1
|
Nieuwland C, van Dam AN, Bickelhaupt FM, Fonseca Guerra C. Urea hydrogen-bond donor strengths: bigger is not always better. Phys Chem Chem Phys 2024. [PMID: 39660363 PMCID: PMC11632590 DOI: 10.1039/d4cp04042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
The hydrogen-bond donor strength of ureas, widely used in hydrogen-bond donor catalysis, molecular recognition, and self-assembly, can be enhanced by increasing the size of the chalcogen X in the CX bond from O to S to Se and by introducing more electron-withdrawing substituents because both modifications increase the positive charge on the NH groups which become better hydrogen-bond donors. However, in 1,3-diaryl X-ureas, a steric mechanism disrupts the positive additivity of these two tuning factors, as revealed by our quantum-chemical analyses. This leads to an enhanced hydrogen-bond donor strength, despite a lower NH acidity, for 1,3-diaryl substituted O-ureas compared to the S- and Se-urea analogs. In addition, we provide a strategy to overcome this steric limitation using a predistorted urea-type hydrogen-bond donor featuring group 14 elements in the CX bond so that the hydrogen-bond donor strength of X-urea derivatives bearing two aryl substituents can be enhanced upon varying X down group 14.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Angelina N van Dam
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Borah B, Sharma S, Chavada SK, Swain S, Chowhan LR. Photochemical domino reaction driven C-H/S-H functionalization of bioactive molecules to access xanthene scaffolds. Org Biomol Chem 2024; 22:8453-8458. [PMID: 39331024 DOI: 10.1039/d4ob01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A visible-light-induced C(sp2)-H functionalization of indoles by using Schreiner's thiourea as the organocatalyst has been reported. With the aid of a three-component domino reaction between 2-hydroxybenzaldehydes, cyclic-1,3-diketones, and a variety of indoles, the corresponding densely functionalized xanthene scaffolds were isolated in good to excellent yields. Apart from these, a broad range of other bioactive natural products including kojic acid, lawsone, and 4-hydroxycoumarin were also investigated instead of indoles for the present work. All the molecules participated in the photochemical reaction smoothly and provided the desired xanthenes in synthetically valuable yields. Therefore, the present energy-efficient catalytic strategy was also very successful in executing challenging carbon-sulfur bond formation reactions, demonstrating the synthetic potentiality of the work. Notably, this air-stable, transition metal-free approach with broad functional group tolerability provides an alternative to conventional methods.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
- Royal School of Applied & Pure Sciences, The Assam Royal Global University, Guwahati-781035, Assam, India
| | - Samrita Sharma
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
| | - Snehalkumar K Chavada
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
| | - Sidharth Swain
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
| | - L Raju Chowhan
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
- School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India.
| |
Collapse
|
3
|
Pérez-Aguilar MC, Entgelmeier LM, Herrera-Luna JC, Daniliuc CG, Consuelo Jiménez M, Pérez-Ruiz R, García Mancheño O. Unlocking Photocatalytic Activity of Acridinium Salts by Anion-Binding Co-Catalysis. Chemistry 2024; 30:e202400541. [PMID: 38739757 DOI: 10.1002/chem.202400541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.
Collapse
Affiliation(s)
- María C Pérez-Aguilar
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Lukas-M Entgelmeier
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jorge C Herrera-Luna
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
- Current address: Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Olga García Mancheño
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
4
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
5
|
Phaenok S, Nguyen LA, Soorukram D, Nguyen TTT, Retailleau P, Nguyen TB. Sulfur- and Amine- Promoted Multielectron Autoredox Transformation of Nitromethane: Multicomponent Access to Thiourea Derivatives. Chemistry 2024; 30:e202303703. [PMID: 37953668 DOI: 10.1002/chem.202303703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Thiourea derivatives are in-demand motifs in organic synthesis, medicinal chemistry and material science, yet redox methods for the synthesis that start from safe, simple, inexpensive and readily available feedstocks are scarce. In this article, we disclose the synthesis of these motifs using elemental sulfur and nitromethane as the starting materials. The method harnesses the multi-electron auto-redox property of nitromethane in the presence of sulfur and amines, delivering thiourea products without any added oxidant or reductant. Extension of this reaction to cyclizable amines and/or higher homologues of nitromethane led to a wide range of nitrogen heterocycles and thioamides. Operationally simple, the reactions are scalable, tolerate a wide range of functional groups, and can be employed for the direct functionalization of natural products. Mechanistically, the nitro group was found to act as an oxidant leaving group, being reduced to ammonia whereas sulfur, along with the role of a sulfur building block for the thiocarbonyl group, behaved as a complementary reductant, being oxidized to sulfate.
Collapse
Affiliation(s)
- Supasorn Phaenok
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Le Anh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Thi Thanh Tam Nguyen
- Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Scheelje FCM, Meier MAR. Non-isocyanate polyurethanes synthesized from terpenes using thiourea organocatalysis and thiol-ene-chemistry. Commun Chem 2023; 6:239. [PMID: 37925584 PMCID: PMC10625552 DOI: 10.1038/s42004-023-01041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The depletion of fossil resources as well as environmental concerns contribute to an increasing focus on finding more sustainable approaches for the synthesis of polymeric materials. In this work, a synthesis route towards non-isocyanate polyurethanes (NIPUs) using renewable starting materials is presented. Based on the terpenes limonene and carvone as renewable resources, five-membered cyclic carbonates are synthesized and ring-opened with allylamine, using thiourea compounds as benign and efficient organocatalysts. Thus, five renewable AA monomers are obtained, bearing one or two urethane units. Taking advantage of the terminal double bonds of these AA monomers, step-growth thiol-ene polymerization is performed using different dithiols, to yield NIPUs with molecular weights of above 10 kDa under mild conditions. Variation of the dithiol and amine leads to polymers with different properties, with Mn of up to 31 kDa and Tg's ranging from 1 to 29 °C.
Collapse
Affiliation(s)
- Frieda Clara M Scheelje
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
7
|
McDermott PE, Fearraigh MPÓ, Horan AM, McGarrigle EM. Thiourea-catalysed conjugate additions of amines to vinyl phosphonates and phosphinates. Org Biomol Chem 2023; 21:1027-1032. [PMID: 36607271 DOI: 10.1039/d2ob02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thiourea catalysts activated α,β-unsaturated phosphonates and phosphinates toward conjugate addition by amines to give β-aminophosphonates and β-aminophosphinates. The organocatalytic methodology was used to synthesise 15 β-aminophosphonates and -phosphinates in yields up to 99%. A gram-scale example furnished the corresponding β-aminophosphonate in an isolated yield of 99% with 97% catalyst recovery. Based on mechanistic experiments, hydrogen bonding between the phosphoryl oxygen and thiourea are proposed to play a crucial role in substrate activation.
Collapse
Affiliation(s)
- Peter E McDermott
- A2P CDT in sustainable chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland. .,Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin P Ó Fearraigh
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alexandra M Horan
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.,SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- A2P CDT in sustainable chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland. .,Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.,SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Prusinowska N, Szymkowiak J, Kwit M. Unravelling Structural Dynamics, Supramolecular Behavior, and Chiroptical Properties of Enantiomerically Pure Macrocyclic Tertiary Ureas and Thioureas. J Org Chem 2023; 88:285-299. [PMID: 36480555 PMCID: PMC9830626 DOI: 10.1021/acs.joc.2c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The introduction of urea or thiourea functionality to the macrocycle skeleton represents an alternative way to control conformational dynamics of chiral, polyamines of a figure-shaped periodical structure. Formally highly symmetrical, these macrocycles may adapt diverse conformations, depending on the nature of an amide linker and on a substitution pattern within the aromatic units. The type of heteroatom X in the N-C(═X)-N units present in each vertex of the macrocycle core constitutes the main factor determining the chiroptical properties. In contrast to the urea-containing derivatives, the electronic circular dichroism of thioureas is controlled by the chiral neighborhood closest to the chromophore. The dynamically induced exciton couplet is observed when the biphenyl chromophores are present in the macrocycle core. In the solid state, the seemingly disordered molecules may create ordered networks stabilized by intermolecular S···halogen, H···halogen, and S···H interactions. The presence of two bromine substituents in each aromatic unit in thiourea-derived trianglamine gives rise to a self-sorting phenomenon in the crystal. In solution, this particular macrocycle exists as a dynamic equimolar mixture of two conformational diastereoisomers, differing in the spatial (clockwise and counter clockwise) arrangement of the C-Br bonds. In the crystal lattice, macrocycles of a given handedness assemble into homohelical layers.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznan, Poland
| | - Joanna Szymkowiak
- Faculty
of Science, Department of Chemistry University
of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Marcin Kwit
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznan, Poland,E-mail:
| |
Collapse
|
9
|
Reyes E, Prieto L, Milelli A. Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules 2022; 28:271. [PMID: 36615465 PMCID: PMC9822454 DOI: 10.3390/molecules28010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Majority of drugs act by interacting with chiral counterparts, e.g., proteins, and we are, unfortunately, well-aware of how chirality can negatively impact the outcome of a therapeutic regime. The number of chiral, non-racemic drugs on the market is increasing, and it is becoming ever more important to prepare these compounds in a safe, economic, and environmentally sustainable fashion. Asymmetric organocatalysis has a long history, but it began its renaissance era only during the first years of the millennium. Since then, this field has reached an extraordinary level, as confirmed by the awarding of the 2021 Chemistry Nobel Prize. In the present review, we wish to highlight the application of organocatalysis in the synthesis of enantio-enriched molecules that may be of interest to the pharmaceutical industry and the medicinal chemistry community. We aim to discuss the different activation modes observed for organocatalysts, examining, for each of them, the generally accepted mechanisms and the most important and developed reactions, that may be useful to medicinal chemists. For each of these types of organocatalytic activations, select examples from academic and industrial applications will be disclosed during the synthesis of drugs and natural products.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
10
|
Ehrhard A, Gunkel L, Jäger S, Sell AC, Nagata Y, Hunger J. Elucidating Conformation and Hydrogen-Bonding Motifs of Reactive Thiourea Intermediates. ACS Catal 2022; 12:12689-12700. [PMID: 36313523 PMCID: PMC9594049 DOI: 10.1021/acscatal.2c03382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Substituted diphenylthioureas (DPTUs) are efficient hydrogen-bonding organo-catalysts, and substitution of DPTUs has been shown to greatly affect catalytic activity. Yet, both the conformation of DPTUs in solution and the conformation and hydrogen-bonded motifs within catalytically active intermediates, pertinent to their mode of activation, have remained elusive. By combining linear and ultrafast vibrational spectroscopy with spectroscopic simulations and calculations, we show that different conformational states of thioureas give rise to distinctively different N-H stretching bands in the infrared spectra. In the absence of hydrogen-bond-accepting substrates, we show that vibrational structure and dynamics are highly sensitive to the substitution of DPTUs with CF3 groups and to the interaction with the solvent environment, allowing for disentangling the different conformational states. In contrast to bare diphenylthiourea (0CF-DPTU), we find the catalytically superior CF3-substituted DPTU (4CF-DPTU) to favor the trans-trans conformation in solution, allowing for donating two hydrogen bonds to the reactive substrate. In the presence of a prototypical substrate, DPTUs in trans-trans conformation hydrogen bond to the substrate's C=O group, as evidenced by a red-shift of the N-H vibration. Yet, our time-resolved infrared experiments indicate that only one N-H group forms a strong hydrogen bond to the carbonyl moiety, while thiourea's second N-H group only weakly interacts with the substrate. Our data indicate that hydrogen-bond exchange between these N-H groups occurs on the timescale of a few picoseconds for 0CF-DPTU and is significantly accelerated upon CF3 substitution. Our results highlight the subtle interplay between conformational equilibria, bonding states, and bonding lifetimes in reactive intermediates in thiourea catalysis, which help rationalize their catalytic activity.
Collapse
Affiliation(s)
- Amelie
A. Ehrhard
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Gunkel
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sebastian Jäger
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Arne C. Sell
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
11
|
König HF, Hausmann H, Schreiner PR. Assessing the Experimental Hydrogen Bonding Energy of the Cyclic Water Dimer Transition State with a Cyclooctatetraene-Based Molecular Balance. J Am Chem Soc 2022; 144:16965-16973. [PMID: 35998326 DOI: 10.1021/jacs.2c06141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have conducted an experimental and computational study of cyclooctatetraene-1,4/1,6-dimethanol (1,4 and 1,6) as a molecular balance with the goal in mind to determine the otherwise inaccessible hydrogen bonding energy (HBE) of the cyclic water dimer, which constitutes a transition state. The 1,4/1,6 folding equilibrium is governed by an intramolecular hydrogen bond in the folded 1,6-isomer, in which the OH groups adopt a cyclic planar geometry, akin to the structure of the cyclic water dimer transition state. We characterized hydrogen bonding in 1,6 and reference complexes utilizing SAPT2 + (3)δMP2/aug-cc-pVTZ and selected quantum theory of atoms in molecule descriptors at M06-2XD3(0)/ma-def2-TZVPP. Additionally, we computed HBEs at the DLPNO-CCSD(T)/aug-cc-pVQZ level of theory. We find that hydrogen bonding in 1,6 is very similar to the interaction in the Ci symmetric cyclic water dimer TS, both in magnitude and character. We experimentally determined the Gibbs free energy of the folding process (ΔGeq) in a variety of organic solvents via nuclear magnetic resonance spectroscopy measurements at room temperature. By combining experimentally obtained ΔGeq values with corrections derived from accurate computational methods, we provide estimates for the HBE of cyclic water dimers and the cyclic water dimer TS, as the most stable cyclic water dimer.
Collapse
Affiliation(s)
- Henrik Ferdinand König
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
12
|
Hernández-Rodríguez M, Jiménez EI, Cantú-Reyes M, Flores-Ramos M, Román-Chavarría CA, Díaz-Salazar H. Dynamic Kinetic Resolution of Azlactones by Bifunctional Thioureas with α‑Trifluoromethyl or Methyl Groups. Synlett 2022. [DOI: 10.1055/a-1892-9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThe asymmetric ring opening of azlactones via dynamic kinetic resolution (DKR) is investigated by contrasting thioureas incorporating 1-arylethyl substituents against their more acidic trifluoromethylated analogs. All the catalysts under study outperform Takemoto’s thiourea because of the inclusion of an additional chiral center. However, the difference in yield and selectivity between the fluorinated and non-fluorinated catalysts is minimal. We explain this observation by analysis of calculated transition states. Our findings show that the hydrogen bond (HB) between the NH linked to the 1-arylethyl and the negatively charged oxygen in the benzyloxy ion is the longest in the HB network, whereas the HB between the ammonium group and the same oxygen atom is the shortest. Thus, the substituents and the HB donor ability of this chiral fragment attached to the thiourea are not important in the reaction.
Collapse
|
13
|
Rummel L, Domanski MHJ, Hausmann H, Becker J, Schreiner PR. London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution. Angew Chem Int Ed Engl 2022; 61:e202204393. [PMID: 35544611 PMCID: PMC9401023 DOI: 10.1002/anie.202204393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 12/12/2022]
Abstract
We present an experimental and computational study on the conformers of N,N'-diphenylthiourea substituted with different dispersion energy donor (DED) groups. While the unfolded anti-anti conformer is the most relevant for thiourea catalysis, intramolecular noncovalent interactions counterintuitively favor the folded syn-syn conformer, as evident from a combination of low-temperature nuclear magnetic resonance measurements and computations. In order to quantify the noncovalent interactions, we utilized local energy decomposition analysis and symmetry-adapted perturbation theory at the DLPNO-CCSD(T)/def2-TZVPP and sSAPT0/6-311G(d,p) levels of theory. Additionally, we applied a double-mutant cycle to experimentally study the effects of bulky substituents on the equilibria. We determined London dispersion as the key interaction that shifts the equilibria towards the syn-syn conformers. This preference is likely a factor why such thiourea derivatives can be poor catalysts.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Marvin H. J. Domanski
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Heike Hausmann
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Jonathan Becker
- Institute of Inorganic and Analytical ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| |
Collapse
|
14
|
Svestka D, Otevrel J, Bobal P. Asymmetric Organocatalyzed Friedel–Crafts Reaction of Trihaloacetaldehydes and Phenols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Svestka
- Department of Chemical Drugs Faculty of Pharmacy Masaryk University Brno Palackeho 1946/1 612 00 Brno Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs Faculty of Pharmacy Masaryk University Brno Palackeho 1946/1 612 00 Brno Czech Republic
| | - Pavel Bobal
- Department of Chemical Drugs Faculty of Pharmacy Masaryk University Brno Palackeho 1946/1 612 00 Brno Czech Republic
| |
Collapse
|
15
|
London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Tokuhiro Y, Yoshikawa K, Murayama S, Nanjo T, Takemoto Y. Highly Stereoselective, Organocatalytic Mannich-type Addition of Glyoxylate Cyanohydrin: A Versatile Building Block for the Asymmetric Synthesis of β-Amino-α-ketoacids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusuke Tokuhiro
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Yoshikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Sei Murayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Rénio M, Murtinho D, Ventura MR. New bifunctional 1,3-diamine organocatalysts derived from (+)-camphoric acid for asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroolefins. Chirality 2022; 34:782-795. [PMID: 35166402 DOI: 10.1002/chir.23424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023]
Abstract
Novel 1,3-diamine-derived bifunctional thiourea and squaramide organocatalysts were synthesized from (+)-camphoric acid. These catalysts were easily obtained in up to two to five synthetic steps, in a flexible approach that facilitates their structure variation. Their catalytic activity was examined in the asymmetric Michael addition of 1,3-dicarbonyl compounds to several trans-β-nitrostyrenes. Yields up to 98% and enantiomeric excesses up to 74% and high diastereoselectivities when applicable (dr up to 93:7) were obtained in these reactions showing that 1,3-diamine-derived bifunctional thioureas are efficient organocatalysts.
Collapse
Affiliation(s)
- Márcia Rénio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Dina Murtinho
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
Gallarati S, Laplaza R, Corminboeuf C. Harvesting the fragment-based nature of bifunctional organocatalysts to enhance their activity. Org Chem Front 2022. [DOI: 10.1039/d2qo00550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing the activity of bifunctional organocatalysts: a fragment-based approach coupled with activity maps helps identifying better-performing catalytic motifs.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Scholten K, Merten C. Anion-binding of a chiral tris(2-aminoethyl)amine-based tripodal thiourea: A spectroscopic and computational study. Phys Chem Chem Phys 2022; 24:4042-4050. [DOI: 10.1039/d1cp05688c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioureas are well-known structural motifs in supramolecular anion recognition. Their conformational preferences are typically characterized by detailed NMR spectroscopy and crystallography, which are often complemented with computational results from geometry...
Collapse
|
20
|
Carlone A, Bernardi L, McCormack P, Warr T, Oruganti S, Cobley CJ. Asymmetric Organocatalysis and Continuous Chemistry for an Efficient and Cost-Competitive Process to Pregabalin. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Armando Carlone
- Dr. Reddy’s Laboratories (EU) Ltd. IPDO-Cambridge, 410 Cambridge Science Park, Milton Road, Cambridge CB4 0PE, U.K
| | - Luca Bernardi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna, Alma Mater Studiorum − University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Peter McCormack
- Dr. Reddy’s Laboratories (EU) Ltd. IPDO-Cambridge, 410 Cambridge Science Park, Milton Road, Cambridge CB4 0PE, U.K
| | - Tony Warr
- Dr. Reddy’s Laboratories (EU) Ltd. IPDO-Cambridge, 410 Cambridge Science Park, Milton Road, Cambridge CB4 0PE, U.K
| | - Srinivas Oruganti
- Center for Process Research & Innovation, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Christopher J. Cobley
- Dr. Reddy’s Laboratories (EU) Ltd. IPDO-Cambridge, 410 Cambridge Science Park, Milton Road, Cambridge CB4 0PE, U.K
| |
Collapse
|
21
|
Thiourea Organocatalysts as Emerging Chiral Pollutants: En Route to Porphyrin-Based (Chir)Optical Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Environmental pollution with chiral organic compounds is an emerging problem requiring innovative sensing methods. Amino-functionalized thioureas, such as 2-(dimethylamino)cyclohexyl-(3,5-bis(trifluoromethyl)phenyl)thiourea (Takemoto’s catalyst), are widely used organocatalysts with virtually unknown environmental safety data. Ecotoxicity studies based on the Vibrio fischeri luminescence inhibition test reveal significant toxicity of Takemoto’s catalyst (EC50 = 7.9 mg/L) and its NH2-substituted analog (EC50 = 7.2–7.4 mg/L). The observed toxic effect was pronounced by the influence of the trifluoromethyl moiety. En route to the porphyrin-based chemosensing of Takemoto-type thioureas, their supramolecular binding to a series of zinc porphyrins was studied with UV-Vis and circular dichroism (CD) spectroscopy, computational analysis and single crystal X-ray diffraction. The association constant values generally increased with the increasing electron-withdrawing properties of the porphyrins and electron-donating ability of the thioureas, a result of the predominant Zn⋯N cation–dipole (Lewis acid–base) interaction. The binding event induced a CD signal in the Soret band region of the porphyrin hosts—a crucial property for chirality sensing of Takemoto-type thioureas.
Collapse
|
22
|
Corti V, Riccioli R, Martinelli A, Sandri S, Fochi M, Bernardi L. Stereodivergent entry to β-branched β-trifluoromethyl α-amino acid derivatives by sequential catalytic asymmetric reactions. Chem Sci 2021; 12:10233-10241. [PMID: 34447530 PMCID: PMC8336586 DOI: 10.1039/d1sc01442k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Currently, conventional reductive catalytic methodologies do not guarantee general access to enantioenriched β-branched β-trifluoromethyl α-amino acid derivatives. Herein, a one-pot approach to these important α-amino acids, grounded on the reduction - ring opening of Erlenmeyer-Plöchl azlactones, is presented. The configurations of the two chirality centers of the products are established during each of the two catalytic steps, enabling a stereodivergent process.
Collapse
Affiliation(s)
- Vasco Corti
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum - University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Riccardo Riccioli
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum - University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Ada Martinelli
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum - University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Sofia Sandri
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum - University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum - University of Bologna V. Risorgimento 4 40136 Bologna Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum - University of Bologna V. Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
23
|
Shoja A, Reid JP. Computational Insights into Privileged Stereocontrolling Interactions Involving Chiral Phosphates and Iminium Intermediates. J Am Chem Soc 2021; 143:7209-7215. [PMID: 33914528 DOI: 10.1021/jacs.1c03829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The precise design of a catalyst for a given reaction is extremely difficult, often requiring a significant empirical screening campaign to afford products in high yields and enantiomeric excess. Design becomes even more challenging if one requires a catalyst that performs well for a diverse range of substrates. Such "privileged" catalysts exist, but little is known why they operate so generally. We report the results of computations which show that when substrate and catalyst features are conserved between significantly different mechanistic regimes, similar modes of activation can be invoked. As a validating case study, we explored a Hantzsch ester hydrogenation of α,β-unsaturated iminiums involving BINOL-derived chiral phosphates and find they impart asymmetric induction in an analogous fashion to their acid counterpart. Specifically, DFT calculations at the IEFPCM(1,4-dioxane)-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level predicted enantioselectivity to be close to the experimental value (82% ee calculated, 96% ee experimental) and showed that the reaction proceeds via a transition state involving two hydrogen-bonding interactions from the iminium intermediate and nucleophile to the catalyst. These interactions lower the energy of the transition structure and provide extra rigidity to the system. This new model invokes "privileged" noncovalent interactions and leads to a new explanation for the enantioselectivity outcome, ultimately providing the basis for the development of general catalyst design principles and the translation of mechanistically disparate reaction profiles for the prediction of enantioselectivity outcomes using statistical models.
Collapse
Affiliation(s)
- Ali Shoja
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
24
|
Lane JDE, Berry SN, Lewis W, Ho J, Jolliffe KA. Diaminomethylenemalononitriles and Diaminomethyleneindanediones as Dual Hydrogen Bond Donors for Anion Recognition. J Org Chem 2021; 86:4957-4964. [PMID: 33755453 DOI: 10.1021/acs.joc.0c02801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diaminomethylenemalononitriles (DMMs) and diaminomethyleneindanediones (DMIs) are dual H-bond donors that have previously been used as organocatalysts, but their anion binding ability has not been investigated. We report the synthesis of both alkyl- and aryl-substituted DMMs and DMIs, together with a comparison of their anion binding ability with that of the analogous thioureas. The DMMs display affinity for monovalent anions, with similar anion binding affinities observed to that of the thioureas in acetonitrile, albeit with differing trends for the N,N'-dialkyl versus N,N'-diaryl compounds. In contrast, the DMIs do not bind to monovalent anions under similar conditions as a result of conformational locking through the formation of intramolecular H-bonds. This can be overcome upon addition of sulfate ions, and binding of sulfate is enhanced in a more competitive solvent (DMSO).
Collapse
Affiliation(s)
- Jakob D E Lane
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart N Berry
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Vermeeren P, Hamlin TA, Bickelhaupt FM, Fernández I. Bifunctional Hydrogen Bond Donor-Catalyzed Diels-Alder Reactions: Origin of Stereoselectivity and Rate Enhancement. Chemistry 2021; 27:5180-5190. [PMID: 33169912 PMCID: PMC8049058 DOI: 10.1002/chem.202004496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 11/11/2022]
Abstract
The selectivity and rate enhancement of bifunctional hydrogen bond donor-catalyzed Diels-Alder reactions between cyclopentadiene and acrolein were quantum chemically studied using density functional theory in combination with coupled-cluster theory. (Thio)ureas render the studied Diels-Alder cycloaddition reactions exo selective and induce a significant acceleration of this process by lowering the reaction barrier by up to 7 kcal mol-1 . Our activation strain and Kohn-Sham molecular orbital analyses uncover that these organocatalysts enhance the Diels-Alder reactivity by reducing the Pauli repulsion between the closed-shell filled π-orbitals of the diene and dienophile, by polarizing the π-orbitals away from the reactive center and not by making the orbital interactions between the reactants stronger. In addition, we establish that the unprecedented exo selectivity of the hydrogen bond donor-catalyzed Diels-Alder reactions is directly related to the larger degree of asynchronicity along this reaction pathway, which is manifested in a relief of destabilizing activation strain and Pauli repulsion.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of, Molecular and Life Sciences (AIMMS)Amsterdam Center for, Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Israel Fernández
- Departamento de Química Orgánica ICentro de Innovación, en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicasUniversidad Complutense de Madrid28040MadridSpain
| |
Collapse
|
26
|
Hilche T, Reinsberg PH, Klare S, Liedtke T, Schäfer L, Gansäuer A. Design Platform for Sustainable Catalysis with Radicals: Electrochemical Activation of Cp 2 TiCl 2 for Catalysis Unveiled. Chemistry 2021; 27:4903-4912. [PMID: 33085978 PMCID: PMC7986168 DOI: 10.1002/chem.202004519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/17/2022]
Abstract
The combination of synthesis, rotating ring-disk electrode (RRDE) and cyclic voltammetry (CV) measurements, and computational investigations with the aid of DFT methods shows how a thiourea, a squaramide, and a bissulfonamide as additives affect the Eq Cr equilibrium of Cp2 TiCl2 . We have, for the first time, provided quantitative data for the Eq Cr equilibrium and have determined the stoichiometry of adduct formation of [Cp2 Ti(III)Cl2 ]- , [Cp2 Ti(III)Cl] and [Cp2 Ti(IV)Cl2 ] and the additives. By studying the structures of the complexes formed by DFT methods, we have established the Gibbs energies and enthalpies of complex formation as well as the adduct structures. The results not only demonstrate the correctness of our use of the Eq Cr equilibrium as predictor for sustainable catalysis. They are also a design platform for the development of novel additives in particular for enantioselective catalysis.
Collapse
Affiliation(s)
- Tobias Hilche
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Philip H. Reinsberg
- Institut für Physikalische und Theoretische Chemie, Universität BonnRömerstraße 16453117BonnGermany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Theresa Liedtke
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Luise Schäfer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
27
|
Matador E, Iglesias-Sigüenza J, Monge D, Merino P, Fernández R, Lassaletta JM. Enantio- and Diastereoselective Nucleophilic Addition of N-tert-Butylhydrazones to Isoquinolinium Ions through Anion-Binding Catalysis. Angew Chem Int Ed Engl 2021; 60:5096-5101. [PMID: 33045143 DOI: 10.1002/anie.202012861] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/13/2022]
Abstract
A highly enantio- and diastereoselective thiourea-catalyzed dearomatization of isoquinolines employing N-tert-butylhydrazones as neutral α-azo carbanions and masked acyl anion equivalents has been developed. Experimental and computational data supports the generation of highly ordered complexes wherein the chloride behaves as a template for the catalyst, the hydrazone reagent, and the isoquinolinium cation, providing excellent stereocontrol in the formation of two contiguous stereogenic centers. The ensuing selective and high-yielding transformations provide appealing dihydroisoquinoline derivatives.
Collapse
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - David Monge
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Pedro Merino
- Instituto de BiocomputaciónyFísica de Sistemas Complejos (BIFI), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
28
|
Zetschok D, Heieck L, Wennemers H. Decarboxylative Organocatalyzed Addition Reactions of Fluoroacetate Surrogates for the Synthesis of Fluorinated Oxindoles. Org Lett 2021; 23:1753-1757. [DOI: 10.1021/acs.orglett.1c00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Dominik Zetschok
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog Weg 3, CH-8093 Zurich, Switzerland
| | - Lukas Heieck
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog Weg 3, CH-8093 Zurich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog Weg 3, CH-8093 Zurich, Switzerland
| |
Collapse
|
29
|
Kirishnamaline G, Magdaline JD, Chithambarathanu T, Aruldhas D, Anuf AR. Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
López R, Palomo C. N,N-Diacylaminals as Emerging Tools in Synthesis: From Peptidomimetics to Asymmetric Catalysis. Chemistry 2021; 27:20-29. [PMID: 32667706 DOI: 10.1002/chem.202002637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Indexed: 12/26/2022]
Abstract
N,N-Diacylaminals are flexible molecular scaffolds that have commonly been utilized as amide surrogates in peptidomimetics. The singularities of this motif as an N-acyl imine equivalent and as hydrogen-bond donor have recently opened new synthetic opportunities, especially in the field of asymmetric catalysis. This concept article highlights this diverse synthetic potential and provides the elements necessary for further developments.
Collapse
Affiliation(s)
- Rosa López
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| |
Collapse
|
31
|
Ghosh T, Mukherji A, Kancharla PK. Influence of Anion-Binding Schreiner's Thiourea on DMAP Salts: Synergistic Catalysis toward the Stereoselective Dehydrative Glycosylation from 2-Deoxyhemiacetals. J Org Chem 2021; 86:1253-1261. [PMID: 33352053 DOI: 10.1021/acs.joc.0c02473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amines are used as additives to facilitate or increase the host-guest chemistry between the thiourea and the anions of Bronsted acids. However, we here demonstrate, for the first time, the synergistic effect of the combination of DMAP/HCl/Schreiner's thiourea in catalyzing dehydrative glycosylation. The variations in the electronic effects of the cationic Bronsted acid part (the protonated DMAP) in the presence of chloride binding Schreiner's thiourea have been discussed using NMR and X-ray crystallographic techniques.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
32
|
Das T. Desymmetrization of Cyclopentene‐1,3‐Diones via Alkylation, Arylation, Amidation and Cycloaddition Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202003341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tapas Das
- Department of Chemistry NIT Jamshedpur Jamshedpur 831014 India
| |
Collapse
|
33
|
Schaufelberger F, Seigel K, Ramström O. Hydrogen-Bond Catalysis of Imine Exchange in Dynamic Covalent Systems. Chemistry 2020; 26:15581-15588. [PMID: 32427370 DOI: 10.1002/chem.202001666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 12/28/2022]
Abstract
The reversibility of imine bonds has been exploited to great effect in the field of dynamic covalent chemistry, with applications such as preparation of functional systems, dynamic materials, molecular machines, and covalent organic frameworks. However, acid catalysis is commonly needed for efficient equilibration of imine mixtures. Herein, it is demonstrated that hydrogen bond donors such as thioureas and squaramides can catalyze the equilibration of dynamic imine systems under unprecedentedly mild conditions. Catalysis occurs in a range of solvents and in the presence of many sensitive additives, showing moderate to good rate accelerations for both imine metathesis and transimination with amines, hydrazines, and hydroxylamines. Furthermore, the catalyst proved simple to immobilize, introducing both reusability and extended control of the equilibration process.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden
| | - Karolina Seigel
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, 10044, Stockholm, Sweden.,Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA.,Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
34
|
A flexible strategy for the synthesis of bifunctional 6′-(thio)-urea containing Cinchona alkaloid ammonium salts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Matador E, Iglesias‐Sigüenza J, Monge D, Merino P, Fernández R, Lassaletta JM. Enantio‐ and Diastereoselective Nucleophilic Addition of
N
‐
tert
‐Butylhydrazones to Isoquinolinium Ions through Anion‐Binding Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - Javier Iglesias‐Sigüenza
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - David Monge
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - Pedro Merino
- Instituto de BiocomputaciónyFísica de Sistemas Complejos (BIFI) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Rosario Fernández
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
36
|
Zhao W, Lv Y, Li J, Feng Z, Ni Y, Hadjichristidis N. A Synthetic Method for Site‐Specific Functionalized Polypeptides: Metal‐Free, Highly Active, and Selective at Room Temperature. Angew Chem Int Ed Engl 2020; 60:889-895. [DOI: 10.1002/anie.202009316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Zhao
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Yanfeng Lv
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Zihao Feng
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Yonghao Ni
- Department of Chemical Engineering University of New Brunswick, Fredericton New Brunswick E3B 5A3 Canada
| | - Nikos Hadjichristidis
- KAUST Catalysis Center Polymer Synthesis Laboratory Physical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Zhao W, Lv Y, Li J, Feng Z, Ni Y, Hadjichristidis N. A Synthetic Method for Site‐Specific Functionalized Polypeptides: Metal‐Free, Highly Active, and Selective at Room Temperature. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei Zhao
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Yanfeng Lv
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Zihao Feng
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Yonghao Ni
- Department of Chemical Engineering University of New Brunswick, Fredericton New Brunswick E3B 5A3 Canada
| | - Nikos Hadjichristidis
- KAUST Catalysis Center Polymer Synthesis Laboratory Physical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Grill K, Dube H. Supramolecular Relay-Control of Organocatalysis with a Hemithioindigo-Based Molecular Motor. J Am Chem Soc 2020; 142:19300-19307. [DOI: 10.1021/jacs.0c09519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kerstin Grill
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Henry Dube
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
39
|
Bagdasarian AL, Popov S, Wigman B, Wei W, Lee W, Nelson HM. Urea-Catalyzed Vinyl Carbocation Formation Enables Mild Functionalization of Unactivated C-H Bonds. Org Lett 2020; 22:7775-7779. [PMID: 32558583 PMCID: PMC8448122 DOI: 10.1021/acs.orglett.0c01745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein we report the 3,5-bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C-H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C-H insertion and Friedel-Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen-bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C-O bonds. Despite the highly Lewis-acidic nature of these catalysts that enables triflate abstraction from sp2 carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis-basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.
Collapse
Affiliation(s)
- Alex L Bagdasarian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Stasik Popov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wenjing Wei
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Woojin Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
40
|
Nickisch R, Gabrielsen SM, Meier MAR. Novel Access to Known and Unknown Thiourea Catalyst via a Multicomponent‐Reaction Approach. ChemistrySelect 2020. [DOI: 10.1002/slct.202003336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Roman Nickisch
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| | - Solveig M. Gabrielsen
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| | - Michael A R. Meier
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| |
Collapse
|
41
|
Merten C. Recent Advances in the Application of Vibrational Circular Dichroism Spectroscopy for the Characterization of Asymmetric Catalysts. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000876] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Christian Merten
- Fakultät für Chemie und Biochemie Organische Chemie II Ruhr Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
42
|
Houle C, Savoie PR, Davies C, Jardel D, Champagne PA, Bibal B, Paquin J. Thiourea‐Catalyzed C−F Bond Activation: Amination of Benzylic Fluorides. Chemistry 2020; 26:10620-10625. [DOI: 10.1002/chem.202001905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Camille Houle
- CCVC, PROTEODépartement de chimieUniversité Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Paul R. Savoie
- CCVC, PROTEODépartement de chimieUniversité Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Clotilde Davies
- Institut des Sciences MoléculairesUniversité de BordeauxUMR CNRS 5255 351 cours de la Libération 33405 Talence France
| | - Damien Jardel
- Institut des Sciences MoléculairesUniversité de BordeauxUMR CNRS 5255 351 cours de la Libération 33405 Talence France
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental ScienceNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Brigitte Bibal
- Institut des Sciences MoléculairesUniversité de BordeauxUMR CNRS 5255 351 cours de la Libération 33405 Talence France
| | - Jean‐François Paquin
- CCVC, PROTEODépartement de chimieUniversité Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| |
Collapse
|
43
|
Alcaraz Janßen M, Thiele CM. Poly-γ-S-perillyl-l-glutamate and Poly-γ-S-perillyl-d-glutamate: Diastereomeric Alignment Media Used for the Investigation of the Alignment Process. Chemistry 2020; 26:7831-7839. [PMID: 32134524 PMCID: PMC7384199 DOI: 10.1002/chem.201905447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/09/2022]
Abstract
Residual dipolar couplings (RDCs) offer additional information for structure elucidation by NMR spectroscopy. They are measured in anisotropic media, such as lyotropic liquid crystalline phases of polypeptides. Today, some suitable polypeptides are known. Nevertheless, structural influences of these polypeptides on the alignment properties are not really understood. Thus, which influence a chiral side chain has on enantiodiscrimination and whether we can improve the enantiodifferentiation significantly by adding an additional chiral center in the side chain are questions of interest. Therefore, new diastereomeric polypeptide-based alignment media with an additional chiral center in the side chain derived from perillyl alcohol were synthesized and their properties were investigated (secondary structure, liquid crystallinity, etc.). The enantiomers of isopinocampheol and β-pinene were used as model analytes for the study of enantiodiscrimination. Additionally, the usage of 1 H-1 H-RDCs to improve the alignment tensor quality is demonstrated.
Collapse
Affiliation(s)
- Marcel Alcaraz Janßen
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| |
Collapse
|
44
|
Sandler I, Larik FA, Mallo N, Beves JE, Ho J. Anion Binding Affinity: Acidity versus Conformational Effects. J Org Chem 2020; 85:8074-8084. [PMID: 32407087 DOI: 10.1021/acs.joc.0c00888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-level quantum chemical calculations were used to elucidate the gas- and solution-phase conformational equilibria for a series of symmetrically substituted (thio)ureas, (thio)squaramides, and croconamides. Gas-phase calculations predict that the thermodynamic conformer of many of these anion receptors is not the dual-hydrogen-bond-facilitating anti-anti conformer as is commonly assumed. For N,N'-diaryl thiosquaramides and croconamides, the syn-syn conformer is typically the predominant conformer. Solution-phase calculations show that the anti-anti conformer is increasingly stabilized as the polarity of the solvent increases. However, the syn-syn conformer remains the lowest energy conformation for croconamides. These predictions are used to explain the acidity versus chloride binding affinity correlations recently reported for some of these compounds. The chloride binding constants for thioureas and croconamides are significantly lower than expected on the basis of their pKa values, and this may be due in part to the need for these receptors to reorganize into the anti-anti conformer. Experimental NMR nuclear Overhauser effect (NOE) measurements of an asymmetrically substituted squaramide and its thio analogue are consistent with the syn-syn conformation being predominant at 298 K. The conformational equilibria should therefore be an important consideration for the design and development of future anion receptors and organocatalysts.
Collapse
Affiliation(s)
- Isolde Sandler
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fayaz Ali Larik
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Neil Mallo
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
45
|
Riegel GF, Kass SR. N-Vinyl and N-Aryl Hydroxypyridinium Ions: Charge-Activated Catalysts with Electron-Withdrawing Groups. J Org Chem 2020; 85:6017-6026. [DOI: 10.1021/acs.joc.0c00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- George F. Riegel
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Steven R. Kass
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Payne C, Kass SR. Structural considerations for charge‐enhanced Brønsted acid catalysts. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Curtis Payne
- Department of Chemistry University of Minnesota Minneapolis MN USA
| | - Steven R. Kass
- Department of Chemistry University of Minnesota Minneapolis MN USA
| |
Collapse
|
47
|
Smajlagic I, Guest M, Durán R, Herrera B, Dudding T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. J Org Chem 2020; 85:585-593. [PMID: 31790584 DOI: 10.1021/acs.joc.9b02682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Matt Guest
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Rocío Durán
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| |
Collapse
|
48
|
Ehrhard AA, Jäger S, Malm C, Basaran S, Hunger J. CF3-groups critically enhance the binding of thiourea catalysts to ketones – a NMR and FT-IR study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Hirschmann M, Schwab M, Thiele CM. Molecular Weights: The Key for Lyotropic Liquid Crystalline Phases of Poly-β-benzyl-l-aspartate. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Max Hirschmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Mira Schwab
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
50
|
Liedtke T, Hilche T, Klare S, Gansäuer A. Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry: Additives and Solvents. CHEMSUSCHEM 2019; 12:3166-3171. [PMID: 30779429 DOI: 10.1002/cssc.201900344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Cyclic voltammetry-based screening method for Cp2 TiX-catalyzed reactions is extended to the screening of solvents other than tetrahydrofuran for bulk electrolysis of the catalyst and radical arylation. It was found that CH3 CN can be used as a solvent for both processes without additives. Furthermore, in tetrahydrofuran, squaramide L2 is more efficient than the previously reported supramolecular halide binder, Schreiner's thiourea L1. The results extend the usefulness of the proposed time and resource-efficient screening method for designing catalysis reactions in single-electron steps.
Collapse
Affiliation(s)
- Theresa Liedtke
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Tobias Hilche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|