosphorylation of ERK1/2 and the expression of c-FOS, and reduced the LPS-induced inflammatory mediator production by BV2 cells and primary astrocytes. Our study suggested that Au exerted its neuroprotective effects by inhibiting the inflammatory responses, which could be a promising treatment of AD.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhenfang Dong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhi Zhang
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuyi Yu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuang Wu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Huan Liu
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|