1
|
Ren W, Sun M, Shi X, Wang T, Wang Y, Wang X, Huang B, Kou X, Liang H, Chen Y, Wang C, Li M. Effects of Roughage on the Lipid and Volatile-Organic-Compound Profiles of Donkey Milk. Foods 2023; 12:foods12112231. [PMID: 37297473 DOI: 10.3390/foods12112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The lipid molecules and volatile organic compounds (VOCs) in milk are heavily influenced by diet. However, little is known about how roughage affects the lipid and VOC contents of donkey milk. Accordingly, in the present study, donkeys were fed corn straw (G1 group), wheat hulls (G2 group), or wheat straw (G3 group), and the lipid and VOC profiles of their milk were determined using LC-MS and GC-MS. Of the 1842 lipids identified in donkey milk, 153 were found to be differential, including glycerolipids, glycerophospholipids, and sphingolipids. The G1 group showed a greater variety and content of triacyclglycerol species than the G2 and G3 groups. Of 45 VOCs, 31 were identified as differential, including nitrogen compounds, esters, and alcohols. These VOCs were significantly increased in the G2 and G3 groups, with the greatest difference being between the G1 and G2 groups. Thus, our study demonstrates that dietary roughage changes the lipid and VOC profiles of donkey milk.
Collapse
Affiliation(s)
- Wei Ren
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengqi Sun
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xiaoyuan Shi
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Tianqi Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yonghui Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xinrui Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Bingjian Huang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xiyan Kou
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Huili Liang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yinghui Chen
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengmeng Li
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Ren W, Sun M, Shi X, Wang T, Wang Y, Wang C, Li M. Progress of Mass Spectrometry-Based Lipidomics in the Dairy Field. Foods 2023; 12:foods12112098. [PMID: 37297344 DOI: 10.3390/foods12112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Lipids play important biological roles, such as providing essential fatty acids and signaling. The wide variety and structural diversity of lipids, and the limited technical means to study them, have seriously hampered the resolution of the mechanisms of action of lipids. With advances in mass spectrometry (MS) and bioinformatic technologies, large amounts of lipids have been detected and analyzed quickly using MS-based lipidomic techniques. Milk lipids, as complex structural metabolites, play a crucial role in human health. In this review, the lipidomic techniques and their applications to dairy products, including compositional analysis, quality identification, authenticity identification, and origin identification, are discussed, with the aim of providing technical support for the development of dairy products.
Collapse
Affiliation(s)
- Wei Ren
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengqi Sun
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xiaoyuan Shi
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Tianqi Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yonghui Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengmeng Li
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Linseed oil supplementation and DGAT1 K232A polymorphism affect the triacylglycerol composition and crystallization of milk fat. Food Chem 2023; 407:135112. [PMID: 36493479 DOI: 10.1016/j.foodchem.2022.135112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
We studied the effect of dietary linseed oil (LSO) supplementation and DGAT1 K232A (DGAT1) polymorphism on the triacylglycerol composition and crystallization of bovine milk fat. LSO supplementation increased unsaturated triacylglycerols, notably in the C52-C54 carbon range, while reducing the saturated C29-C49 triacylglycerols. These changes were associated with an increase in the low-melting fraction and the crystal lamellar thickness, as well as a reduction in the medium and high-melting fractions and the formation of the most abundant crystal type at 20 °C (β'-2 polymorph). Furthermore, DGAT1 KK was associated with higher levels of odd-chain saturated triacylglycerols than DGAT1 AA, and it was also associated with an increase in the high-melting fraction and the endset melting temperature. An interaction between diet and DGAT1 for the unsaturated C54 triacylglycerols accentuated the effects of LSO supplementation with DGAT1 AA. These findings show that genetic polymorphism and cows' diet can have considerable effects on milk fat properties.
Collapse
|
4
|
Korma SA, Li L, Wei W, Liu P, Zhang X, Bakry IA, An P, Abdrabo KAE, Manzoor MF, Umair M, Cacciotti I, Lorenzo JM, Conte-Junior CA. A Comparative Study of Milk Fat Extracted from the Milk of Different Goat Breeds in China: Fatty Acids, Triacylglycerols and Thermal and Spectroscopic Characterization. Biomolecules 2022; 12:biom12050730. [PMID: 35625657 PMCID: PMC9138446 DOI: 10.3390/biom12050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Goat milk (GM) is an excellent alternative to cow milk and has recently been used in commercial infant formula preparation due to its superior fat composition. Here, the fatty acid (FA) composition, triacylglycerol (TAG) molecular species, thermal behavior and infrared spectra of extracted milk fat from the milk of the two main breeds of dairy goat bred in China (Guanzhong GM (GZG) and Xinong Saanen GM (XSG)) are investigated. Gas chromatography, Fourier-transform infrared spectroscopy, differential scanning calorimetry and ultra-performance convergence chromatography with quadrupole time-of-flight mass spectrometry are applied. The obtained results evidence significant fat compositional differences based on the breed that produced the considered GM. The major FAs in both GM fats were capric (C10:0), myristic (C14:0), palmitic (C16:0), stearic (C18:0) and oleic (C18:1 n-9c). GZG presented a higher content of medium-chain saturated FAs, while XSG had higher unsaturated FAs with higher ratios of L/Ln and n-6/n-3. A total of 339 and 359 TAGs were detected and quantified in GZG and XSG, and the major TAGs were those of m/z 740.6712 (14.10 ± 0.27%) and m/z 684.6094 (10.94 ± 0.02%), respectively. Milk TAGs of GZG and XSG showed 24–54 and 26–54 total acyl carbon numbers with a 0–4 and 0–5 double bond number at 68 and 72 various retention times, respectively. Thermal analysis showed that all GM fat samples melted below normal body temperature. Infrared spectra revealed higher absorption values of GZG milk fat. This study provides valuable information to the dairy industry sector about GM fat produced in China, assessing the appropriateness of Chinese GM fat to be applied in Chinese infant formula.
Collapse
Affiliation(s)
- Sameh A. Korma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Li Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
- Sino-Singapore International Joint Research Institute, Guangzhou 510000, China
- Correspondence: (L.L.); (W.W.); Tel.: +86-208-711-4262 (L.L.); +86-510-858-767-99 (W.W.)
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Correspondence: (L.L.); (W.W.); Tel.: +86-208-711-4262 (L.L.); +86-510-858-767-99 (W.W.)
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Xinghe Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Ibrahim A. Bakry
- Department of Food and Dairy Technology, Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt;
| | - Peipei An
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Khaled A. E. Abdrabo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, 00166 Roma, Italy;
| | - José M. Lorenzo
- Centro Tecnológico de La Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Facultad de Ciencias de Ourense, Área de Tecnología de los Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
| |
Collapse
|
5
|
Monopoli A, Ventura G, Aloia A, Ciriaco F, Nacci A, Cataldi TRI, Calvano CD. Synthesis and Investigation of Novel CHCA-Derived Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Lipids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082565. [PMID: 35458772 PMCID: PMC9028824 DOI: 10.3390/molecules27082565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
A significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances. We have taken this rational design one step further by developing and optimizing new MALDI matrices with a range of modifications on the CHCA core, involving different functionalities and substituents. Of particular interest was the understanding of the electron-withdrawing (e.g., nitro-) or donating (e.g., methoxy-) effects along with the extent of conjugation on the ionization efficiency. In the present work, ten matrices were designed on a reasonable basis, synthesized, and characterized by NMR and UV spectroscopies and laser desorption ionization. With the assistance of these putative MALDI matrices, samples containing phospholipids (PL), and neutral di-/tri-acylglycerols (DAG, TAG) were investigated using milk, fish, blood, and human plasma extracts. In comparison with CHCA and ClCCA, four of them, viz. [(2E,4E)-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienoic acid] (1), [(2E,4E)-2-cyano-5-(4-nitrophenyl)penta-2,4-dienoic acid] (2), [(E)-2-cyano-3-(6-methoxynaphthalen-2-yl)acrylic acid] (6) and [(E)-2-cyano-3-(naphthalen-2-yl)acrylic acid] (7) displayed good to even excellent performances as MALDI matrices in terms of ionization capability, interference-free spectra, S/N ratio, and reproducibility. Especially compound 7 (cyano naphthyl acrylic acid, CNAA) was the election matrix for PL analysis and matrix 2 (cyano nitrophenyl dienoic acid, CNDA) for neutral lipids such as DAG and TAG in positive ion mode.
Collapse
Affiliation(s)
- Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Andrea Aloia
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Angelo Nacci
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- CNR—Istituto di Chimica dei Composti Organometallici (ICCOM), Bari Section, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cosima D. Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| |
Collapse
|
6
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
7
|
Pacheco-Pappenheim S, Yener S, Heck JML, Dijkstra J, van Valenberg HJF. Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. J Dairy Sci 2021; 104:8479-8492. [PMID: 34024603 DOI: 10.3168/jds.2020-19856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
The aim of this study was to assess the effects of seasonal variation on the changes of the fatty acid (FA) and triacylglycerol (TAG) composition of bovine milk fat (MF) in a nonseasonal milking system. Weekly milk samples were collected from 14 dairy factories and pooled per week as representative samples of the average Dutch bovine milk. The sample collection started in May 2017 and finished in April 2018, resulting in a total of 52 samples, corresponding to each week of the year. The samples were analyzed for MF content (%) and FA and TAG composition using gas chromatography with flame-ionization detection. The increased intake of C18:3 cis-9,12,15 through grass feeding in spring and summer was associated with major changes in MF FA composition, including reduced proportions of de novo synthesized FA and presence of several rumen biohydrogenation products and conjugated linoleic acid isomers in MF. These changes in seasonal FA composition had an effect on TAG seasonal variation. The TAG seasonal variation showed that all TAG groups were significantly different between months. The low molecular weight and the medium molecular weight TAG groups increased in winter and decreased in summer, whereas the high molecular weight TAG groups increased in summer and decreased in winter. Based on pooled monthly samples, MALDI-TOF-mass spectrometry allowed the analysis of even- and odd-chain TAG species in MF based on their total carbon number and number of double bonds. These analyses indicated saturated TAG species to be greatest in winter, whereas monounsaturated, polyunsaturated, and odd-chain TAG species were greatest in summer. Our study showed that TAG seasonal variation in a nonseasonal milking system is influenced by the variation in FA composition throughout the seasons.
Collapse
Affiliation(s)
- Sara Pacheco-Pappenheim
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Sine Yener
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Jeroen M L Heck
- FrieslandCampina, PO Box 1551, 3800 BN, Amersfoort, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Hein J F van Valenberg
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
8
|
Cutignano A, Siano F, Romano R, Aiello A, Pizzolongo F, Berni Canani R, Paparo L, Nocerino R, Di Scala C, Addeo F, Picariello G. Short-term effects of dietary bovine milk on fatty acid composition of human milk: A preliminary multi-analytical study. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1154:122189. [PMID: 32861173 DOI: 10.1016/j.jchromb.2020.122189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
The fatty acid (FA) composition of human milk (HM) from N = 9 Italian healthy donors following a free diet exhibited FA-dependent ranges of variability, as assessed by GC-FID. The possible short-term changes in the FA profile were monitored in the milk of lactating mothers (three) collected at five time points over a 6 h period, following an oral load (200 mL) of bovine milk. An array of techniques was exploited, including UHPLC-ESI-MS/MS of intact lipids and MALDI-TOF MS before and after chemical hydrogenation or bromination, in addition to MALDI-TOF MS analysis of FA after saponification, to monitor short-chain and odd-chain FA in HM as markers of bovine milk fat. A single administration of bovine milk did not appreciably modify the lipid pattern, suggesting that the maternal diet could induce not detectable short-term changes on the lipid composition of HM. Diet-induced increase of butyric acid was also excluded by 13C NMR. The functions that HM FA exert in infant physiology appear finely regulated through maternal metabolism.
Collapse
Affiliation(s)
- Adele Cutignano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy
| | - Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Raffaele Romano
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Alessandra Aiello
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Fabiana Pizzolongo
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Roberto Berni Canani
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Lorella Paparo
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Rita Nocerino
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Carmen Di Scala
- Dipartimento di Science Mediche Traslazionali e Laboratorio Europeo per lo Studio delle Malattie Indotte da Alimenti, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy; ImmunoNutritionLab at CEINGE Biotechinogie Avanzate, Università degli Studi di Napoli Federico II, Via Comunale Margherita, 484-538, 80131 Napoli, Italy; Task Force di Ateneo per gli Studi sul Microbioma, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Francesco Addeo
- Dipartimento di Agraria, Università di Napoli "Federico II", Parco Gussone, 80055 Portici (Napoli), Italy
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
9
|
Cossignani L, Pollini L, Blasi F. Invited review: Authentication of milk by direct and indirect analysis of triacylglycerol molecular species. J Dairy Sci 2019; 102:5871-5882. [DOI: 10.3168/jds.2019-16318] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/11/2019] [Indexed: 01/06/2023]
|
10
|
Yener S, van Valenberg HJF. Characterisation of triacylglycerols from bovine milk fat fractions with MALDI-TOF-MS fragmentation. Talanta 2019; 204:533-541. [PMID: 31357330 DOI: 10.1016/j.talanta.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
In this study, we used MALDI-TOF-MS to profile and characterise the triacylglycerol (TAG) species of anhydrous bovine milk fat (AMF) and its low melting (olein) and high melting (stearin) fractions obtained by dry fractionation. Silver-ion solid phase extraction (Ag+-SPE) cartridges were utilised to separate the TAGs according to saturation degree. Then, several TAG species were selected and fragmented via post-source decay (PSD) fragmentation. MALDI-TOF-MS TAG profiles and fragmentation patterns were compared to the TAG and fatty acid (FA) compositions obtained by gas chromatography-flame ionization detector (GC-FID). We found that, olein was rich in medium length chain TAG species like CN38:0 and CN40:1, whereas stearin was rich in saturated long chain TAG species from CN42:0 to CN52:0. Separation of the TAGs based on saturation degree allowed successful selection of the TAG parent-ion for fragmentation by eliminating the interferences of TAG species that have the same carbon number but vary in number of double bonds. The TAG fragmentation patterns indicated significant differences between AMF, olein and stearin as a result of the dry fractionation process. Compared to AMF, olein yielded in higher fragments of short-chain saturated and middle-chain unsaturated FAs. Whereas, stearin yielded in saturated and monounsaturated long chain FA fragments. Fragmentation of unsaturated long chain TAGs showed that the TAGs in olein contained more C18:1 and C18:2 than that of AMF and stearin. Stearin on the other hand, contained higher amount of TAG species containing C16:0. These results were in line with the FA compositions obtained from GC-FID and suggest that Ag+-SPE cartridges coupled with MALDI-TOF-MS offer an informative and practical approach to characterise fats and oils with complex TAG composition.
Collapse
Affiliation(s)
- Sine Yener
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University, PO Box 17, 6700, AA Wageningen, the Netherlands.
| | - Hein J F van Valenberg
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University, PO Box 17, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
11
|
Determination of Milk Products in Ceramic Vessels of Corded Ware Culture from a Late Eneolithic Burial. Molecules 2018; 23:molecules23123247. [PMID: 30544625 PMCID: PMC6321049 DOI: 10.3390/molecules23123247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022] Open
Abstract
In this study, a soil from two ceramic vessels belonging to Corded Ware culture, 2707–2571 B.C., found in a cremation grave discovered in Central Moravia, Czech Republic, was analyzed using matrix-assisted laser desorption/ionization–mass spectrometry (MALDI–MS) combined with advanced statistical treatment (principal component analysis, PCA, and orthogonal projection to latent structures discriminant analysis, OPLS-DA) and by enzyme-linked immunosorbent assay (ELISA). MALDI–MS revealed the presence of triacylglycerols in both vessels. This analytical technique was used for the analysis of the soil content from archaeological ceramic vessels for the first time. Targeted ELISA experiments consequently proved the presence of milk proteins in both ceramic vessels. These results represent the first direct evidence of the use of milk or dairy products in the Eneolithic period in Moravian Corded Ware Culture and help to better understand the diet habits and living conditions of Eneolithic populations in Central Europe.
Collapse
|
12
|
Liu Z, Rochfort S, Cocks B. Milk lipidomics: What we know and what we don't. Prog Lipid Res 2018; 71:70-85. [DOI: 10.1016/j.plipres.2018.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
|
13
|
Tremonte P, Gambacorta G, Pannella G, Trani A, Succi M, La Gatta B, Tipaldi L, Grazia L, Sorrentino E, Coppola R, Di Luccia A. NaCl Replacement with KCl Affects Lipolysis, Microbiological and Sensorial Features of Soppressata Molisana. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise; via De Sanctis 86100 Campobasso Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari; via G. Amendola, 125 70126 Bari Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise; via De Sanctis 86100 Campobasso Italy
| | - Antonio Trani
- Department of Soil, Plant and Food Sciences, University of Bari; via G. Amendola, 125 70126 Bari Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise; via De Sanctis 86100 Campobasso Italy
| | - Barbara La Gatta
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia; via Napoli, 25 71122 Foggia Italy
| | - Luca Tipaldi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise; via De Sanctis 86100 Campobasso Italy
| | - Luigi Grazia
- Department of Food Science and Technologies, University of Bologna; via Fanin, 44 40127 Bologna Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise; via De Sanctis 86100 Campobasso Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise; via De Sanctis 86100 Campobasso Italy
| | - Aldo Di Luccia
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia; via Napoli, 25 71122 Foggia Italy
| |
Collapse
|
14
|
Ng TT, Li S, Ng CCA, So PK, Wong TF, Li ZY, Chan ST, Yao ZP. Establishment of a spectral database for classification of edible oils using matrix-assisted laser desorption/ionization mass spectrometry. Food Chem 2018; 252:335-342. [PMID: 29478551 DOI: 10.1016/j.foodchem.2018.01.125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 02/04/2023]
Abstract
In this study, we aim to establish a comprehensive spectral database for analysis of edible oils using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). More than 900 edible oil samples, including 30 types of edible oils, were analyzed and compared, and the characteristic peaks and spectral features of each edible oil were obtained. Edible oils were divided into eight groups based on their characteristic spectral patterns and principal component analysis results. An overall correct rate of 97.2% (98.1% for testing set) was obtained for classification of 435 edible oil products using partial least square-discriminant analysis, with nearly 100% correct rate for commonly used edible oils. Differentiation of counterfeit edible oils, repeatedly cooked edible oils and gutter oils from normal edible oils could also be achieved based on the MALDI-MS spectra. The establishment of this spectral database provides reference spectra for spectral comparison and allows rapid classification of edible oils by MALDI-MS.
Collapse
Affiliation(s)
- Tsz-Tsun Ng
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Suying Li
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Cheuk Chi A Ng
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Pui-Kin So
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Tsz-Fung Wong
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhen-Yan Li
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Shu-Ting Chan
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China; Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji, Jilin 133002, China.
| |
Collapse
|
15
|
Tzompa-Sosa DA, Meurs PP, van Valenberg HJF. Triacylglycerol Profile of Summer and Winter Bovine Milk Fat and the Feasibility of Triacylglycerol Fragmentation. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daylan A. Tzompa-Sosa
- Dairy Science and Technology Group; Food Quality and Design; Wageningen University; Wageningen 6708WG The Netherlands
| | - Pim P. Meurs
- Dairy Science and Technology Group; Food Quality and Design; Wageningen University; Wageningen 6708WG The Netherlands
| | - Hein J. F. van Valenberg
- Dairy Science and Technology Group; Food Quality and Design; Wageningen University; Wageningen 6708WG The Netherlands
| |
Collapse
|
16
|
Oras E, Vahur S, Isaksson S, Kaljurand I, Leito I. MALDI-FT-ICR-MS for archaeological lipid residue analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:689-700. [PMID: 28741297 DOI: 10.1002/jms.3974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Soft-ionization methods are currently at the forefront of developing novel methods for analysing degraded archaeological organic residues. Here, we present little-used soft ionization method of matrix assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance-mass spectrometry (MALDI-FT-ICR-MS) for the identification of archaeological lipid residues. It is a high-resolution and sensitive method with low limits of detection capable of identifying lipid compounds in small concentrations, thus providing a highly potential new technique for the analysis of degraded lipid components. A thorough methodology development for analysing cooked and degraded food remains from ceramic vessels was carried out, and the most efficient sample preparation protocol is described. The identified components, also controlled by independent parallel analysis by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), demonstrate its capability of identifying very different food residues including dairy, adipose fats as well as lipids of aquatic origin. The results obtained from experimentally cooked and original archaeological samples prove the suitability of MALDI-FT-ICR-MS for analysing archaeological organic residues. Sample preparation protocol and identification of compounds provide future reference for analysing various aged and degraded lipid residues in different organic and mineral matrices.
Collapse
Affiliation(s)
- Ester Oras
- Institute of History and Archaeology, Faculty of Arts and Humanities, University of Tartu, Jakobi 2, 51014, Tartu, Estonia
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Signe Vahur
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Sven Isaksson
- The Archaeological Research Laboratory, Department of Archaeology and Classical Studies, SE-106 91, Stockholm, Sweden
| | - Ivari Kaljurand
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Ivo Leito
- Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| |
Collapse
|
17
|
Sun X, Li W, Li J, Zu Y, Zhao X. Inclusion complex of peony (Paeonia suffruticosa Andr
.) seed oil with β-cyclodextrin: preparation, characterisation and bioavailability enhancement. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiaoli Sun
- Material Science and Engineering College; Northeast Forestry University; Harbin Heilongjiang 150040 China
| | - Wengang Li
- Key Laboratory of Forest Plant Ecology Ministry of Education; Northeast Forestry University; Harbin Heilongjiang 150040 China
| | - Jian Li
- Material Science and Engineering College; Northeast Forestry University; Harbin Heilongjiang 150040 China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology Ministry of Education; Northeast Forestry University; Harbin Heilongjiang 150040 China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology Ministry of Education; Northeast Forestry University; Harbin Heilongjiang 150040 China
| |
Collapse
|
18
|
Silina YE, Herbeck-Engel P, Koch M. A study of enhanced ion formation from metal-semiconductor complexes in atmospheric pressure laser desorption/ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:43-53. [PMID: 27859931 DOI: 10.1002/jms.3898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The study of the key parameters impacted surface-assisted laser desorption/ionization-mass spectrometry is of broad interest. In previous studies, it has been shown that surface-assisted laser desorption/ionization-mass spectrometry is a complex process depending on multiple factors. In the presented study, we showed that neither porosity, light absorbance nor surface hydrophobicity alone influence the enhancement phenomena observed from the hybrid metal-semiconductor complexes versus individual targets, but small changes in the analyte attaching to the target significantly affect laser desorption ionization-efficiency. By means of Raman spectroscopy and scanning electron microscopy, it was revealed that the formation of an amorphous analyte layer after drying on a solid substrate was essential for the enhanced laser desorption ionization-signal observed from the hybrid metal-semiconductor targets, and the crystallization properties of the analyte appeared as a function of the substrate. Obtained results were used for the screening of regular and lactose-free milk samples through the hybrid metal-semiconductor target. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuliya E Silina
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Petra Herbeck-Engel
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| |
Collapse
|
19
|
Tzompa-Sosa DA, Ramel PR, van Valenberg HJF, van Aken GA. Formation of β Polymorphs in Milk Fats with Large Differences in Triacylglycerol Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4152-4157. [PMID: 27121766 DOI: 10.1021/acs.jafc.5b05737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we characterized the polymorphism of milk fat (MF) with various TAG compositions during isothermal crystallization at 20 °C. TAG composition of MF from seven individual cows was determined using GC-FID and MALDI-TOF MS, and MF polymorphism was studied using X-ray diffraction. Results showed that TAG profile determines the polymorphic behavior of MF. Saturated TAG with carbon numbers 34-38 promoted the formation of α polymorphs, whereas unsaturated TAG with 52-54 promoted the formation of the β polymorphs. Furthermore, MFs with unsaturated fatty acid profiles were increased in unsaturated TAG with 52-54 carbons. The presence of MF crystals in the β polymorph has been controversial over the years as most authors mainly find MF crystals in the α and β' form. In our work, we showed that the β polymorph is formed in MF on the basis of its TAG composition.
Collapse
Affiliation(s)
- Daylan A Tzompa-Sosa
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University , Wageningen, The Netherlands
| | - Pere R Ramel
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University , Wageningen, The Netherlands
| | - Hein J F van Valenberg
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University , Wageningen, The Netherlands
| | - George A van Aken
- NIZO Food Research , P.O. Box 2, 6710 BA, Ede, The Netherlands
- insight FOOD inside , Ede, The Netherlands
| |
Collapse
|
20
|
Zhang Q, Qin W, Li M, Shen Q, Saleh AS. Application of Chromatographic Techniques in the Detection and Identification of Constituents Formed during Food Frying: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Wen Qin
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Meiliang Li
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Qun Shen
- Natl. Engineering and Technology Research Center for Fruits and Vegetables; College of Food Science and Nutritional Engineering, China Agricultural Univ.; Beijing 100083 China
| | - Ahmed S.M. Saleh
- Dept. of Food Science and Technology; Faculty of Agriculture, Assiut Univ.; Assiut 71526 Egypt
| |
Collapse
|
21
|
On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry. Talanta 2015; 137:161-6. [DOI: 10.1016/j.talanta.2015.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
|
22
|
Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:193-9. [DOI: 10.1016/j.jchromb.2014.01.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 11/20/2022]
|
23
|
Simultaneous quantitation of naturally occurring insecticides, acaricides, and piscicides in rapeseed oil by UV-MALDI mass spectrometry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2013. [DOI: 10.1007/s11694-013-9161-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
de Oliveira DN, Siqueira M, Sartor S, Catharino R. Direct analysis of lipsticks by Sorptive tape-like extraction laser desorption/ionization mass spectrometry imaging. Int J Cosmet Sci 2013; 35:467-71. [DOI: 10.1111/ics.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 11/26/2022]
Affiliation(s)
- D. N. de Oliveira
- INNOVARE Biomarkers Laboratory; School of Medical Sciences; University of Campinas; Campinas; Brazil
| | - M. Siqueira
- INNOVARE Biomarkers Laboratory; School of Medical Sciences; University of Campinas; Campinas; Brazil
| | - S. Sartor
- INNOVARE Biomarkers Laboratory; School of Medical Sciences; University of Campinas; Campinas; Brazil
| | - R. Catharino
- INNOVARE Biomarkers Laboratory; School of Medical Sciences; University of Campinas; Campinas; Brazil
| |
Collapse
|
25
|
Picariello G, Sacchi R, Fierro O, Melck D, Romano R, Paduano A, Motta A, Addeo F. High resolution13CNMR detection of short- and medium-chain synthetic triacylglycerols used in butterfat adulteration. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Raffaele Sacchi
- Dipartimento di Scienza degli Alimenti; Università di Napoli “Federico II”; Portici; Napoli; Italy
| | - Olga Fierro
- Istituto di Scienze dell'Alimentazione; Consiglio Nazionale delle Ricerche (CNR); Avellino; Italy
| | - Dominique Melck
- Istituto di Chimica Biomolecolare; Consiglio Nazionale delle Ricerche (CNR); Pozzuoli; Napoli; Italy
| | - Raffaele Romano
- Dipartimento di Scienza degli Alimenti; Università di Napoli “Federico II”; Portici; Napoli; Italy
| | - Antonello Paduano
- Dipartimento di Scienza degli Alimenti; Università di Napoli “Federico II”; Portici; Napoli; Italy
| | - Andrea Motta
- Istituto di Chimica Biomolecolare; Consiglio Nazionale delle Ricerche (CNR); Pozzuoli; Napoli; Italy
| | | |
Collapse
|
26
|
MALDI-TOF mass spectrometric determination of intact phospholipids as markers of illegal bovine milk adulteration of high-quality milk. Anal Bioanal Chem 2012; 405:1641-9. [DOI: 10.1007/s00216-012-6597-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 11/21/2012] [Indexed: 11/30/2022]
|
27
|
Vichi S, Cortés-Francisco N, Caixach J. Ultrahigh resolution mass spectrometry and accurate mass measurements for high-throughput food lipids profiling. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1177-1190. [PMID: 22972786 DOI: 10.1002/jms.3017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the present study, accurate mass measurements by ultrahigh resolution mass spectrometry with Orbitrap-Exactive working at resolving power R: 100,000 (m/z 200, full width at half maximum) with an accuracy better than 2 ppm in all the mass range (m/z 200 to 2000) were used to show a detailed molecular composition of diverse edible oils and fats. Flow injection was used to introduce samples into the mass spectrometer, obtaining a complete analysis of each sample in less than 10 min, including blanks. Meticulous choice of organic solvents and optimization of the ion source and Orbitrap mass analyzer parameters were carried out, in order to achieve reproducible mass spectra giving reliable elemental compositions of the lipid samples and to prevent carry over. More than 200 elemental compositions attributable to diacylglycerols, triacylglycerols (TAGs), and their oxidation products have been found in the spectra of food lipids from different origin. Several compounds with very close molecular mass could only be resolved through ultrahigh resolution, allowing detailed and robust TAG profiling with a high characterization potential.
Collapse
Affiliation(s)
- Stefania Vichi
- Food Science and Nutrition Department, XaRTA (Catalonian Reference Network on Food Technology), Pharmaceutical Faculty, University of Barcelona, Avda Joan XXIII, s/n, 08028, Barcelona, Spain.
| | | | | |
Collapse
|
28
|
|
29
|
Lee JW, Yamamoto T, Uchikata T, Matsubara A, Fukusaki E, Bamba T. Development of a polar lipid profiling method by supercritical fluid chromatography/mass spectrometry. J Sep Sci 2011; 34:3553-60. [DOI: 10.1002/jssc.201100539] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Alberici LC, Oliveira HCF, Catharino RR, Vercesi AE, Eberlin MN, Alberici RM. Distinct hepatic lipid profile of hypertriglyceridemic mice determined by easy ambient sonic-spray ionization mass spectrometry. Anal Bioanal Chem 2011; 401:1651-9. [PMID: 21732042 DOI: 10.1007/s00216-011-5208-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 01/19/2023]
Abstract
Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) was used to interrogate the hepatic lipid profiles of hypertriglyceridemic and control normotriglyceridemic mice. The analyses of ex vivo complex lipid mixtures were made directly with EASI-MS without accompanying separation steps. Intense ions for phosphatidylcholines and triacylglycerols were observed in the positive ion mode whereas the spectra in the negative ion mode provided profiles of phosphatidylethanolamines and phosphatidylinositol. EASI-MS was coupled to high-performance thin-layer chromatography for analysis of free fatty acids. Fourier transform-ion cyclotron resonance-mass spectrometry was also employed to confirm the identity of the detected lipids. We demonstrated higher incorporation of oleic acid in phosphatidylcholine and triacylglycerol composition, higher relative abundance of arachidonic acid containing phosphatidylinositol, and overall distinct free fatty acid profile in the livers of genetic hypertriglyceridemic mice. We propose that these alterations in liver lipid composition are related to the higher tissue and body metabolic rates described in these hypertriglyceridemic mice.
Collapse
Affiliation(s)
- Luciane C Alberici
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, USP, Ribeirão Preto, São Paulo 14040-903, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
Vaclavik L, Hrbek V, Cajka T, Rohlik BA, Pipek P, Hajslova J. Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5919-5926. [PMID: 21526761 DOI: 10.1021/jf200734x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A combination of direct analysis in real time (DART) ionization coupled to time-of-flight mass spectrometry (TOFMS) and chemometrics was used for animal fat (lard and beef tallow) authentication. This novel instrumentation was employed for rapid profiling of triacylglycerols (TAGs) and polar compounds present in fat samples and their mixtures. Additionally, fat isolated from pork, beef, and pork/beef admixtures was analyzed. Mass spectral records were processed by principal component analysis (PCA) and stepwise linear discriminant analysis (LDA). DART-TOFMS profiles of TAGs were found to be more suitable for the purpose of discrimination among the examined fat types as compared to profiles of polar compounds. The LDA model developed using TAG data enabled not only reliable classification of samples representing neat fats but also detection of admixed lard and tallow at adulteration levels of 5 and 10% (w/w), respectively. The presented approach was also successfully applied to minced meat prepared from pork and beef with comparable fat content. Using the DART-TOFMS TAG profiles of fat isolated from meat mixtures, detection of 10% pork added to beef and vice versa was possible.
Collapse
Affiliation(s)
- Lukas Vaclavik
- Institute of Chemical Technology, Prague, Technicka 3, 16628 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
32
|
Regert M. Analytical strategies for discriminating archeological fatty substances from animal origin. MASS SPECTROMETRY REVIEWS 2011; 30:177-220. [PMID: 21337597 DOI: 10.1002/mas.20271] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 05/21/2023]
Abstract
Mass spectrometry (MS) is an essential tool in the field of biomolecular archeology to characterize amorphous organic residues preserved in ancient ceramic vessels. Animal fats of various nature and origin, namely subcutaneous fats of cattle, sheep, goats, pigs, horses, and also of dairy products, are those most commonly identified in organic residues in archeological pottery. Fats and oils of marine origin have also been revealed. Since the first applications of MS coupled with gas chromatography (GC) in archeology at the end of 1980s, several developments have occurred, including isotopic determinations by GC coupled to isotope ratio MS and identification of triacylglycerols (TAGs) structure by soft ionization techniques (ESI and APCI). The combination of these methods provides invaluable insights into the strategies of exploitation of animal products in prehistory. In this review, I focus on the analytical strategies based upon MS that allow elucidation of the structure of biomolecular constituents and determination of their isotopic values to identify the nature of animal fat components preserved in highly complex and degraded archeological matrices.
Collapse
Affiliation(s)
- M Regert
- Centre d'Etudes Préhistoire, Antiquité, Moyen Âge, UMR 6130, Université Nice Sophia Antipolis, CNRS, Bât. 1; 250, rue Albert Einstein, F-06560 Valbonne, France.
| |
Collapse
|
33
|
Trani A, Gambacorta G, Loizzo P, Alviti G, Schena A, Faccia M, Aquilanti L, Santarelli S, Di Luccia A. Biochemical traits of Ciauscolo, a spreadable typical Italian dry-cured sausage. J Food Sci 2011; 75:C514-24. [PMID: 20722905 DOI: 10.1111/j.1750-3841.2010.01703.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ciauscolo is a short-ripened fermented sausage manufactured in the Marche region (central Italy) that has recently received a protected geographical indication product classification (PGI). The aim of this study was the exploration of the biochemical traits of this traditional Italian salami, with a special focus on protein and lipid composition. Ciauscolo salami was characterized by pH of 5.1 and 0.91 water activity. A prevalence of lactic acid bacteria in the microbiota was found. The free amino acids and biogenic amines average content was 2657 and 255 mg/kg, respectively. With regards to lipids composition unsaturated fatty acids represented 63% and 72% of total and free fatty acids. Despite these results had wide statistical variability, attributable to differences in the processing parameters and raw matter used, some peculiar traits were found: (1) structural muscular proteins underwent to less proteolysis than sarcoplasmic ones; (2) glycogen phosphorylase, enolase, and aldolase were the most proteolyzed among the sacoplasmic proteins; (3) there was inverse correlation between histamine content and yeasts population, and a direct correlation between the gly-pro content and lactic acid bacteria counts; (4) the content of aspartic acid and methyonine seem to be a possible molecular marker able to distinguish between double and single milling.
Collapse
Affiliation(s)
- Antonio Trani
- Dipto. di Progettazione e Gestione del Sistemi Agro-zootecnici e forestali, Univ. di Bari, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gastaldi D, Medana C, Giancotti V, Aigotti R, Dal Bello F, Baiocchi C. HPLC-APCI analysis of triacylglycerols in milk fat from different sources. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.201000068] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2010; 49:450-75. [PMID: 20643161 DOI: 10.1016/j.plipres.2010.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Although matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS)--often but not exclusively coupled with a time-of-flight (TOF) mass analyzer--is primarily established in the protein field, there is increasing evidence that MALDI MS is also very useful in lipid research: MALDI MS is fast, sensitive, tolerates sample impurities to a relatively high extent and provides very simple mass spectra without major fragmentation of the analyte. Additionally, MALDI MS devices originally purchased for "proteomics" can be used also for lipids without the need of major system alterations. After a short introduction into the method and the related ion-forming process, the MALDI mass spectrometric characteristics of the individual lipid (ranging from completely apolar hydrocarbons to complex glycolipids with the focus on glycerophospholipids) classes will be discussed and the progress achieved in the last years emphasized. Special attention will be paid to quantitative aspects of MALDI MS because this is normally considered to be the "weak" point of the method, particularly if complex lipid mixtures are to be analyzed. Although the detailed role of the matrix is not yet completely clear, it will be also explicitly shown that the careful choice of the matrix is crucial in order to be able to detect all compounds of interest. Two rather recent developments will be highlighted: "Imaging" MS is nowadays widely established and significant interest is paid in this context to the analysis of lipids because lipids ionize particularly well and are, thus, more sensitively detectable in tissue slices than other biomolecules such as proteins. It will also be shown that MALDI MS can be very easily combined with thin-layer chromatography (TLC) allowing the spatially-resolved screening of the entire TLC plate and the detection of lipids with a higher sensitivity than common staining protocols.
Collapse
Affiliation(s)
- Beate Fuchs
- University of Leipzig, Medical Department, Institute of Medical Physics and Biophysics, Härtelstrasse 16-18, Germany
| | | | | |
Collapse
|
36
|
Picariello G, Romano R, Addeo F. Nitrocellulose Film Substrate Minimizes Fragmentation in Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Analysis of Triacylglycerols. Anal Chem 2010; 82:5783-91. [DOI: 10.1021/ac100848w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianluca Picariello
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, and Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, 80055 Portici (Napoli), Italy
| | - Raffaele Romano
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, and Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, 80055 Portici (Napoli), Italy
| | - Francesco Addeo
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, and Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, 80055 Portici (Napoli), Italy
| |
Collapse
|
37
|
Dannenberger D, Süß R, Teuber K, Fuchs B, Nuernberg K, Schiller J. The intact muscle lipid composition of bulls: an investigation by MALDI-TOF MS and 31P NMR. Chem Phys Lipids 2010; 163:157-64. [DOI: 10.1016/j.chemphyslip.2009.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 10/23/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
|
38
|
Picariello G, Paduano A, Sacchi R, Addeo F. Maldi-tof mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5391-5400. [PMID: 19462979 DOI: 10.1021/jf9008795] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Triacylglycerol oxidation of thermally stressed (6 h at 180 degrees C, simulating deep-frying conditions) edible vegetable oil (sunflower and olive) was studied using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Chromatographic separation of the nonpolar and polar components from the heated oil performed on silica gel prior to MS analysis significantly enhanced the detection of oxidized components. The spectra contained signals that were assigned to triacylglycerols (TAG), diacylglycerols (DAG), triacylglycerol oxidative dimers, oxidized TAG, and TAG fragments arising from the homolytic beta-scission of linoleyl, peroxy, and alkoxy radicals. Enrichment of the polar compounds prevented mass spectrometric ion suppression, thus allowing the detection of minor species originating from thermal oxidation. In addition, this allowed the monitoring of polar compounds in vegetable oils undergoing mild thermal treatment. As such, chromatographic separation coupled with MALDI-TOF MS analysis provided a rapid, sensitive, and specific tool to assess the thermal oxidation of vegetable oils.
Collapse
Affiliation(s)
- Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy.
| | | | | | | |
Collapse
|
39
|
Saraiva SA, Cabral EC, Eberlin MN, Catharino RR. Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4030-4034. [PMID: 19358529 DOI: 10.1021/jf900043u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Amazonian oils and fats display unique triacylglycerol (TAG) profiles and, because of their economic importance as renewable raw materials and use by the cosmetic and food industries, are often subject to adulteration and forgery. Representative samples of these oils (andiroba, Brazil nut, buriti, and passion fruit) and fats (cupuaçu, murumuru, and ucuúba) were characterized without pre-separation or derivatization via dry (solvent-free) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Characteristic profiles of TAG were obtained for each oil and fat. Dry MALDI-TOF MS provides typification and direct and detailed information, via TAG profiles, of their variable combinations of fatty acids. A database from spectra could be developed and may be used for their fast and reliable typification, application screening, and quality control.
Collapse
Affiliation(s)
- Sérgio A Saraiva
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
40
|
Bail S, Stuebiger G, Unterweger H, Buchbauer G, Krist S. Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME-GC-MS and MALDI-TOF-MS. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
|
42
|
Vrkoslav V, Míková R, Cvacka J. Characterization of natural wax esters by MALDI-TOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:101-110. [PMID: 18821728 DOI: 10.1002/jms.1476] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The applicability of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to the analysis of wax esters (WEs) was investigated. A series of metal salts of 2,5-dihydroxybenzoic acid (DHB) was synthesized and tested as possible matrices. Alkali metal (Li, Na, K, Rb, Cs) and transition metal (Cu, Ag) salts were studied. The matrix properties were evaluated, including solubility in organic solvents, threshold laser power that should be applied for successful desorption/ionization of WEs, the nature of the matrix ions and the mass range occupied by them, and the complexity of the isotope clusters for individual metals. Lithium salt of dihydroxybenzoic acid (LiDHB) performed the best and matrices with purified lithium isotopes ((6)LiDHB or (7)LiDHB) were recommended for WEs. Three sample preparation procedures were compared: (1) mixing the sample and matrix in a glass vial and deposition of the mixture on a MALDI plate (Mix), (2) deposition of sample followed by deposition of matrix (Sa/Ma), and (3) deposition of matrix followed by deposition of sample (Ma/Sa). Morphology of the samples was studied by scanning electron microscopy. The best sample preparation technique was Ma/Sa with the optimum sample to matrix molar ratio 1 : 100. Detection limit was in the low picomolar range. The relative response of WEs decreased with their molecular weight, and minor differences between signals of saturated and monounsaturated WEs were observed. MALDI spectra of WEs showed molecular adducts with lithium [M + Li](+). Fragments observed in postsource decay (PSD) spectra were related to the acidic part of WEs [RCOOH + Li](+) and they were used for structure assignment. MALDI with LiDHB was used for several samples of natural origin, including insect and plant WEs. A good agreement with GC/MS data was achieved. Moreover, MALDI allowed higher WEs to be analyzed, up to 64 carbon atoms in Ginkgo biloba leaves extract.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|