1
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Fernandez-Lopez L, Roda S, Robles-Martín A, Muñoz-Tafalla R, Almendral D, Ferrer M, Guallar V. Enhancing the Hydrolytic Activity of a Lipase towards Larger Triglycerides through Lid Domain Engineering. Int J Mol Sci 2023; 24:13768. [PMID: 37762071 PMCID: PMC10530837 DOI: 10.3390/ijms241813768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Lipases have valuable potential for industrial use, particularly those mostly active against water-insoluble substrates, such as triglycerides composed of long-carbon chain fatty acids. However, in most cases, engineered variants often need to be constructed to achieve optimal performance for such substrates. Protein engineering techniques have been reported as strategies for improving lipase characteristics by introducing specific mutations in the cap domain of esterases or in the lid domain of lipases or through lid domain swapping. Here, we improved the lipase activity of a lipase (WP_075743487.1, or LipMRD) retrieved from the Marine Metagenomics MarRef Database and assigned to the Actinoalloteichus genus. The improvement was achieved through site-directed mutagenesis and by substituting its lid domain (FRGTEITQIKDWLTDA) with that of Rhizopus delemar lipase (previously R. oryzae; UniProt accession number, I1BGQ3) (FRGTNSFRSAITDIVF). The results demonstrated that the redesigned mutants gain activity against bulkier triglycerides, such as glyceryl tridecanoate and tridodecanoate, olive oil, coconut oil, and palm oil. Residue W89 (LipMRD numbering) appears to be key to the increase in lipase activity, an increase that was also achieved with lid swapping. This study reinforces the importance of the lid domains and their amino acid compositions in determining the substrate specificity of lipases, but the generalization of the lid domain swapping between lipases or the introduction of specific mutations in the lid domain to improve lipase activity may require further investigation.
Collapse
Affiliation(s)
- Laura Fernandez-Lopez
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Sergi Roda
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
| | - Ana Robles-Martín
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Rubén Muñoz-Tafalla
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - David Almendral
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Víctor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
3
|
Lemay-St-Denis C, Doucet N, Pelletier JN. Integrating dynamics into enzyme engineering. Protein Eng Des Sel 2022; 35:6842866. [PMID: 36416215 DOI: 10.1093/protein/gzac015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
Enzyme engineering has become a widely adopted practice in research labs and industry. In parallel, the past decades have seen tremendous strides in characterizing the dynamics of proteins, using a growing array of methodologies. Importantly, links have been established between the dynamics of proteins and their function. Characterizing the dynamics of an enzyme prior to, and following, its engineering is beginning to inform on the potential of 'dynamic engineering', i.e. the rational modification of protein dynamics to alter enzyme function. Here we examine the state of knowledge at the intersection of enzyme engineering and protein dynamics, describe current challenges and highlight pioneering work in the nascent area of dynamic engineering.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Doucet
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, QC, Canada
| | - Joelle N Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Chemistry Department, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Choi Y, Chang PS. Kinetic modeling of lipase-catalysed hydrolysis of triacylglycerol in a reverse micelle system for the determination of integral stereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02182f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kinetic model for lipase-catalysed stepwise hydrolysis of triacylglycerol was developed for quantification of integral stereoselectivity.
Collapse
Affiliation(s)
- Yoonseok Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Kayishaer A, Fadlallah S, Mouterde LMM, Peru AAM, Werghi Y, Brunois F, Carboué Q, Lopez M, Allais F. Unprecedented Biodegradable Cellulose-Derived Polyesters with Pendant Citronellol Moieties: From Monomer Synthesis to Enzymatic Degradation. Molecules 2021; 26:7672. [PMID: 34946753 PMCID: PMC8707784 DOI: 10.3390/molecules26247672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,β-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as -42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme.
Collapse
Affiliation(s)
| | - Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (A.K.); (A.A.M.P.); (Y.W.); (F.B.); (Q.C.); (M.L.)
| | - Louis M. M. Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (A.K.); (A.A.M.P.); (Y.W.); (F.B.); (Q.C.); (M.L.)
| | | | | | | | | | | | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (A.K.); (A.A.M.P.); (Y.W.); (F.B.); (Q.C.); (M.L.)
| |
Collapse
|
6
|
Maldonado MR, Alnoch RC, de Almeida JM, Santos LAD, Andretta AT, Ropaín RDPC, de Souza EM, Mitchell DA, Krieger N. Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Kryukova MV, Petrovskaya LE, Novototskaya-Vlasova KA, Kryukova EA, Yakimov SA, Nikolaeva AY, Boyko KM, Dolgikh DA, Kirpichnikov MP. Effect of Cysteine Residue Substitution in the GCSAG Motif of the PMGL2 Esterase Active Site on the Enzyme Properties. BIOCHEMISTRY (MOSCOW) 2021; 85:709-716. [PMID: 32586234 DOI: 10.1134/s0006297920060085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gene coding for PMGL2 esterase, which belongs to the family of mammalian hormone-sensitive lipases (HSLs), was discovered by screening a metagenomic DNA library from a permafrost soil. The active site of PMGL2 contains conserved GXSXG motif which includes Cys173 residue next to the catalytic Ser174. In order to clarify the functional role of the cysteine residue in the GCSAG motif, we constructed a number of PMGL2 mutants with Cys173 substitutions and studied their properties. The specific activity of the C173D mutant exceeded the specific activity of the wild-type enzyme (wtPMGL2) by 60%, while the C173T/C202S mutant displayed reduced catalytic activity. The activity of the C173D mutant with p-nitrophenyl octanoate was 15% higher, while the activity of the C173T/C202S mutant was 17% lower compared to wtPMGL2. The C173D mutant was also characterized by a high activity at low temperatures (20-35°C) and significant loss of thermal stability. The kcat value for this protein was 56% higher than for the wild-type enzyme. The catalytic constants of the C173S mutant were close to those of wtPMGL2; this enzyme also demonstrated the highest thermal stability among the studied mutants. The obtained results demonstrate that substitutions of amino acid residues adjacent to the catalytic serine residue in the GXSXG motif can have a significant effect on the properties of PMGL2 esterase.
Collapse
Affiliation(s)
- M V Kryukova
- Kurchatov NBICS-Technologies Complex, Kurchatov Institute National Research Centre, Moscow, 123182, Russia
| | - L E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - K A Novototskaya-Vlasova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - E A Kryukova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Yakimov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - A Y Nikolaeva
- Kurchatov NBICS-Technologies Complex, Kurchatov Institute National Research Centre, Moscow, 123182, Russia
| | - K M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - D A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - M P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|
8
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
9
|
Xu Y, Minhazul KAHM, Li X. The occurrence, enzymatic production, and application of ethyl butanoate, an important flavor constituent. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Karim A. H. M. Minhazul
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| |
Collapse
|
10
|
Surface residues serine 69 and arginine 194 of metagenome-derived lipase influence catalytic activity. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Kryukova M, Petrovskaya L, Kryukova E, Lomakina G, Yakimov S, Maksimov E, Boyko K, Popov V, Dolgikh D, Kirpichnikov M. Thermal Inactivation of a Cold-Active Esterase PMGL3 Isolated from the Permafrost Metagenomic Library. Biomolecules 2019; 9:E880. [PMID: 31888238 PMCID: PMC6995580 DOI: 10.3390/biom9120880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022] Open
Abstract
PMGL3 is a cold-adapted esterase which was recently isolated from the permafrost metagenomic library. It exhibits maximum activity at 30 °C and low stability at elevated temperatures (40 °C and higher). Sequence alignment has revealed that PMGL3 is a member of the hormone-sensitive lipase (HSL) family. In this work, we demonstrated that incubation at 40 °C led to the inactivation of the enzyme (t1/2 = 36 min), which was accompanied by the formation of tetramers and higher molecular weight aggregates. In order to increase the thermal stability of PMGL3, its two cysteines Cys49 and Cys207 were substituted by the hydrophobic residues, which are found at the corresponding positions of thermostable esterases from the HSL family. One of the obtained mutants, C207F, possessed improved stability at 40 °C (t1/2 = 169 min) and increased surface hydrophobicity, whereas C49V was less stable in comparison with the wild type PMGL3. Both mutants exhibited reduced values of Vmax and kcat, while C207F demonstrated increased affinity to the substrate, and improved catalytic efficiency.
Collapse
Affiliation(s)
- M.V. Kryukova
- Kurchatov Complex of NBICS-technologies, National Research Centre “Kurchatov Institute”, Akad. Kurchatova sqr 1, 123182 Moscow, Russia
| | - L.E. Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - E.A. Kryukova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - G.Yu. Lomakina
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory, 1/3, 119991 Moscow, Russia;
| | - S.A. Yakimov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - E.G. Maksimov
- Department of Biology, Lomonosov Moscow State University, Leninskie gory, 1, bld 12, 119234 Moscow, Russia;
| | - K.M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia;
| | - V.O. Popov
- Kurchatov Complex of NBICS-technologies, National Research Centre “Kurchatov Institute”, Akad. Kurchatova sqr 1, 123182 Moscow, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia;
| | - D.A. Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie gory, 1, bld 12, 119234 Moscow, Russia;
| | - M.P. Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie gory, 1, bld 12, 119234 Moscow, Russia;
| |
Collapse
|
12
|
Larrañaga A, Lizundia E. A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109296] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Cha HJ, Park JB, Park S. Esterification of Secondary Alcohols and Multi-hydroxyl Compounds by Candida antarctica Lipase B and Subtilisin. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0379-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
15
|
Affiliation(s)
- Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, 17487 Greifswald, Germany
| |
Collapse
|
16
|
Zhao G, Wang J, Tang Q, Lan D, Wang Y. Improving the Catalytic Activity and Thermostability of MAS1 Lipase by Alanine Substitution. Mol Biotechnol 2018; 60:319-328. [DOI: 10.1007/s12033-018-0062-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Schmidt S, Castiglione K, Kourist R. Overcoming the Incompatibility Challenge in Chemoenzymatic and Multi-Catalytic Cascade Reactions. Chemistry 2017; 24:1755-1768. [PMID: 28877401 DOI: 10.1002/chem.201703353] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 01/01/2023]
Abstract
Multi-catalytic cascade reactions bear a great potential to minimize downstream and purification steps, leading to a drastic reduction of the produced waste. In many examples, the compatibility of chemo- and biocatalytic steps could be easily achieved. Problems associated with the incompatibility of the catalysts and their reactions, however, are very frequent. Cascade-like reactions can hardly occur in this way. One possible solution to combine, in principle, incompatible chemo- and biocatalytic reactions is the defined control of the microenvironment by compartmentalization or scaffolding. Current methods for the control of the microenvironment of biocatalysts go far beyond classical enzyme immobilization and are thus believed to be very promising tools to overcome incompatibility issues and to facilitate the synthetic application of cascade reactions. In this Minireview, we will summarize recent synthetic examples of (chemo)enzymatic cascade reactions and outline promising methods for their spatial control either by using bio-derived or synthetic systems.
Collapse
Affiliation(s)
- Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
18
|
Farrokh P, Yakhchali B, Karkhane AA. Role of Q177A and K173A/Q177A substitutions in thermostability and activity of the ELBn12 lipase. Biotechnol Appl Biochem 2017; 65:203-211. [DOI: 10.1002/bab.1576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/09/2017] [Accepted: 07/15/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Parisa Farrokh
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
- School of Biology; Damghan University; Damghan Iran
- Department of Genetics; School of Biological Science; Tarbiat Modares University; Tehran Iran
| | - Bagher Yakhchali
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| |
Collapse
|
19
|
Malassezia globosa Mg MDL2 lipase: Crystal structure and rational modification of substrate specificity. Biochem Biophys Res Commun 2017; 488:259-265. [DOI: 10.1016/j.bbrc.2017.04.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022]
|
20
|
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front Bioeng Biotechnol 2017; 5:16. [PMID: 28337436 PMCID: PMC5343024 DOI: 10.3389/fbioe.2017.00016] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| | - Rabia Durrani
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Weiqian Huan
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
21
|
Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT. Engineering and application of enzymes for lipid modification, an update. Prog Lipid Res 2016; 63:153-64. [DOI: 10.1016/j.plipres.2016.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
|
22
|
Volkova N, Li X, Zhu LH, Adlercreutz P. Combination of modern plant breeding and enzyme technology to obtain highly enriched erucic acid from Crambe oil. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40508-016-0045-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Müller J, Sowa MA, Fredrich B, Brundiek H, Bornscheuer UT. Enhancing the Acyltransferase Activity ofCandida antarcticaLipase A by Rational Design. Chembiochem 2015; 16:1791-6. [DOI: 10.1002/cbic.201500187] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Indexed: 11/09/2022]
|
24
|
Lee YA, Jeon EY, Lee SM, Bornscheuer UT, Park JB. Engineering the substrate-binding domain of an esterase enhances its hydrolytic activity toward fatty acid esters. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Bornscheuer UT. Enzymes in lipid modification: Past achievements and current trends. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Greifswald Germany
| |
Collapse
|
26
|
Kuo CH, Liu TA, Chen JH, Chang CMJ, Shieh CJ. Response surface methodology and artificial neural network optimized synthesis of enzymatic 2-phenylethyl acetate in a solvent-free system. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Hwang HT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A. Lipase-catalyzed process for biodiesel production: Protein engineering and lipase production. Biotechnol Bioeng 2013; 111:639-53. [PMID: 24284881 DOI: 10.1002/bit.25162] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Hyun Tae Hwang
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Feng Qi
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Chongli Yuan
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Xuebing Zhao
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Doraiswami Ramkrishna
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Dehua Liu
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Arvind Varma
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| |
Collapse
|
28
|
Kumar R, Singh R, Kaur J. Characterization and molecular modelling of an engineered organic solvent tolerant, thermostable lipase with enhanced enzyme activity. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Yu H, Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 2013; 32:308-15. [PMID: 24211474 DOI: 10.1016/j.biotechadv.2013.10.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/04/2013] [Accepted: 10/29/2013] [Indexed: 01/06/2023]
Abstract
Engineering proteins for thermostability is an exciting and challenging field since it is critical for broadening the industrial use of recombinant proteins. Thermostability of proteins arises from the simultaneous effect of several forces such as hydrophobic interactions, disulfide bonds, salt bridges and hydrogen bonds. All of these interactions lead to decreased flexibility of polypeptide chain. Structural studies of mesophilic and thermophilic proteins showed that the latter need more rigid structures to compensate for increased thermal fluctuations. Hence flexibility can be an indicator to pinpoint weak spots for enhancing thermostability of enzymes. A strategy has been proven effective in enhancing proteins' thermostability with two steps: predict flexible sites of proteins firstly and then rigidify these sites. We refer to this approach as rigidify flexible sites (RFS) and give an overview of such a method through summarizing the methods to predict flexibility of a protein, the methods to rigidify residues with high flexibility and successful cases regarding enhancing thermostability of proteins using RFS.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
30
|
Zhang JH, Jiang YY, Lin Y, Sun YF, Zheng SP, Han SY. Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids. PLoS One 2013; 8:e67892. [PMID: 23844120 PMCID: PMC3700896 DOI: 10.1371/journal.pone.0067892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/22/2013] [Indexed: 11/25/2022] Open
Abstract
To improve the performance of yeast surface-displayed Rhizomucor miehei lipase (RML) in the production of human milk fat substitute (HMFS), we mutated amino acids in the lipase substrate-binding pocket based on protein hydrophobicity, to improve esterification activity. Five mutants: Asn87Ile, Asn87Ile/Asp91Val, His108Leu/Lys109Ile, Asp256Ile/His257Leu, and His108Leu/Lys109Ile/Asp256Ile/His257Leu were obtained and their hydrolytic and esterification activities were assayed. Using Discovery Studio 3.1 to build models and calculate the binding energy between lipase and substrates, compared to wild-type, the mutant Asp256Ile/His257Leu was found to have significantly lower energy when oleic acid (3.97 KJ/mol decrease) and tripalmitin (7.55 KJ/mol decrease) were substrates. This result was in accordance with the esterification activity of Asp256Ile/His257Leu (2.37-fold of wild-type). The four mutants were also evaluated for the production of HMFS in organic solvent and in a solvent-free system. Asp256Ile/His257Leu had an oleic acid incorporation of 28.27% for catalyzing tripalmitin and oleic acid, and 53.18% for the reaction of palm oil with oleic acid. The efficiency of Asp256Ile/His257Leu was 1.82-fold and 1.65-fold that of the wild-type enzyme for the two reactions. The oleic acid incorporation of Asp256Ile/His257Leu was similar to commercial Lipozyme RM IM for palm oil acidolysis with oleic acid. Yeast surface-displayed RML mutant Asp256Ile/His257Leu is a potential, economically feasible catalyst for the production of structured lipids.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
| | - Yu-Yan Jiang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
| | - Yu-Fei Sun
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
| | - Sui-Ping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
| | - Shuang-Yan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
31
|
Korman TP, Sahachartsiri B, Charbonneau DM, Huang GL, Beauregard M, Bowie JU. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:70. [PMID: 23648063 PMCID: PMC3670234 DOI: 10.1186/1754-6834-6-70] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/01/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed transesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially. RESULTS We employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50°C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis. CONCLUSIONS Directed evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms the industrially used lipase from Burkholderia cepacia and provides a platform for still further evolution of desirable biodiesel production properties.
Collapse
Affiliation(s)
- Tyler P Korman
- Department of Chemistry and Biochemisty, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, USA
| | - Bobby Sahachartsiri
- Department of Chemistry and Biochemisty, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, USA
| | - David M Charbonneau
- Département de chimie-biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Grace L Huang
- Department of Chemistry and Biochemisty, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, USA
| | - Marc Beauregard
- Département de chimie-biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - James U Bowie
- Department of Chemistry and Biochemisty, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, USA
| |
Collapse
|
32
|
Adamczak M, Bornscheuer UT. Application of medium engineering in the synthesis of structured triacylglycerols from evening primrose oil (Oenothera biennisL.). EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
|
34
|
Kumar R, Sharma M, Singh R, Kaur J. Characterization and evolution of a metagenome-derived lipase towards enhanced enzyme activity and thermostability. Mol Cell Biochem 2012; 373:149-59. [DOI: 10.1007/s11010-012-1483-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
|
35
|
Kaki SS, Adlercreutz P. Quantitative analysis of enzymatic fractionation of multiple substrate mixtures. Biotechnol Bioeng 2012; 110:78-86. [PMID: 22811287 DOI: 10.1002/bit.24613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/07/2022]
Abstract
The enzymatic conversion of mixtures of multiple substrates was studied quantitatively, based on established methodology used for the enzymatic kinetic resolution of racemic mixtures, involving the use of competitive factors: ratios of specificity constants (k(cat)/K(M)) of substrate pairs. The competitive factors of the substrates were defined in relation to a reference substrate. These competitive factors were used to predict the composition of the reaction mixture as a function of the degree of conversion of the reaction. The methodology was evaluated using three different lipases to hydrolyze a model mixture of four fatty acid methyl esters and for the esterification of a mixture of the same fatty acids in free form with ethanol. In most cases, the competitive factors determined from the initial phase of the reactions predicted the product composition during the rest of the reaction very well. The slowest reacting fatty acid was erucic acid (both in free form and as methyl ester), which was thus enriched in the remaining substrate fraction, while the other fatty acids: lauric acid, palmitic acid and oleic acid were converted faster. Simulations of the compositions of reaction mixtures with different values of the competitive factors were carried out to provide an overview of what could be achieved using enzymatic enrichment. Possible applications include reactions involving homologous substrates and mixtures of multiple isomers. The analysis presented provides guidelines that can be useful in the screening and development of enzymes for enzymatic enrichment applications.
Collapse
Affiliation(s)
- Shiva Shanker Kaki
- Department of Biotechnology, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | |
Collapse
|
36
|
Brundiek H, Padhi SK, Kourist R, Evitt A, Bornscheuer UT. Altering the scissile fatty acid binding site ofCandida antarcticalipase A by protein engineering for the selective hydrolysis of medium chain fatty acids. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Brundiek H, Saß S, Evitt A, Kourist R, Bornscheuer UT. The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Appl Microbiol Biotechnol 2012; 94:141-50. [DOI: 10.1007/s00253-012-3903-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
38
|
Guerra NP, Pernas M, Pastrana L, Torrado A, Míguez M, Fuciños C, Estévez N, Sobrosa C, González R, Fuciños P, Rúa ML. Modelling the enzymatic activity of two lipases isoenzymes commonly used in the food industry Modelado de la actividad enzimática de dos isoenzimas lipasas comúnmente utilizadas en la industria alimentaria. CYTA - JOURNAL OF FOOD 2011. [DOI: 10.1080/19476337.2011.601818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Li B, Jiang Y, Liu F, Chai Z, Li Y, Li Y, Leng X. Synergistic effects of whey protein-polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in W1/O/W2 double emulsion systems. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02832.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
|
41
|
Laszlo JA, Yu Y, Lutz S, Compton DL. Glycerol acyl-transfer kinetics of a circular permutated Candida antarctica lipase B. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Kourist R, Bornscheuer UT. Biocatalytic synthesis of optically active tertiary alcohols. Appl Microbiol Biotechnol 2011; 91:505-17. [PMID: 21691783 DOI: 10.1007/s00253-011-3418-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/26/2022]
Abstract
The enzymatic preparation of optically pure tertiary alcohols under sustainable conditions has received much attention. The conventional chemical synthesis of these valuable building blocks is still hampered by the use of harmful reagents such as heavy metal catalysts. Successful examples in biocatalysis used esterases, lipases, epoxide hydrolases, halohydrin dehalogenases, thiamine diphosphate-dependent enzymes, terpene cyclases, -acetylases, and -dehydratases. This mini-review provides an overview on recent developments in the discovery of new enzymes, their functional improvement by protein engineering, the design of chemoenzymatic routes leading to tertiary alcohols, and the discovery of entirely new biotransformations.
Collapse
Affiliation(s)
- Robert Kourist
- Institute of Chemistry of Biogenic Resources, Technische Universität München, Schulgasse 16, 94315 Straubing, Germany
| | | |
Collapse
|
43
|
Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. Protein Engineering of α/β-Hydrolase Fold Enzymes. Chembiochem 2011; 12:1508-17. [DOI: 10.1002/cbic.201000771] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Indexed: 01/01/2023]
|
44
|
Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. Oils and Fats as Renewable Raw Materials in Chemistry. Angew Chem Int Ed Engl 2011; 50:3854-71. [DOI: 10.1002/anie.201002767] [Citation(s) in RCA: 775] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Indexed: 12/26/2022]
|
45
|
Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. Fette und Öle als nachwachsende Rohstoffe in der Chemie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201002767] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Protein engineering of microbial enzymes. Curr Opin Microbiol 2010; 13:274-82. [PMID: 20171138 DOI: 10.1016/j.mib.2010.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/20/2022]
Abstract
Protein engineering has emerged as an important tool to overcome the limitations of natural enzymes as biocatalysts. Recent advances have mainly focused on applying directed evolution to enzymes, especially important for organic synthesis, such as monooxygenases, ketoreductases, lipases or aldolases in order to improve their activity, enantioselectivity, and stability. The combination of directed evolution and rational protein design using computational tools is becoming increasingly important in order to explore enzyme sequence-space and to create improved or novel enzymes. These developments should allow to further expand the application of microbial enzymes in industry.
Collapse
|