1
|
Lämmle M, Pilz TD, Kutta RJ, Müßler M, Mengele AK, Görls H, Heinemann FW, Rau S. Insights into the different mechanistic stages of light-induced hydrogen evolution of a 5,5'-bisphenanthroline linked RuPt complex. Dalton Trans 2022; 51:15282-15291. [PMID: 36129360 DOI: 10.1039/d2dt01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the synthesis in conjunction with the structural, electrochemical, and photophysical characterization of a 5,5'-bisphenanthroline (phenphen) linked heterodinuclear RuPt complex (Ru(phenphen)Pt) and its light-driven hydrogen formation activity are reported. A single crystal X-ray diffraction (SC-XRD) analysis identified a perpendicular orientation of the two directly linked 1,10-phenanthroline moieties. The disruption of π-conjugation blocks intramolecular electron transfer as evidenced by a comparative time-resolved optical spectroscopy study of Ru(phenphen)Pt and the reference complexes Ru(phenphen) and Ru(phenphen)Ru. However, reductive quenching is observed in the presence of an external electron donor such as triethylamine. Irradiating Ru(phenphen)Pt with visible light (470 nm) leads to H2 formation. We discuss a potential mechanism that mainly proceeds via Pt colloids and provide indications that initial hydrogen generation may also proceed via a molecular pathway. As previous reports on related heterodinuclear RuPt-based photocatalysts revealed purely molecular hydrogen evolution, the present work thus highlights the role of the bridging ligand in stabilizing the catalytic center and consequently determining the mechanism of light-induced hydrogen evolution in these systems.
Collapse
Affiliation(s)
- Martin Lämmle
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - T David Pilz
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany. .,Department Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, University Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Marius Müßler
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 8-10, 07743 Jena, Germany
| | - Frank W Heinemann
- Department Chemistry and Pharmacy, Chair of Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
2
|
Brückmann J, Müller C, Maisuradze T, Mengele AK, Nauroozi D, Fauth S, Gruber A, Gräfe S, Leopold K, Kupfer S, Dietzek‐Ivanšić B, Rau S. Pyrimidoquinazolinophenanthroline Opens Next Chapter in Design of Bridging Ligands for Artificial Photosynthesis. Chemistry 2022; 28:e202200766. [PMID: 35719124 PMCID: PMC9546224 DOI: 10.1002/chem.202200766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/08/2022]
Abstract
The synthesis and detailed characterization of a new Ru polypyridine complex containing a heteroditopic bridging ligand with previously unexplored metal-metal distances is presented. Due to the twisted geometry of the novel ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis-pyrimidyl-like coordination sphere strongly influences the frontier orbitals, apparent by, for example, luminescence quenching. Thus, the new bridging ligand motif offers electronic properties, which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru-Rh complex, visible light-driven reduction of NAD+ to NADH was achieved, highlighting the potential of this system for photocatalytic applications.
Collapse
Affiliation(s)
- Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Carolin Müller
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) e.V.Department Functional InterfacesAlbert-Einstein-Straße 907745JenaGermany
| | - Tamar Maisuradze
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sven Fauth
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andreas Gruber
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Stefanie Gräfe
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Stephan Kupfer
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) e.V.Department Functional InterfacesAlbert-Einstein-Straße 907745JenaGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
3
|
Zedler L, Müller C, Wintergerst P, Mengele AK, Rau S, Dietzek‐Ivanšić B. Influence of the Linker Chemistry on the Photoinduced Charge‐Transfer Dynamics of Hetero‐dinuclear Photocatalysts. Chemistry 2022; 28:e202200490. [PMID: 35481716 PMCID: PMC9325363 DOI: 10.1002/chem.202200490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 11/13/2022]
Abstract
To optimize light‐driven catalytic processes, light‐mediated multi‐electron transfer dynamics in molecular dyads need to be studied and correlated with structural changes focusing on the catalytically active metastable intermediates. Here, spectro‐electrochemistry has been employed to investigate the structure‐dependent photoelectron transfer kinetics in catalytically active intermediates of two Ru−Rh catalysts for light‐driven NAD+ reduction. The excited‐state reactivity of short‐lived intermediates was studied along different photoreaction pathways by resonance Raman and time‐resolved transient absorption spectro‐electrochemistry with sub‐picosecond time resolution under operando conditions. The results demonstrate, for the first time, how the bridging ligand serves as a (multi‐)electron storage structure, mediates the strength of the electronic coupling of catalytic and photocenter and impacts the targeted electron transfer as well as parasitic electron‐transfer kinetics.
Collapse
Affiliation(s)
- Linda Zedler
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
| | - Carolin Müller
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Pascal Wintergerst
- Department of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Alexander K. Mengele
- Department of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sven Rau
- Department of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Benjamin Dietzek‐Ivanšić
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| |
Collapse
|
4
|
Zedler L, Wintergerst P, Mengele AK, Müller C, Li C, Dietzek-Ivanšić B, Rau S. Outpacing conventional nicotinamide hydrogenation catalysis by a strongly communicating heterodinuclear photocatalyst. Nat Commun 2022; 13:2538. [PMID: 35534473 PMCID: PMC9085789 DOI: 10.1038/s41467-022-30147-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Unequivocal assignment of rate-limiting steps in supramolecular photocatalysts is of utmost importance to rationally optimize photocatalytic activity. By spectroscopic and catalytic analysis of a series of three structurally similar [(tbbpy)2Ru-BL-Rh(Cp*)Cl]3+ photocatalysts just differing in the central part (alkynyl, triazole or phenazine) of the bridging ligand (BL) we are able to derive design strategies for improved photocatalytic activity of this class of compounds (tbbpy = 4,4´-tert-butyl-2,2´-bipyridine, Cp* = pentamethylcyclopentadienyl). Most importantly, not the rate of the transfer of the first electron towards the RhIII center but rather the rate at which a two-fold reduced RhI species is generated can directly be correlated with the observed photocatalytic formation of NADH from NAD+. Interestingly, the complex which exhibits the fastest intramolecular electron transfer kinetics for the first electron is not the one that allows the fastest photocatalysis. With the photocatalytically most efficient alkynyl linked system, it is even possible to overcome the rate of thermal NADH formation by avoiding the rate-determining β-hydride elimination step. Moreover, for this photocatalyst loss of the alkynyl functionality under photocatalytic conditions is identified as an important deactivation pathway.
Collapse
Affiliation(s)
- Linda Zedler
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Pascal Wintergerst
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Carolin Müller
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Chunyu Li
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743, Jena, Germany.
| | - Sven Rau
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Nemati Bideh B, Shahroosvand H. New Molecularly Engineered Binuclear Ruthenium (II) Complexes for Highly Efficient Near-Infrared Light-Emitting Electrochemical Cell (NIR-LEC). Dalton Trans 2022; 51:3652-3660. [DOI: 10.1039/d1dt03212g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: From practical point of view, the stability, response time and efficiency of near-infrared light-emitting electrochemical cell (NIR-LEC) are key factors. By using the high potential of chemical modification potential...
Collapse
|
6
|
Amthor S, Keil P, Nauroozi D, Perleth D, Rau S. A Phosphonate Substituent in a 1,10‐Phenanthroline Ligand Boosts Light‐Driven Catalytic Water Oxidation Performance Sensitized by Ruthenium Chromophores. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Amthor
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Philip Keil
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Daniel Perleth
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
7
|
Nemati Bideh B, Shahroosvand H, Nazeeruddin MK. High-Efficiency Deep-Red Light-Emitting Electrochemical Cell Based on a Trinuclear Ruthenium(II)-Silver(I) Complex. Inorg Chem 2021; 60:11915-11922. [PMID: 34324327 DOI: 10.1021/acs.inorgchem.1c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Turn-on time is a key factor for lighting devices to be of practical application. To decrease the turn-on time value of a deep-red light-emitting electrochemical cells (DR-LECs), two novel approaches based on molecularly engineered ruthenium phenanthroimidazole complexes were introduced. First, we found that with the incorporation of ionic methylpyridinium group to phenanthroimidazole ligand, the turn-on time of the DR-LECs device was dramatically reduced, from 79 to 27 s. By complexation of ruthenium emitter with Ag+, the turn-on time was improved by 85%, and the EQE of DR-device was increased from 0.62 to 0.71%. These results open a new avenue in decreasing the turn-on time without adding ionic electrolytes, leading to an efficient LEC.
Collapse
Affiliation(s)
- Babak Nemati Bideh
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan 45371-38791, Iran
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan 45371-38791, Iran
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| |
Collapse
|
8
|
Doettinger F, Yang Y, Schmid MA, Frey W, Karnahl M, Tschierlei S. Cross-Coupled Phenyl- and Alkynyl-Based Phenanthrolines and Their Effect on the Photophysical and Electrochemical Properties of Heteroleptic Cu(I) Photosensitizers. Inorg Chem 2021; 60:5391-5401. [PMID: 33764043 DOI: 10.1021/acs.inorgchem.1c00416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aims of increasing the antenna system and improving the photophysical properties of Cu(I)-based photosensitizers, the backbone of 2,9-dimethyl-1,10-phenanthroline was selectively extended in the 5,6-position. Applying specifically tailored Suzuki-Miyaura and "chemistry-on-the-complex" Sonogashira cross-coupling reactions enabled the development of two sets of structurally related diimine ligands with a broad variety of different phenyl- and alkynyl-based substituents. The resulting 11 novel heteroleptic Cu(I) complexes, including five solid-state structures, were studied with respect to their structure-property relationships. Both sets of substituents are able to red-shift the absorption maxima and to increase the absorptivity. For the alkynyl-based complexes, this is accompanied by a significant anodic shift of the reduction potentials. The phenyl-based substituents strongly influence the emission wavelength and quantum yield of the resulting Cu(I) complexes and lead to an increase in the emission lifetime of up to 504 ns, which clearly indicates competition with the benchmark system [(xantphos)Cu(bathocuproine)]PF6.
Collapse
Affiliation(s)
- Florian Doettinger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Photocathodes beyond NiO: charge transfer dynamics in a π-conjugated polymer functionalized with Ru photosensitizers. Sci Rep 2021; 11:2787. [PMID: 33531588 PMCID: PMC7854750 DOI: 10.1038/s41598-021-82395-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
A conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with RuII complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode-electrolyte interface was examined with chopped-light chronoamperometry. Light-induced hole injection from the photosensitizers into the PPV backbone was observed within 10 ps and the resulting charge-separated state (CSS) recombined within ~ 5 ns. This is comparable to CSS lifetimes of conventional NiO-photocathodes. Chopped-light chronoamperometry indicates enhanced charge-transfer at the electrode-electrolyte interface upon sensitization of the PPV with the RuII complexes and p-type behavior of the photocathode. The results presented here show that the polymer backbone behaves like classical molecularly sensitized NiO photocathodes and operates as a hole accepting semiconductor. This in turn demonstrates the feasibility of all-polymer photocathodes for application in solar energy conversion.
Collapse
|
10
|
Yang Y, Brückmann J, Frey W, Rau S, Karnahl M, Tschierlei S. Electron Storage Capability and Singlet Oxygen Productivity of a Ru II Photosensitizer Containing a Fused Naphthaloylenebenzene Moiety at the 1,10-Phenanthroline Ligand. Chemistry 2020; 26:17027-17034. [PMID: 32519770 PMCID: PMC7820985 DOI: 10.1002/chem.202001564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Indexed: 01/29/2023]
Abstract
As a novel rylene type dye a diimine ligand with a fully rigid and extended π-system in its backbone was prepared by directly fusing a 1,10-phenanthroline building block with 1,8-naphthalimide. The corresponding heteroleptic ruthenium photosensitizer bearing one biipo and two tbbpy ligands was synthesized and extensively analyzed by a combination of NMR, single crystal X-ray diffraction, steady-state absorption and emission, time-resolved spectroscopy and different electrochemical measurements supported by time-dependent density functional theory calculations. The cyclic and differential pulse voltammograms revealed, that the naphthaloylenebenzene moiety enables an additional second reduction of the ligand. Moreover, this ligand possesses a very broad absorption in the visible region. In the RuII complex this causes an overlap of ligand-centered and metal-to-ligand charge transfer transitions. The emission of the complex is clearly redshifted compared to the ligand emission with very long-lived excited states lifetimes of 1.7 and 24.7 μs in oxygen-free acetonitrile solution. This behavior is accompanied by a surprisingly high oxygen sensitivity. Finally, this photosensitizer was successfully applied for the effective evolution of singlet oxygen challenging some of the common RuII prototype complexes.
Collapse
Affiliation(s)
- Yingya Yang
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Michael Karnahl
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Institute of Physical and Theoretical ChemistryTechnische Universität BraunschweigGaußstraße 1738106BraunschweigGermany
| |
Collapse
|