1
|
Lachguar A, Del Rosal I, Maron L, Jeanneau E, Veyre L, Thieuleux C, Camp C. π-Bonding of Group 11 Metals to a Tantalum Alkylidyne Alkyl Complex Promotes Unusual Tautomerism to Bis-alkylidene and CO 2 to Ketenyl Transformation. J Am Chem Soc 2024; 146:18306-18319. [PMID: 38936814 PMCID: PMC11240581 DOI: 10.1021/jacs.4c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A salt metathesis synthetic strategy is used to access rare tantalum/coinage metal (Cu, Ag, Au) heterobimetallic complexes. Specifically, complex [Li(THF)2][Ta(CtBu)(CH2tBu)3], 1, reacts with (IPr)MCl (M = Cu, Ag, Au, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to afford the alkylidyne-bridged species [Ta(CH2tBu)3(μ-CtBu)M(IPr)] 2-M. Interestingly, π-bonding of group 11 metals to the Ta─C moiety promotes a rare alkylidyne alkyl to bis-alkylidene tautomerism, in which compounds 2-M are in equilibrium with [Ta(CHtBu)(CH2tBu)2(μ-CHtBu)M(IPr)] 3-M. This equilibrium was studied in detail using NMR spectroscopy and computational studies. This reveals that the equilibrium position is strongly dependent on the nature of the coinage metal going down the group 11 triad, thus offering a new valuable avenue for controlling this phenomenon. Furthermore, we show that these uncommon bimetallic couples could open attractive opportunities for synergistic reactivity. We notably report an uncommon deoxygenative carbyne transfer to CO2 resulting in rare examples of coinage metal ketenyl species, (tBuCCO)M(IPr), 4-M (M = Cu, Ag, Au). In the case of the Ta/Li analogue 1, the bis(alkylidene) tautomer is not detected, and the reaction with CO2 does not cleanly yield ketenyl species, which highlights the pivotal role played by the coinage metal partner in controlling these unconventional reactions.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Iker Del Rosal
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université de Lyon, 5 Rue de la Doua, Villeurbanne 69100, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| |
Collapse
|
2
|
Karade DV, Phan VQH, Dias HVR. Coinage metal-ethylene complexes of sterically demanding 1,10-phenanthroline ligands. Dalton Trans 2024; 53:10426-10433. [PMID: 38652530 DOI: 10.1039/d4dt00822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Phenanthroline-based ligands with bulky aryl groups flanking the metal binding pocket enabled the synthesis and detailed investigation of ethylene complexes of copper(I), silver(I), and gold(I), including structural data of [{2,9-bis(2,4,6-triisopropylphenyl)-1,10-phenanthroline}M(C2H4)][SbF6] (M = Cu, Ag, Au), Additionally, a related copper(I)-ethylene complex with a highly fluorinated ligand is also reported. Gold(I) affects the ethylene moiety significantly as evident from the notable upfield coordination shifts of ethylene carbon signals in the NMR and lengthening of the ethylene CC bond length. Silver(I) forms the weakest bond with ethylene in this series of isoleptic, group 11 metal-ethylene complexes. Preliminary catalytic investigations underscore the potential of copper complexes, particularly those with weakly coordinating supporting ligands, as effective catalysts for C(sp3)-H functionalization through trifluoromethyl carbene insertion.
Collapse
Affiliation(s)
- Deepika V Karade
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - Vo Quang Huy Phan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| |
Collapse
|
3
|
Watson BT, Dias HVR. Going for gold - the chemistry of structurally authenticated gold(I)-ethylene complexes. Chem Commun (Camb) 2024; 60:4872-4889. [PMID: 38567496 DOI: 10.1039/d4cc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gold coordination chemistry and catalysis involving unsaturated hydrocarbons such as olefins have experienced a remarkable growth during the last few decades. Despite the importance, isolable and well-characterized molecules with ethylene, the simplest and the most widely produced olefin, on gold are still limited. This review aims to cover features of, and strategies utilized to stabilize, gold-ethylene complexes and their diverse use in chemical transformations and homogeneous catalytic processes. Isolable and well-authenticated gold-ethylene complexes are important not only for structural, spectroscopic, and bonding studies but also as models for likely intermediates in gold mediated reactions of alkenes and gold-alkene species observed in the gas phase. There has also been development on AuI/III catalytic cycles. Nitrogen based ligands have been the most widely utilized ligand supports thus far for the successful stabilization of gold-ethylene adducts. Gold has a bright future in olefin chemistry and with ethylene.
Collapse
Affiliation(s)
- Brandon T Watson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
4
|
Jiang W, Rajeshkumar T, Guo M, Lin Y, Maron L, Zhang L. Rare-earth metal ethylene and ethyne complexes. Chem Sci 2024; 15:3495-3501. [PMID: 38455028 PMCID: PMC10915835 DOI: 10.1039/d3sc06599e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
Guanidinate homometallic rare-earth ethyl complexes [LLn(μ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y), Lu(1-Lu)) and heterobimetallic rare-earth ethyl complexes LLn(Et)(μ2-η1:η2-Et)(μ2-η1-Et)(AlEt2) (Ln = Y(2-Y), Lu(2-Lu)) have been synthesized by the treatment of LLn(CH2C6H4NMe2-o)2 (L = (PhCH2)2NC(NC6H3iPr2-2,6)2) with different equivalents of AlEt3 in toluene at ambient temperature. Interestingly, the unprecedented rare-earth ethyne complex [LY(μ2-η1-Et)2(AlEt)]2(μ4-η1:η1:η2:η2-C2H2) (3-Y) containing a [C2H2]4- unit was afforded from 2-Y. The formation mechanism study on 3-Y was carried out by DFT calculations. Furthermore, the nature of the bonding of 3-Y was also revealed by NBO analysis. The reactions of LLn(CH2 C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (4 equiv.) in toluene at 50 °C produced firstly the non-Cp rare-earth ethylene complex LY(μ3-η1:η1:η2-C2H4)[(μ2-η1-Et)(AlEt2)(μ2-η1-Et)2(AlEt)] (4-Y), and the Y/Al ethyl complex LY[(μ2-η1-Et)2(AlEt2)]2 (5-Y) as an intermediate of 4-Y was isolated from the reaction of LY(CH2C6H4NMe2-o)2 with AlEt3 (4 equiv.) in toluene at -10 °C.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Mengyue Guo
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | - Yuejian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Lixin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| |
Collapse
|
5
|
Dias HVR, Parasar D, Yakovenko AA, Stephens PW, Muñoz-Castro Á, Vanga M, Mykhailiuk P, Slobodyanyuk E. In situ studies of reversible solid-gas reactions of ethylene responsive silver pyrazolates. Chem Sci 2024; 15:2019-2025. [PMID: 38332831 PMCID: PMC10848740 DOI: 10.1039/d3sc04182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
Solid-gas reactions and in situ powder X-ray diffraction investigations of trinuclear silver complexes {[3,4,5-(CF3)3Pz]Ag}3 and {[4-Br-3,5-(CF3)2Pz]Ag}3 supported by highly fluorinated pyrazolates reveal that they undergo intricate ethylene-triggered structural transformations in the solid-state producing dinuclear silver-ethylene adducts. Despite the complexity, the chemistry is reversible producing precursor trimers with the loss of ethylene. Less reactive {[3,5-(CF3)2Pz]Ag}3 under ethylene pressure and low-temperature conditions stops at an unusual silver-ethylene complex in the trinuclear state, which could serve as a model for intermediates likely present in more common trimer-dimer reorganizations described above. Complete structural data of three novel silver-ethylene complexes are presented together with a thorough computational analysis of the mechanism.
Collapse
Affiliation(s)
- H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019 USA
| | - Devaborniny Parasar
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019 USA
| | - Andrey A Yakovenko
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Peter W Stephens
- Department of Physics and Astronomy, Stony Brook University Stony Brook NY 11794-3800 USA
| | - Álvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián Bellavista 7 Santiago 8420524 Chile
| | - Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019 USA
| | - Pavel Mykhailiuk
- Enamine Ltd. Winston Churchill Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry Volodymyrska 60 01601 Kyiv Ukraine
| | | |
Collapse
|
6
|
Asundi AS, Noonikara-Poyil A, Phan VQH, Dias HVR, Sarangi R. Understanding Copper(I)-Ethylene Bonding Using Cu K-Edge X-ray Absorption Spectroscopy. Inorg Chem 2023; 62:19298-19311. [PMID: 37963391 DOI: 10.1021/acs.inorgchem.3c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Copper plays many important roles in ethylene chemistry, thus generating significant interest in understanding the structures, bonding, and properties of copper(I)-ethylene complexes. In this work, the ethylene binding characteristics of a series of isolable Cu(I)-ethylene compounds supported by a systematic set of fluorinated and nonfluorinated bis- and tris(pyrazolyl)borate and the related bis(pyrazolyl)methane ligands have been investigated. Through a combination of X-ray absorption spectroscopy and quantum chemical calculations, we characterize their geometric and electronic structures and the role that fluorinated ligands play in lowering the electron density at Cu sites. Such ligands increase the ethylene-to-Cu σ-donor interaction and, correspondingly, decrease the Cu-to-ethylene π back-bonding. This latter interaction leads to a partial vacancy in the Cu 3d level, which manifests experimentally as a low-energy feature in the Cu K pre-edge, allowing for its direct observation and comparison within a series of Cu(I) compounds. The pre-edge feature is reproduced by TD-DFT calculations, and its energy position and total intensity are used to quantitatively probe Cu-ethylene bonding. The variations in the Cu electronic structure influence the stability and overall ethylene bonding strength of these compounds, ultimately showing how substituents on the supporting ligands have a notable effect on their physical and chemical properties.
Collapse
Affiliation(s)
- Arun S Asundi
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Vo Quang Huy Phan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ritimukta Sarangi
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
Vanga M, Phan VQH, Wu J, Muñoz-Castro A, Dias HVR. Thallium(I) Complexes of Tris(pyridyl)borates and a Comparison to Their Pyrazolyl Analogues. Inorg Chem 2023; 62:18563-18572. [PMID: 37906103 DOI: 10.1021/acs.inorgchem.3c02805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Thallium(I) complexes of B-methylated and B-phenylated tris(pyridyl)borates featuring trifluoromethyl groups at the pyridyl ring 6-positions have been synthesized by metathesis using the corresponding potassium salts [MeB(6-(CF3)Py)3]K and [PhB(6-(CF3)Py)3]K with thallium(I) acetate. The closely related tris(pyrazolyl)borate analogue [PhB(3-(CF3)Pz)3]Tl has also been prepared, and comparisons of structural and spectroscopic features between the two scorpionate families are presented. [MeB(6-(CF3)Py)3]Tl displays κ3-coordination of the tris(pyridyl)borate similar to that of tris(pyrazolyl)borate in [MeB(3-(CF3)Pz)3]Tl, while [PhB(6-(CF3)Py)3]Tl and [PhB(3-(CF3)Pz)3]Tl feature κ2-N,N ligand coordination modes with the B-phenyl groups flanking the thallium sites. 19F NMR spectroscopy of [MeB(6-(CF3)Py)3]Tl reveals the presence of a remarkably large 1208 Hz four-bond thallium-fluorine coupling constant in chloroform at room temperature, which is considerably larger than 878 Hz observed for the pyrazolyl borate analogue [MeB(3-(CF3)Pz)3]Tl. Although [PhB(6-(CF3)Py)3]Tl is structurally nonrigid at room temperature in chloroform, at lower temperatures, the ligand arm exchange slows down, revealing 4JTl-F = 1110 Hz. Steric demands of these ligands have been quantified using the buried volume concept. In addition, ligand transfer chemistry from [MeB(6-(CF3)Py)3]Tl and [PhB(6-(CF3)Py)3]Tl to copper(I) under ethylene and computational analyses of the various coordination modes of tris(pyrazolyl)borates and tris(pyridyl)borates are reported.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Vo Quang Huy Phan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiang Wu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
8
|
Maekawa M, Hayashi T, Sugimoto K, Okubo T, Kuroda-Sowa T. Structural diversity of copper(I)-ethylene complexes with 2,4-bis(2-pyridyl)pyrimidine directed by anions. Dalton Trans 2023; 52:14941-14948. [PMID: 37800189 DOI: 10.1039/d3dt02618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The 3 : 1 reaction of [Cu(C2H4)n]ClO4 with 2,4-bis(2-pyridyl)pyrimidine (bpprd) in Me2CO under C2H4 afforded yellow prism crystals of the dinuclear Cu(I)-C2H4 complex [Cu2(bpprd)(η2-C2H4)2(ClO4)2] (1). The 3 : 1 reaction of [Cu(C2H4)n]NO3 with bpprd in Me2CO under C2H4 afforded yellow plate crystals of the tetranuclear Cu(I)-C2H4 complex [Cu4(bpprd)2(η2-C2H4)4(μ-NO3)2](NO3)2 (2). The 10 : 1 reaction of [Cu(C2H4)n]BF4 with bpprd in Me2CO under C2H4 afforded yellow plate crystals of the dinuclear Cu(I)-C2H4 complex [Cu2(bpprd)(η2-C2H4)2(BF4)]BF4 (3). The 3 : 1 reaction of [Cu(C2H4)n]BF4 with bpprd in Me2CO under C2H4 afforded red prism crystals of the polymeric Cu(I)-C2H4 complex {[Cu6(bpprd)4(η2-C2H4)2(μ-η2:η2-C2H4)(μ-BF4)2](BF4)4}n (4). The X-ray crystal structures of complexes 1-4 have been determined. The structural diversity of Cu(I)-C2H4 complexes bridged by bpprd with different anions was demonstrated. The 1D Cu(I)-bpprd/C2H4 coordination polymer 4 bridged by unusual μ-η2:η2-C2H4 and the μ-BF4- anion is of particular significance. Complex 1 exhibited relatively well-resolved 1H NMR signals of bpprd and C2H4 (δ = 4.97 ppm) in (CD3)2CO at 23 °C.
Collapse
Affiliation(s)
- Masahiko Maekawa
- Research Institute for Science and Technology, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Terumasa Hayashi
- Department of Chemistry, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kunihisa Sugimoto
- Department of Chemistry, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takashi Okubo
- Department of Chemistry, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takayoshi Kuroda-Sowa
- Department of Chemistry, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
9
|
Lan L, Zhang T, Wang H, Hu H, Shi Z, Li G. Synthesis and Full Characterization of One Organometallic Polyoxometalate-Based Copper(I)-Alkene Complex. Inorg Chem 2023; 62:1377-1382. [PMID: 36657984 DOI: 10.1021/acs.inorgchem.2c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An alkene-bridged thioether ligand (L) was designed and used for its first study within a polyoxometalate (POM) hybrid system, and a POM-based copper(I)-alkene compound [(CuIL)2(PVMoVI12O40)]·(CuIL) (1) was isolated and characterized by X-ray crystallography. A unique alkene-coordinating N(η2-C═C)N mode of L is observed, and the Cu centers are captured by σ2,π-L in a pocket fashion, giving birth to discrete [CuIL]+ cations and [(CuIL)2(PVMoVI12)]- anions. The ionic crystal exhibits solubility in aprotic polar solvents, and the electrospray ionization mass spectrometry is used to explore the nature of species present in the solution. It is found that the whole cluster [PVMoVI12]3- is completely present, and all the main peaks can be assigned to different charged fragments of the same parent cluster.
Collapse
Affiliation(s)
- Lili Lan
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Tao Zhang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Huanjiang Wang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Zhiqiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
10
|
Watson BT, Vanga M, Noonikara-Poyil A, Muñoz-Castro A, Dias HVR. Copper(I), Silver(I), and Gold(I) Ethylene Complexes of Fluorinated and Boron-Methylated Bis- and Tris(pyridyl)borate Chelators. Inorg Chem 2023; 62:1636-1648. [PMID: 36657123 DOI: 10.1021/acs.inorgchem.2c04009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bis- and tris-pyridyl borate ligands containing pyridyl donor arms, a methylated boron cap, and a fluorine-lined coordination pocket have been prepared and utilized in coinage metal chemistry. The tris(pyridyl)borate ligand has been synthesized using a convenient boron source, [NBu4][MeBF3]. These N-based ligands permitted the isolation of group 11 metal-ethylene complexes [MeB(6-(CF3)Py)3]M(C2H4) and [Me2B(6-(CF3)Py)2]M(C2H4) (M = Cu, Ag, Au). The gold complexes display the largest coordination-induced upfield shifts of the ethylene 13C resonance relative to that of the free ethylene in their NMR spectra, while the silver complexes show the smallest shift. Solid-state structures of five of these metal-ethylene complexes as well as the related free ligands were established by X-ray crystallography. Surprisingly, all three [MeB(6-(CF3)Py)3]M(C2H4) adopt the rare κ2 coordination mode rather than the typical κ3 coordination mode of facial capping tridentate ligands. Computational analyses indicate that κ2 coordination mode is favored over the κ3-mode in these coinage metal-ethylene complexes and point to the effects CF3-substituents have on κ2/κ3-energy difference. The M-C and M-N bond distances of [MeB(6-(CF3)Py)3]M(C2H4) follow the trend expected based on covalent radii of M(I) ions. The calculated ethylene-M interaction energy of κ2-[MeB(6-(CF3)Py)3]M(C2H4) indicated that the gold(I) forms the strongest interaction with ethylene. A comparison to the related poly(pyrazolyl)borates is also presented.
Collapse
Affiliation(s)
- Brandon T Watson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
11
|
Zhang X, Li L, Sivaguru P, Zanoni G, Bi X. Highly electrophilic silver carbenes. Chem Commun (Camb) 2022; 58:13699-13715. [PMID: 36453127 DOI: 10.1039/d2cc04845k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catalytic carbene transfer reactions are fundamental transformations in modern organic synthesis, which enable direct access to diverse structurally complex molecules. Despite diazo precursors playing a crucial role in catalytic carbene transfer reactions, most reported methodologies take into account only diazoacetates or related compounds. This is primarily because diazoalkanes, unless they contain a resonance stabilizing group, are more susceptible to violent exothermic decomposition. In this feature article, we present an alternative approach to carbene-transfer reactions based on the formation of highly electrophilic silver carbenes from N-sulfonylhydrazones, where the high electrophilicity of silver carbenes stems from the weak interaction between silver and the carbenic carbon. These precursors are readily accessible, stable, and environmentally sustainable. Using the strategy that employs highly electrophilic silver carbenes, it is possible to develop novel intermolecular transformations involving non-stabilized carbenes, including C(sp3)-H insertion, C(sp3)-C(O) insertion, cycloaddition, and defluorinative functionalization. The silver-catalyzed carbene transfer reactions described here have high efficiency, unusual reactivity, exceptional selectivity, and a reaction pathway that differs from typical transition metal-catalyzed reactions. Our research provided fundamental insight into silver carbene chemistry, and we hope to apply this mode of catalysis to other more general transformations, including asymmetric transformations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Linxuan Li
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| |
Collapse
|
12
|
Muñoz-Castro A, Dias HVR. Bonding and 13 C-NMR properties of coinage metal tris(ethylene) and tris(norbornene) complexes: Evaluation of the role of relativistic effects from DFT calculations. J Comput Chem 2022; 43:1848-1855. [PMID: 36073752 DOI: 10.1002/jcc.26987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
The π-complexes of cationic coinage metal ions (Cu(I), Ag(I), Au(I)) provide useful experimental support for understanding fundamental characteristics of bonding and 13 C-NMR patterns of the group 11 triad. Here, we account for the role of relativistic effects on olefin-coinage metal ion interaction for cationic, homoleptic tris-ethylene, and tris-norbornene complexes, [M(η2 -C2 H4 )3 ]+ and [M(η2 -C7 H10 )3 ]+ (M = Cu, Ag, Au), as representative case of studies. The M-(CC) bond strength in the cationic, tris-ethylene complexes is affected sizably for Au and to a lesser extent for Ag and Cu (48.6%, 16.7%, and 4.3%, respectively), owing to the influence on the different stabilizing terms accounting for the interaction energy in the formation of coinage metal cation-π complexes. The bonding elements provided by olefin → M σ-donation and olefin ← M π-backbonding are consequently affected, leading to a lesser covalent interaction going down in the triad if the relativistic effects are ignored. Analysis of the 13 C-NMR tensors provides further understanding of the observed experimental values, where the degree of backbonding charge donation to π2 *-olefin orbital is the main influence on the observed high-field shifts in comparison to the free olefin. This donation is larger for ethylene complexes and lower for norbornene counterparts. However, the bonding energy in the later complexes is slightly stabilized given by the enhancement in the electrostatic character of the interaction. Thus, the theoretical evaluation of metal-alkene bonds, and other metal-bonding situations, benefits from the incorporation of relativistic effects even in lighter counterparts, which have an increasing role going down in the group.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
13
|
Karimata A, Gridneva T, Patil PH, Fayzullin RR, Khaskin E, Lapointe S, Garcia-Roca A, Khusnutdinova JR. Ethylene binding in mono- and binuclear Cu I complexes with tetradentate pyridinophane ligands. Dalton Trans 2022; 51:13426-13434. [PMID: 35993504 DOI: 10.1039/d2dt02180c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a series of CuI complexes supported by tetradentate RN4 pyridinophane ligands that coordinate to ethylene forming either mononuclear complexes with ethylene coordinated in an η2-mode or a binuclear complex where ethylene binds to two Cu atoms in a μ-η2-η2-mode, depending on the steric effects of the RN4 ligand and the reaction conditions. In the binuclear complex with bridging ethylene, the CC bond is significantly elongated, with a bond length of 1.444(8) Å according to X-ray diffraction analysis. This complex represents the only examination a μ-η2-η2-coordinated Cu-olefin complex reported to date, featuring one of the longest reported CC bonds. The spectroscopic characterization, structure, electrochemical properties and solution behavior are analyzed in this study. Coordination of ethylene was found to be reversible in these complexes and more favored in less sterically hindered RN4 ligands, so that ethylene binding is observed in a coordinating solvent (MeCN) environment. In the case of the MeN4 ligand, the ethylene complex is photoluminescent in the solid state. The ethylene binding modes in mono- and binuclear complexes are elucidated through Natural Bond Orbital and QTAIM analyses.
Collapse
Affiliation(s)
- Ayumu Karimata
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Pradnya H Patil
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Sébastien Lapointe
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Alèria Garcia-Roca
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
14
|
Mehara J, Watson BT, Noonikara‐Poyil A, Zacharias AO, Roithová J, Rasika Dias HV. Binding Interactions in Copper, Silver and Gold π-Complexes. Chemistry 2022; 28:e202103984. [PMID: 35076112 PMCID: PMC9305286 DOI: 10.1002/chem.202103984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 12/14/2022]
Abstract
The copper(I), silver(I), and gold(I) metals bind π-ligands by σ-bonding and π-back bonding interactions. These interactions were investigated using bidentate ancillary ligands with electron donating and withdrawing substituents. The π-ligands span from ethylene to larger terminal and internal alkenes and alkynes. Results of X-ray crystallography, NMR, and IR spectroscopy and gas phase experiments show that the binding energies increase in the order Ag
Collapse
Affiliation(s)
- Jaya Mehara
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| | - Brandon T. Watson
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| | - Anurag Noonikara‐Poyil
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| | - Adway O. Zacharias
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| | - Jana Roithová
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| | - H. V. Rasika Dias
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexas76019USA
| |
Collapse
|
15
|
Vanga M, Muñoz-Castro A, Dias HVR. Fluorinated tris(pyridyl)borate ligand support on coinage metals. Dalton Trans 2022; 51:1308-1312. [PMID: 35015008 DOI: 10.1039/d1dt04136c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A useful ligand involving three pyridyl donor arms and fluorocarbon substituents surrounding the coordination pocket has been assembled and utilized in coinage metal chemistry. This tris(pyridyl)borate serves as an excellent ligand support for the stabilization of ethylene complexes of copper, silver and gold.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
16
|
Noonikara-Poyil A, Ridlen SG, Fernández I, Dias HVR. Isolable acetylene complexes of copper and silver. Chem Sci 2022; 13:7190-7203. [PMID: 35799825 PMCID: PMC9214850 DOI: 10.1039/d2sc02377f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Copper and silver play important roles in acetylene transformations but isolable molecules with acetylene bonded to Cu(i) and Ag(i) ions are scarce. This report describes the stabilization of π-acetylene complexes of such metal ions supported by fluorinated and non-fluorinated, pyrazole-based chelators. These Cu(i) and Ag(i) complexes were formed readily in solutions under an atmosphere of excess acetylene and the appropriate ligand supported metal precursor, and could be isolated as crystalline solids, enabling complete characterization using multiple tools including X-ray crystallography. Molecules that display κ2-or κ3-ligand coordination modes and trigonal planar or tetrahedral metal centers have been observed. Different trends in coordination shifts of the acetylenic carbon resonance were revealed by 13C NMR spectroscopy for the Cu(i) and Ag(i) complexes. The reduction in acetylene
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C due to metal ion coordination is relatively large for copper adducts. Computational tools were also used to quantitatively understand in detail the bonding situation in these species. It is found that the interaction between the transition metal fragment and the acetylene ligand is significantly stronger in the copper complexes, which is consistent with the experimental findings. The CC distance of these copper and silver acetylene complexes resulting from routine X-ray models suffers due to incomplete deconvolution of thermal smearing and anisotropy of the electron density in acetylene, and is shorter than expected. A method to estimate the CC distance of these metal complexes based on their experimental CC is also presented. Gaseous acetylene can be trapped on copper(i) and silver(i) sites supported by pyrazole-based scorpionates to produce isolable molecules for detailed investigations and the study of metal-acetylene bonding.![]()
Collapse
Affiliation(s)
- Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Shawn G. Ridlen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| |
Collapse
|
17
|
Guajardo Maturana R, Ortolan AO, Rodríguez-Kessler PL, Caramori GF, Parreira RLT, Muñoz-Castro A. Nature of hydride and halide encapsulation in Ag 8 cages: insights from the structure and interaction energy of [Ag 8(X){S 2P(O iPr) 2} 6] + (X = H -, F -, Cl -, Br -, I -) from relativistic DFT calculations. Phys Chem Chem Phys 2021; 24:452-458. [PMID: 34897316 DOI: 10.1039/d1cp04249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the different contributing terms to an efficient anion encapsulation is a relevant issue for further understanding of the underlying factors governing the formation of endohedral species. Herein, we explore the favorable encapsulation of hydride and halide anions in the [Ag8(X){S2P(OPr)2}6]+ (X- = H, 1, F, 2, Cl, 3, Br, 4, and, I, 5) series on the basis of relativistic DFT-D level of theory. The resulting Ag8-X interaction is sizable, which decreases along the series: -232.2 (1) > -192.1 (2) > -165.5 (3) > -158.0 (4) > -144.2 kcal mol-1 (5), denoting a more favorable inclusion of hydride and fluoride anions within the silver cage. Such interaction is mainly stabilized by the high contribution from electrostatic type interactions (80.9 av%), with a lesser contribution from charge-transfer (17.4 av%) and London type interactions (1.7 av%). Moreover, the ionic character of the electrostatic contributions decreases from 90.7% for hydride to 68.6% for the iodide counterpart, in line with the decrease in hardness according to the Pearson's acid-base concept (HSAB) owing to the major role of higher electrostatic interaction terms related to the softer (Lewis) bases. Lastly, the [Ag8{S2P(OPr)2}6]2+ cluster is able to adapt its geometry in order to maximize the interaction towards respective monoatomic anion, exhibiting structural flexibility. Such insights shed light on the physical reasoning necessary for a better understanding of the different stabilizing and destabilizing contributions related to metal-based cavities towards favorable incorporation of different monoatomic anions.
Collapse
Affiliation(s)
- Raul Guajardo Maturana
- Universidad SEK, Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinaren Ciencias Biomédicas SEK (I3CBSEK) Chile, Fernando Manterola 0789, Providencia, Santiago, Chile
| | - Alexandre O Ortolan
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC, 88040-900, Brazil.
| | - Peter L Rodríguez-Kessler
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC, 88040-900, Brazil.
| | - Renato L T Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, 14404-600, Brazil.
| | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.
| |
Collapse
|
18
|
Maekawa M, Yabuta M, Sugimoto K, Okubo T, Kuroda-Sowa T. Structurally diverse dinuclear Cu(I) complexes and 1D helical Cu(I) coordination polymers bridged by 2,2′:6′,4″-terpyridine. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Noonikara-Poyil A, Muñoz-Castro A, Boretskyi A, Mykhailiuk PK, Dias HVR. When SF 5 outplays CF 3: effects of pentafluorosulfanyl decorated scorpionates on copper. Chem Sci 2021; 12:14618-14623. [PMID: 34881014 PMCID: PMC8580053 DOI: 10.1039/d1sc04846e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023] Open
Abstract
Polyfluorinated, electron-withdrawing, and sterically demanding supporting ligands are of significant value in chemistry. Here we report the assembly and use of a bis(pyrazolyl)borate, [Ph2B(3-(SF5)Pz)2]- that combines all such features, and involves underutilized pentafluorosulfanyl substituents. The ethylene and carbonyl chemistry of copper(i) supported by [Ph2B(3-(SF5)Pz)2]-, a comparison to the trifluoromethylated counterparts involving [Ph2B(3-(CF3)Pz)2]-, as well as copper catalyzed cyclopropanation of styrene with ethyl diazoacetate and CF3CHN2 are presented. The results from cyclopropanation show that SF5 groups dramatically improved the yields and stereoselectivity compared to the CF3.
Collapse
Affiliation(s)
- Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington TX 76019 USA
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile El Llano Subercaseaux 2801 Santiago Chile
| | | | - Pavel K Mykhailiuk
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv Volodymyrska 64 01601 Kyiv Ukraine
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington TX 76019 USA
| |
Collapse
|
20
|
Peralta RA, Huxley MT, Albalad J, Sumby CJ, Doonan CJ. Single-Crystal-to-Single-Crystal Transformations of Metal-Organic-Framework-Supported, Site-Isolated Trigonal-Planar Cu(I) Complexes with Labile Ligands. Inorg Chem 2021; 60:11775-11783. [PMID: 34160208 DOI: 10.1021/acs.inorgchem.1c00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.
Collapse
Affiliation(s)
- Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
21
|
Zacharias AO, Mao JX, Nam K, Dias HVR. Copper(I) and silver(I) chemistry of vinyltrifluoroborate supported by a bis(pyrazolyl)methane ligand. Dalton Trans 2021; 50:7621-7632. [PMID: 33999090 DOI: 10.1039/d1dt00974e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although unsaturated organotrifluoroborates are common synthons in metal-organic chemistry, their transition metal complexes have received little attention. [CH2(3,5-(CH3)2Pz)2]Cu(CH2[double bond, length as m-dash]CHBF3), (SIPr)Cu(MeCN)(CH2[double bond, length as m-dash]CHBF3) and [CH2(3,5-(CH3)2Pz)2]Ag(CH2[double bond, length as m-dash]CHBF3) represent rare, isolable molecules featuring a vinyltrifluoroborate ligand on coinage metals. The X-ray crystal structures show the presence of three-coordinate metal sites in these complexes. The vinyltrifluoroborate group binds asymmetrically to the metal site in [CH2(3,5-(CH3)2Pz)2]M(CH2[double bond, length as m-dash]CHBF3) (M = Cu, Ag) with relatively closer M-C(H)2 distances. The computed structures of [CH2(3,5-(CH3)2Pz)2]M(CH2[double bond, length as m-dash]CHBF3) and M(CH2[double bond, length as m-dash]CHBF3), however, have shorter M-C(H)BF3 distances than M-C(H)2. These molecules feature various inter- or intra-molecular contacts involving fluorine of the BF3 group, possibly affecting these M-C distances. The binding energies of [CH2[double bond, length as m-dash]CHBF3]- to Cu+, Ag+ and Au+ have been calculated at the wB97XD/def2-TZVP level of theory, in the presence and absence of the supporting ligand CH2(3,5-(CH3)2Pz)2. The calculation shows that Au+ has the strongest binding to the [CH2[double bond, length as m-dash]CHBF3]- ligand, followed by Cu+ and Ag+, irrespective of the presence of the supporting ligand. However, in all three metals, the supporting ligand weakens the binding of olefin to the metal. The same trends were also found from the analysis of the σ-donation and π-backbonding interactions between the metal fragment and the π and π* orbitals of [CH2[double bond, length as m-dash]CHBF3]-.
Collapse
Affiliation(s)
- Adway O Zacharias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - James X Mao
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
22
|
Wu J, Noonikara-Poyil A, Muñoz-Castro A, Dias HVR. Gold(I) ethylene complexes supported by electron-rich scorpionates. Chem Commun (Camb) 2021; 57:978-981. [PMID: 33433552 DOI: 10.1039/d0cc07717h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethylene complexes of gold(i) have been stabilized by electron-rich, κ2-bound tris(pyrazolyl)borate ligands. Large up-field shifts of olefinic carbon NMR resonances and relatively long C[double bond, length as m-dash]C distances of gold bound ethylene are indicative of significant Au(i) → ethylene π-backbonding relative to the analog supported by a weakly donating ligand, consistent with the computational data.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
23
|
Elashkar AH, Parasar D, Muñoz-Castro A, Doherty CM, Cowan MG, Dias HVR. Isolable 1-Butene Copper(I) Complexes and 1-Butene/Butane Separation Using Structurally Adaptable Copper Pyrazolates. Chempluschem 2020; 86:364-372. [PMID: 33300685 DOI: 10.1002/cplu.202000694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Indexed: 11/11/2022]
Abstract
Non-porous small molecule adsorbents such as {[3,5-(CF3 )2 Pz]Cu}3 (where Pz=pyrazolate) are an emerging class of materials that display attractive features for ethene-ethane separation. This work examines the chemistry of fluorinated copper(I) pyrazolates {[3,5-(CF3 )2 Pz]Cu}3 and {[4-Br-3,5-(CF3 )2 Pz]Cu}3 with much larger 1-butene in both solution and solid state, and reports the isolation of rare 1-butene complexes of copper(I), {[3,5-(CF3 )2 Pz]Cu(H2 C=CHC2 H5 )}2 and {[4-Br-3,5-(CF3 )2 Pz]Cu(H2 C=CHC2 H5 )}2 and their structural, spectroscopic, and computational data. The copper-butene adduct formation in solution involves olefin-induced structural transformation of trinuclear copper(I) pyrazolates to dinuclear mixed-ligand systems. Remarkably, larger 1-butene is able to penetrate the dense solid material and to coordinate with copper(I) ions at high molar occupancy. A comparison to analogous ethene and propene complexes of copper(I) is also provided.
Collapse
Affiliation(s)
- Ahmed H Elashkar
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - Devaborniny Parasar
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería, Universidad Autonoma de Chile El Llano Subercaseaux, 2801, Santiago, Chile
| | | | - Matthew G Cowan
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| |
Collapse
|
24
|
Parasar D, Elashkar AH, Yakovenko AA, Jayaratna NB, Edwards BL, Telfer SG, Dias HVR, Cowan MG. Overcoming Fundamental Limitations in Adsorbent Design: Alkene Adsorption by Non-porous Copper(I) Complexes. Angew Chem Int Ed Engl 2020; 59:21001-21006. [PMID: 32844553 DOI: 10.1002/anie.202010405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/08/2022]
Abstract
Purifying alkenes from alkanes requires cryogenic distillation. This consumes energy equivalent to countries of ca. 5 million people. Replacing distillation with adsorption processes would significantly increase energy efficiency. Trade-offs between kinetics, selectivity, capacity, and heat of adsorption have prevented production of an optimal adsorbent. We report adsorbents that overcome these trade-offs. [Cu-Br]3 and [Cu-H]3 are air-stable trinuclear complexes that undergo reversible solid-state inter-molecular rearrangements to produce dinuclear [Cu-Br⋅(alkene)]2 and [Cu-H⋅(alkene)]2 . The reversible solid-state rearrangement, confirmed in situ using powder X-ray diffraction, allows adsorbent design trade-offs to be overcome, coupling low heat of adsorption (-10 to -17 kJ mol-1 alkene ), high alkene:alkane selectivity (47; 29), and uptake capacity (>2.5 molalkene mol-1 Cu3 ). Most remarkably, [Cu-H]3 displays fast uptake and regenerates capacity within 10 minutes.
Collapse
Affiliation(s)
- Devaborniny Parasar
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Ahmed H Elashkar
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - Andrey A Yakovenko
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Naleen B Jayaratna
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Brian L Edwards
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shane G Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Matthew G Cowan
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
25
|
Parasar D, Elashkar AH, Yakovenko AA, Jayaratna NB, Edwards BL, Telfer SG, Dias HVR, Cowan MG. Overcoming Fundamental Limitations in Adsorbent Design: Alkene Adsorption by Non‐porous Copper(I) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Devaborniny Parasar
- Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington TX 76019 USA
| | - Ahmed H. Elashkar
- Department of Chemical and Process Engineering University of Canterbury Christchurch 8140 New Zealand
| | - Andrey A. Yakovenko
- X-Ray Science Division Advanced Photon Source Argonne National Laboratory Argonne IL 60439 USA
| | - Naleen B. Jayaratna
- Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington TX 76019 USA
| | - Brian L. Edwards
- Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington TX 76019 USA
| | - Shane G. Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington TX 76019 USA
| | - Matthew G. Cowan
- Department of Chemical and Process Engineering University of Canterbury Christchurch 8140 New Zealand
| |
Collapse
|
26
|
Muñoz-Molina JM, Belderrain TR, Pérez PJ. Trispyrazolylborate coinage metals complexes: Structural features and catalytic transformations. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Metz RB, Altinay G, Kostko O, Ahmed M. Probing Reactivity of Gold Atoms with Acetylene and Ethylene with VUV Photoionization Mass Spectrometry and Ab Initio Studies. J Phys Chem A 2019; 123:2194-2202. [DOI: 10.1021/acs.jpca.8b12560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo B. Metz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gokhan Altinay
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Sun M, Yang X, Zhang Y, Wang S, Wong MW, Ni R, Huang D. Rapid and Visual Detection and Quantitation of Ethylene Released from Ripening Fruits: The New Use of Grubbs Catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:507-513. [PMID: 30508479 DOI: 10.1021/acs.jafc.8b05874] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Herein, we report on fluorophore-tagged Grubbs catalysts as turn-on fluorescent probes for the sensitive detection and quantitation of ethylene, a plant hormone that plays a critical role in many phases of plant growth and fruit ripening. The ruthenium-based weak fluorescent probes were prepared handily through the metathesis reaction between the first-generation Grubbs catalyst and selected fluorophores that have high quantum yields and contain terminal vinyl groups. Upon exposure to ethylene, fluorescence enhancement was observed via the release of fluorophore from the probe. Our probe shows an excellent limit of detection for ethylene at 0.9 ppm in air and was successfully applied for monitoring ethylene released during the fruit-ripening process. Our work opens up a new avenue of application of Grubbs catalysts for bioanalytical chemistry of ethylene, which is critically important in plant biology, agriculture, and food industry.
Collapse
Affiliation(s)
- Mingtai Sun
- Food Science and Technology Program, Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
- School of Environment and Chemical Engineering , North China Electric Power University , Beijing 102206 , People's Republic of China
| | - Xin Yang
- Food Science and Technology Program, Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Yuannian Zhang
- Food Science and Technology Program, Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Suhua Wang
- School of Environment and Chemical Engineering , North China Electric Power University , Beijing 102206 , People's Republic of China
| | - Ming Wah Wong
- Food Science and Technology Program, Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Runyan Ni
- National University of Singapore (Suzhou) Research Institute , 377 Linquan Street , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Dejian Huang
- Food Science and Technology Program, Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
- National University of Singapore (Suzhou) Research Institute , 377 Linquan Street , Suzhou , Jiangsu 215123 , People's Republic of China
| |
Collapse
|
29
|
Abstract
Developing miniaturized and inexpensive detectors remains an important and practical goal for field-deployable monitoring of toxic gases and other bioactive volatiles. CO (a common toxic pollutant) and ethylene (the phytohormone primarily responsible for fruit ripening) share the capability of strong back-π-bonding to low-oxidation-state metal ions, which has proved important in the development of metal-ion-based sensors for these gases. We report herein cumulative colorimetric sensor arrays based on Pd(II)-silica porous microsphere sensors and their application as an optoelectronic nose for rapid colorimetric quantification of airborne CO and ethylene. Quantitative analysis of two gases was obtained in the range of 0.5 to 50 ppm with detection limits at the sub-parts-per-million level (∼0.4 ppm) after 2 min of exposure and ∼0.2 ppm after 20 min (i.e., <0.5% of the permissible exposure limit for CO and <10% of the ethylene concentration needed for fruit ripening). We further validate that common potential interfering agents (e.g., changes in humidity or other similar air pollutants such as NO x, SO2, H2S, or acetylene) are not misidentified with CO or ethylene. Finally, the sensor is successfully used for the quantification of ethylene emitted from ripening bananas, demonstrating its potential applications in the monitoring of fruit ripening during storage.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Kenneth S Suslick
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
30
|
Wang G, Pecher L, Frenking G, Dias HVR. Vinyltrifluoroborate Complexes of Silver Supported by N
-Heterocyclic Carbenes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Guocang Wang
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; 76019 Arlington Texas USA
| | - Lisa Pecher
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - Gernot Frenking
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 4 35032 Marburg Germany
- Donostia International Physics Center (DIPC); P.K. 1072 20080 Donostia, Euskadi Spain
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; 76019 Arlington Texas USA
| |
Collapse
|
31
|
Are homoleptic complexes of ethylene with group 12 metals isolable in solution? A DFT study. J Mol Model 2018; 24:161. [PMID: 29904887 DOI: 10.1007/s00894-018-3683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
Abstract
Ethylene efficiently binds late transition metals of groups 10 and 11. In spite of their reactivity, homoleptic compounds of formula [M-(η2-C2H4)3]n+ (with n = 0,1) have been isolated in solution and solid state and characterized spectroscopically throughout the last 50 years with metals from groups 10 and 11. X-ray diffraction studies proved that such homoleptic adducts adopt planar "wheel" structures where ethylene moieties lies flat in the same plane both in group 10 and 11. These experimental findings were also confirmed by several in-depth computational investigations carried out to understand the bond pattern of such peculiar structures. Homoleptic complexes of group 10 and 11 metals with ethylene are normally obtained in poorly coordinating solvents (like CH2Cl2 or light petroleum) saturated with ethylene to increase the stability of such species in solution. In the case of coinage metals, Cu(I), Ag(I) and Au(I), weakly coordinating fluorinated counter-ions (like SbF6-) succeeded in stabilize the ethylene adducts, but, curiously, no analogous success has been reported for Zn(II), Cd(II), and Hg(II). Isoelectronic congeners along group 12 are still elusive, however, and, to our knowledge, full experimental and theoretical characterizations are still missing. This manuscript focuses on the theoretical study of the thermodynamic stability and properties of homoleptic complexes of ethylene with metals from group 12 in comparison with those from groups 10 and 11.
Collapse
|
32
|
Greene C, Grudzien PK, York JT. Binding and electrophilic activation of ethylene by zinc(II), cadmium(II), and mercury(II) complexes: A theoretical investigation. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Silver perchlorate in the mobile phase for rapid separation and determination of a pair of positional isomers in Inula racemosa Hook.f. with RP-HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:25-30. [DOI: 10.1016/j.jchromb.2017.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 01/11/2023]
|
34
|
Ridlen SG, Kulkarni NV, Dias HVR. Monoanionic, Bis(pyrazolyl)methylborate [(Ph 3B)CH(3,5-(CH 3) 2Pz) 2)] - as a Supporting Ligand for Copper(I)-ethylene, cis-2-Butene, and Carbonyl Complexes. Inorg Chem 2017; 56:7237-7246. [PMID: 28541048 DOI: 10.1021/acs.inorgchem.7b00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The monoanionic bidentate ligand [(Ph3B)CH(3,5-(CH3)2Pz)2)]- has been prepared from lithium bis(pyrazolyl)methanide and triphenylborane. This useful new ligand is closely related to the well-established bis(pyrazolyl)borate and bis(pyrazolyl)methane ligands but has key differences to both analogues as well. The ethylene, cis-2-butene, and carbon monoxide adducts [(Ph3B)CH(3,5-(CH3)2Pz)2]Cu(L) (where L = C2H4, cis-CH3HC═CHCH3, and CO) have been prepared from [(Ph3B)CH(3,5-(CH3)2Pz)2)]Li(THF), copper(I) triflate, and the corresponding coligand. These complexes have been characterized by NMR spectroscopy and X-ray crystallography. In all cases the bis(pyrazolyl) moiety is bound in κ2N fashion with the BPh3 group rotated to sit over the metal center, sometimes coordinating to the metal via phenyl carbons as in [(Ph3B)CH(3,5-(CH3)2Pz)2)]Li(THF) and [(Ph3B)CH(3,5-(CH3)2Pz)2]Cu(CO) or simply hovering above the metal site as in [(Ph3B)CH(3,5-(CH3)2Pz)2)]Cu(C2H4) and [(Ph3B)CH(3,5-(CH3)2Pz)2)]Cu(cis-CH3HC═CHCH3). The 13C and 1H resonances of the ethylene carbon and protons of [(Ph3B)CH(3,5-(CH3)2Pz)2)]Cu(C2H4) appear at δ 81.0 and 3.71 ppm in CD2Cl2, respectively. The characteristic CO frequency for [(Ph3B)CH(3,5-(CH3)2Pz)2]Cu(CO) has been observed at υ̅ 2092 cm-1 by infrared spectroscopy and is lower than that of free CO suggesting moderate M → CO π-back-donation. A detailed analysis of these complexes has been presented herein.
Collapse
Affiliation(s)
- Shawn G Ridlen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Naveen V Kulkarni
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019, United States
| |
Collapse
|
35
|
Singh S, Wang G, Mao JX, Flores JA, Kou X, Campana C, Kroll P, Dias HVR. Gold(I) Complexes [N{(C
3
F
7
)C(Dipp)N}
2
]AuL (L = Ethylene,
tert
‐Butyl Isocyanide, Tetrahydrothiophene, Triphenylphosphine) and Different Triazapentadienyl Ligand Coordination Modes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shreeyukta Singh
- Department of Chemistry and BiochemistryThe University of Texas at Arlington76019ArlingtonTexasUSA
| | - Guocang Wang
- Department of Chemistry and BiochemistryThe University of Texas at Arlington76019ArlingtonTexasUSA
| | - James X. Mao
- Department of Chemistry and BiochemistryThe University of Texas at Arlington76019ArlingtonTexasUSA
| | - Jaime A. Flores
- Department of Chemistry and BiochemistryThe University of Texas at Arlington76019ArlingtonTexasUSA
| | - Xiaodi Kou
- Department of Chemistry and BiochemistryThe University of Texas at Arlington76019ArlingtonTexasUSA
| | - Charles Campana
- Single Crystal DiffractionBruker AXS Inc.53711MadisonWisconsinUSA
| | - Peter Kroll
- Department of Chemistry and BiochemistryThe University of Texas at Arlington76019ArlingtonTexasUSA
| | - H. V. Rasika Dias
- Department of Chemistry and BiochemistryThe University of Texas at Arlington76019ArlingtonTexasUSA
| |
Collapse
|
36
|
Klimovica K, Kirschbaum K, Daugulis O. Synthesis and Properties of "Sandwich" Diimine-Coinage Metal Ethylene Complexes. Organometallics 2016; 35:2938-2943. [PMID: 27642213 PMCID: PMC5019172 DOI: 10.1021/acs.organomet.6b00487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis and full characterization of cationic isostructural "sandwich" diimine-coinage metal ethylene complexes are reported. Ethylene self-exchange kinetics proceeds by an associative exchange mechanism for Cu and Au complexes. The fastest ligand exchange was observed for Ag complex 8a. The upper limit of ΔG‡, assuming associative ligand exchange, was found to be ca. 5.0 kcal/mol. Ethylene self-exchange in Cu complex 7b proceeds with ΔG298‡ = 12.9 ± 0.1 kcal/mol, while the exchange is the slowest in Au complex 9, with ΔG298‡ = 16.7 ± 0.1 kcal/mol. Copper complex 7b is unusually stable and can survive in air for years.
Collapse
Affiliation(s)
- Kristine Klimovica
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Kristin Kirschbaum
- Department of Chemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
37
|
Maekawa M, Sugimoto K, Okubo T, Kuroda-Sowa T, Munakata M. Structurally Diverse Polynuclear Copper(I) Complexes Bridged by Pyrimidine-, Pyrazine-, and Triazine-based Ligands with Several 2-Pyridyl Groups. ChemistrySelect 2016. [DOI: 10.1002/slct.201600791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masahiko Maekawa
- Research Institute for Science and Technology; Kinki University; 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Kunihisa Sugimoto
- Research and Utilization Division; Japan Synchrotron Radiation Research Institute; 1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 Japan
| | - Takashi Okubo
- Department of Chemistry; Kinki University; 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Takayoshi Kuroda-Sowa
- Department of Chemistry; Kinki University; 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Megumu Munakata
- Department of Chemistry; Kinki University; 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
38
|
Kulkarni NV, Das A, Ridlen SG, Maxfield E, Adiraju VAK, Yousufuddin M, Dias HVR. Fluorinated triazapentadienyl ligand supported ethyl zinc(ii) complexes: reaction with dioxygen and catalytic applications in the Tishchenko reaction. Dalton Trans 2016; 45:4896-906. [PMID: 26875862 DOI: 10.1039/c6dt00257a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethyl zinc complexes [N{(C3F7)C(Dipp)N}2]ZnEt, [N{(C3F7)C(Cy)N}2]ZnEt, [N{(CF3)C(2,4,6-Br3C6H2)N}2]ZnEt and [N{(C3F7)C(2,6-Cl2C6H3)N}2]ZnEt have been synthesized from the corresponding 1,3,5-triazapentadiene and diethyl zinc. X-ray data show that [N{(C3F7)C(Dipp)N}2]ZnEt has a distorted trigonal planar geometry at the zinc center. The triazapentadienyl ligand binds to zinc in a κ(2)-mode. The zinc-ethyl bonds of [N{(C3F7)C(Dipp)N}2]ZnEt, [N{(C3F7)C(Cy)N}2]ZnEt, [N{(CF3)C(2,4,6-Br3C6H2)N}2]ZnEt and [N{(C3F7)C(2,6-Cl2C6H3)N}2]ZnEt readily undergo oxygen insertion upon exposure to dry air to produce the corresponding zinc-ethoxy or zinc-ethylperoxy compounds. The ethoxy zinc adducts {[N{(CF3)C(2,4,6-Br3C6H2)N}2]ZnOEt}2 and {[N{(C3F7)C(2,6-Cl2C6H3)N}2]ZnOEt}2 as well as the ethylperoxy zinc adduct {[N{(C3F7)C(Cy)N}2]ZnOOEt}2 have been isolated and fully characterized by several methods including X-ray crystallography. They feature dinuclear structures with four-coordinate zinc sites and bridging-ethoxy or -ethylperoxy groups. The ethyl zinc complexes catalyze the Tishchenko reaction of benzaldehyde under solventless conditions affording benzyl benzoate. The reaction of ethyl zinc complexes with dioxygen and their catalytic behaviour in the Tishchenko reaction are affected by the electronic and steric factors of the triazapentadienyl ligand. {[N{(C3F7)C(Cy)N}2]ZnOOEt}2 is an excellent reagent for the epoxidation of trans-chalcone.
Collapse
Affiliation(s)
- Naveen V Kulkarni
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Ridlen SG, Wu J, Kulkarni NV, Dias HVR. Isolable Ethylene Complexes of Copper(I), Silver(I), and Gold(I) Supported by Fluorinated Scorpionates [HB{3-(CF3),5-(CH3)Pz}3]- and [HB{3-(CF3),5-(Ph)Pz}3]-. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shawn G. Ridlen
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; 76019 Arlington Texas USA
| | - Jiang Wu
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; 76019 Arlington Texas USA
| | - Naveen V. Kulkarni
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; 76019 Arlington Texas USA
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; 76019 Arlington Texas USA
| |
Collapse
|
41
|
Das A, Hua Y, Yousufuddin M, Cundari TR, Jeon J, Dias HVR. Gold‐Mediated Isomerization of Cyclooctyne to Ring Fused Olefinic Bicycles. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Animesh Das
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA, http://https://www.uta.edu/chemistry/faculty/directory/Dias.php
| | - Yuanda Hua
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA, http://https://www.uta.edu/chemistry/faculty/directory/Dias.php
| | - Muhammed Yousufuddin
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA, http://https://www.uta.edu/chemistry/faculty/directory/Dias.php
| | - Thomas R. Cundari
- Department of Chemistry, University of North Texas, Denton, Texas 76203, USA
| | - Junha Jeon
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA, http://https://www.uta.edu/chemistry/faculty/directory/Dias.php
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA, http://https://www.uta.edu/chemistry/faculty/directory/Dias.php
| |
Collapse
|
42
|
Dorel R, Echavarren AM. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem Rev 2015; 115:9028-72. [PMID: 25844920 PMCID: PMC4580024 DOI: 10.1021/cr500691k] [Citation(s) in RCA: 1325] [Impact Index Per Article: 147.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ruth Dorel
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
43
|
Maekawa M, Sugimoto K, Okubo T, Kuroda-Sowa T, Munakata M. Dinuclear and polymeric copper(I) ethylene adducts bridged by bis-pyridyl derivatives of 1,2,4-triazole and 1,2,4,5-tetrazine. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2014.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Camacho Gonzalez J, Morales-Verdejo C, Muñoz-Castro A. Variation of through-space magnetic response properties upon the formation of cation–π interactions: a survey of [Ag(η-CH2CH2)3]+via DFT calculations. NEW J CHEM 2015. [DOI: 10.1039/c5nj00475f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An analysis of a through-space-induced magnetic field allows to obtain a better understanding of cation–π interactions from a prototypically weak π-complex, namely, [Ag(η-C2H4)3]+.
Collapse
Affiliation(s)
- J. Camacho Gonzalez
- Departamento de Estudios Pedagógicos
- Facultad de Filosofía y Humanidades
- Universidad de Chile
- Ñuñoa Santiago de
- Chile
| | - C. Morales-Verdejo
- Universidad Bernardo O Higgins
- Departamento de Ciencias Químicas y Biológicas
- Santiago
- Chile
| | - A. Muñoz-Castro
- Dirección de Postgrado e Investigación
- Universidad Autonoma de Chile
- Santiago
- Chile
| |
Collapse
|
45
|
Setsune JI, Su CL, Takao Y. Structure of Copper(I) π Complex of N, N′-Etheno-bridged Porphyrin and Its Oxidation to Di(µ-hydroxo)dicopper(II) Diporphyrin. CHEM LETT 2014. [DOI: 10.1246/cl.140289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Chuen Lin Su
- Department of Chemistry, Graduate School of Science, Kobe University
| | - Yuko Takao
- Osaka Municipal Technical Research Institute
| |
Collapse
|
46
|
Maekawa M, Minamino A, Sugimoto K, Okubo T, Kuroda-Sowa T, Munakata M. The first copper(I) coordination polymers self-assembled by 4,4′-biquinazoline. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Maekawa M, Miyazaki T, Sugimoto K, Okubo T, Kuroda-Sowa T, Munakata M, Kitagawa S. Preparations and structural diversity of copper(I) ethylene adducts with related 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine ligands. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Lake BRM, Willans CE. Structural diversity of copper(I)-N-heterocyclic carbene complexes; ligand tuning facilitates isolation of the first structurally characterised copper(I)-NHC containing a copper(I)-alkene interaction. Chemistry 2013; 19:16780-90. [PMID: 24203461 DOI: 10.1002/chem.201301896] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 11/07/2022]
Abstract
The preparation of a series of imidazolium salts bearing N-allyl substituents, and a range of substituents on the second nitrogen atom that have varying electronic and steric properties, is reported. The ligands have been coordinated to a copper(I) centre and the resulting copper(I)-NHC (NHC=N-heterocyclic carbene) complexes have been thoroughly examined, both in solution and in the solid-state. The solid-state structures are highly diverse and exhibit a range of unusual geometries and cuprophilic interactions. The first structurally characterised copper(I)-NHC complex containing a copper(I)-alkene interaction is reported. An N-pyridyl substituent, which forms a dative bond with the copper(I) centre, stabilises an interaction between the metal centre and the allyl substituent of a neighbouring ligand, to form a 1D coordination polymer. The stabilisation is attributed to the pyridyl substituent increasing the electron density at the copper(I) centre, and thus enhancing the metal(d)-to-alkene(π*) back-bonding. In addition, components other than charge transfer appear to have a role in copper(I)-alkene stabilisation because further increases in the Lewis basicity of the ligand disfavours copper(I)-alkene binding.
Collapse
Affiliation(s)
- Benjamin R M Lake
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9 JT (UK), Fax: (+44) 1133436565
| | | |
Collapse
|
49
|
|
50
|
Brooner REM, Widenhoefer RA. Kationische, zweifach koordinierte Gold-π-Komplexe. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303468] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|