1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Gao P, Zhu Y, Zhou T, Utecht-Jarzyńska G, Szostak R, Szostak M. Pd-Catalyzed Decarbonylative Suzuki-Miyaura Cross-Coupling of Pyramidalized N-Mesyl Amides by a Tandem N-C(O)/C-C Bond Activation. J Org Chem 2024; 89:17463-17474. [PMID: 39580811 DOI: 10.1021/acs.joc.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The Suzuki-Miyaura biaryl cross-coupling is the pivotal technology for carbon-carbon coupling in pharmaceutical, polymer, and agrochemical fields. A long-standing challenge has been the development of efficient precursors for the decarbonylative cross-coupling of amide bonds. Herein, we report a highly chemoselective palladium-catalyzed Suzuki-Miyaura cross-coupling of N-mesyl amides for the synthesis of biaryls by a tandem N-C(O)/C-C bond activation with high selectivity for decarbonylative cleavage. The results demonstrate the first example of a decarbonylative coupling (-CO) of amide bonds activated by an atom-economic, low-cost, and benign N-pyramidalized mesyl group (>30 examples). The reaction shows high generality and functional group tolerance and can be applied in late-stage functionalization of pharmaceuticals. Notably, N-mesyl amides are significantly more reactive than other classes of amides in the decarbonylative Suzuki cross-coupling manifold. Density functional theory (DFT) studies demonstrate considerably lower barrier for rate-limiting transmetalation using N-mesyl amides. The study establishes N-mesyl amides as versatile precursors for Suzuki-Miyaura cross-coupling to afford valuable biaryls and opens the door to deploy N-mesyl amides in challenging cross-couplings of amides by decarbonylation.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Yawei Zhu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | | | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Lee GS, Hong SH. Direct C(sp 3)-H Acylation by Mechanistically Controlled Ni/Ir Photoredox Catalysis. Acc Chem Res 2023; 56:2170-2184. [PMID: 37506313 DOI: 10.1021/acs.accounts.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
ConspectusSynthetic chemists have consistently aimed to develop efficient methods for synthesizing ketones, which are essential building blocks in organic chemistry and play significant roles in bioactive molecules. Recent efforts have focused on using photoredox catalysis, which enables previously inaccessible activation modes, to synthesize ketones through the cross-coupling of an acyl electrophile and simple C(sp3)-H bonds. Over the past few years, we have worked on developing effective and versatile approaches for directly acylating activated hydrocarbons to forge ketones.Initially, thioesters were explored as the acyl source to achieve the direct acylation of ethers, but an unexpected thioesterification reaction was observed instead. To gain insights into this reactivity, we conducted the optimization of reaction conditions, substrate scope evaluation, and mechanistic studies. Drawing from our understanding of Ni/Ir photocatalysis obtained in this study, we subsequently developed a method for the direct acylation of simple hydrocarbons. The use of less-reactive amides as the acyl electrophiles was found to be critical for suppressing undesired pathways. This seemingly counterintuitive reactivity was carefully studied, revealing a substrate-assisted reaction mechanism in which the suppressed oxidative addition leads to early-stage nickel oxidation and C-H activation.To address the drawbacks of this method, which primarily arose from decarbonylative and transmetallative side pathways, we employed N-acyllutidiniums as the acyl electrophile. This prevented undesired decomposition pathways, enabling the use of α-chiral acyl substrates with the retention of their stereochemistry, particularly those derived from α-amino acids. The developed versatile methodology allowed us to access a diverse range of α-amino ketones and their homologues.Despite the elegant utility of Ni/photoredox catalysis in developing new synthetic methodologies, the precise behavior of nickel catalysts under redox conditions is incompletely understood. To gain insight into this behavior and develop new chemical reactions, we used a combination of experimental and computational methods. Our investigations revealed that devised adjustments to the reaction conditions in nickel/photoredox catalysis can result in significant differences in the reaction outcomes, providing chemists with opportunities to tailor reactions through carefully designed mechanistic strategies. We believe that continued efforts to study and apply nickel redox modulation will lead to the discovery of additional organic transformations.
Collapse
Affiliation(s)
- Geun Seok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Douthwaite J, Zhao R, Shim E, Mahjour B, Zimmerman PM, Cernak T. Formal Cross-Coupling of Amines and Carboxylic Acids to Form sp 3-sp 2 Carbon-Carbon Bonds. J Am Chem Soc 2023; 145:10930-10937. [PMID: 37184831 PMCID: PMC10214451 DOI: 10.1021/jacs.2c11563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 05/16/2023]
Abstract
Amines and carboxylic acids are abundant synthetic building blocks that are classically united to form an amide bond. To access new pockets of chemical space, we are interested in the development of amine-acid coupling reactions that complement the amide coupling. In particular, the formation of carbon-carbon bonds by formal deamination and decarboxylation would be an impactful addition to the synthesis toolbox. Here, we report a formal cross-coupling of alkyl amines and aryl carboxylic acids to form C(sp3)-C(sp2) bonds following preactivation of the amine-acid building blocks as a pyridinium salt and N-acyl-glutarimide, respectively. Under nickel-catalyzed reductive cross-coupling conditions, a diversity of simple and complex substrates are united in good to excellent yield, and numerous pharmaceuticals are successfully diversified. High-throughput experimentation was leveraged in the development of the reaction and the discovery of performance-enhancing additives such as phthalimide, RuCl3, and GaCl3. Mechanistic investigations suggest phthalimide may play a role in stabilizing productive Ni complexes rather than being involved in oxidative addition of the N-acyl-imide and that RuCl3 supports the decarbonylation event, thereby improving reaction selectivity.
Collapse
Affiliation(s)
- James
L. Douthwaite
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruheng Zhao
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eunjae Shim
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Babak Mahjour
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tim Cernak
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Gazizov AS, Smolobochkin AV, Rizbayeva TS, Vatsadze SZ, Burilov AR, Sinyashin OG, Alabugin IV. "Stereoelectronic Deprotection of Nitrogen": Recovering Nucleophilicity with a Conformational Change. J Org Chem 2023. [PMID: 37216317 DOI: 10.1021/acs.joc.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ureas are often thought of as "double amides" due to the obvious structural similarity of these functional groups. The main structural feature of an amide is its planarity, which is responsible for the conjugation between the nitrogen atom and carbonyl moiety and the decrease of amide nucleophilicity. Consequently, since amides are poor nucleophiles, ureas are often thought of as poor nucleophiles as well. Herein, we demonstrate that ureas can be distinctly different from amides. These differences can be amplified by rotation around one of the ureas' C-N bonds, which switches off the amide resonance and recovers the nucleophilicity of one of the nitrogen atoms. This conformational change can be further facilitated by the judicious introduction of steric bulk to disfavor the planar conformation. This change in reactivity is an example of "stereoelectronic deprotection," a concept when the desired reactivity of a functional group is produced by a conformational change rather than a chemical modification. This concept may be used complementarily to the traditional protecting groups. We also demonstrate both the viability and the utility of this concept by the synthesis of unusual 2-oxoimidazolium salts possessing quaternary nitrogen atoms at the urea moiety.
Collapse
Affiliation(s)
- Almir S Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Andrey V Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Tanzilya S Rizbayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Igor V Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee Fl 32306, United States
| |
Collapse
|
7
|
Yamasaki R, Okada Y, Iizumi H, Ito A, Fukuda K, Okamoto I. Structure and Additive-free Transamidation of Planar N-Cyano Amides. J Org Chem 2023; 88:5704-5712. [PMID: 37094254 DOI: 10.1021/acs.joc.3c00172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Although transamidation of amides generally requires metals, additives, or harsh conditions, we present here a facile transamidation of N-cyano amides with various amines at ambient temperature without any additive. N-cyano amides preferred the trans conformation and have a reduced double bond character revealed by crystal analysis. The DFT study indicates that the transamidation reaction proceeds through the direct attack of amine on the amide carbonyl since the LUMO (or LUMO+1) is located at the carbonyl moiety.
Collapse
Affiliation(s)
- Ryu Yamasaki
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuko Okada
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiromi Iizumi
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Ai Ito
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kazuo Fukuda
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Iwao Okamoto
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
8
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Jones A, Williams MTJ, Morrill LC, Browne DL. Mechanical Activation of Zero-Valent Metal Reductants for Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2022; 12:13681-13689. [PMID: 36366760 PMCID: PMC9638985 DOI: 10.1021/acscatal.2c03117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 12/04/2022]
Abstract
The cross-electrophile coupling of either twisted-amides or heteroaryl halides with alkyl halides, enabled by ball-milling, is herein described. The operationally simple nickel-catalyzed process has no requirement for inert atmosphere or dry solvents and delivers the corresponding acylated or heteroarylated products across a broad range of substrates. Key to negating the necessity of inert reaction conditions is the mechanical activation of the raw metal terminal reductant: manganese in the case of twisted amides and zinc for heteroaryl halides.
Collapse
Affiliation(s)
- Andrew
C. Jones
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Matthew T. J. Williams
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Duncan L. Browne
- School
of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, U.K.
| |
Collapse
|
10
|
Yu H, Wang ZX. Rhodium(I)-Catalyzed P(III)-Directed Aromatic C–H Acylation with Amides. J Org Chem 2022; 87:14384-14393. [DOI: 10.1021/acs.joc.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Adebomi V, Wang Y, Sriram M, Raj M. Selective Conversion of Unactivated C-N Amide Bond to C-C bond via Steric and Electronic Resonance Destabilization. Org Lett 2022; 24:6525-6530. [PMID: 36067532 PMCID: PMC10165555 DOI: 10.1021/acs.orglett.2c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemo- and site-selective reaction at the particular C-N amide bond among a sea of other amides is a significant and long-standing challenge. Although the use of twisted amides has been demonstrated for modifications of inert C-N amide bonds, none of these methods can selectively activate a particular amide bond for C-C bond formation in the presence of similar amides. Using density functional theory as a guide, we report the first site-selective C-C bond modification of a particular C-N amide bond in polyamides with a low twist angle by combining ground-state steric distortion with electronic activation.
Collapse
Affiliation(s)
- Victor Adebomi
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yuwen Wang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mahesh Sriram
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Cetin HK, Baytaroglu C. The Impact of Age on Percutaneous Thrombectomy Outcomes in the Management of Lower Extremity Deep Vein Thrombosis. HASEKI TIP BÜLTENI 2022. [DOI: 10.4274/haseki.galenos.2022.8233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Hattori H, Ogiwara Y, Sakai N. Formation, Characterization, and Reactivity of Acyl Palladium Complexes in Pd(OAc) 2/PCy 3-Catalyzed Transformation of Acyl Fluorides. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Hattori
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
14
|
Zhang J, Zhao H, Li G, Zhu X, Shang L, He Y, Liu X, Ma Y, Szostak M. Transamidation of thioamides with nucleophilic amines: thioamide N-C(S) activation by ground-state-destabilization. Org Biomol Chem 2022; 20:5981-5988. [PMID: 35441645 DOI: 10.1039/d2ob00412g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China. .,Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Hui Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Xinhao Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Linqin Shang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yang He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
15
|
Xu RR, Wen D, Qi X, Wu XF. Palladium-catalyzed cascade Heck-type cyclization and reductive aminocarbonylation for the synthesis of functionalized amides. Org Biomol Chem 2022; 20:2605-2608. [PMID: 35293928 DOI: 10.1039/d2ob00299j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A palladium-catalyzed Heck/carbonylative cyclization process has been explored for the synthesis of functionalized amides. By using nitroarenes as readily accessible nitrogen sources, a variety of amide products were obtained in moderate to excellent yields with good functional group compatibility. Furthermore, a late-stage modification of a natural molecule is also achieved by this protocol.
Collapse
Affiliation(s)
- Ren-Rui Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Dan Wen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China. .,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany.
| |
Collapse
|
16
|
Nonami R, Morimoto Y, Kanemoto K, Yamamoto Y, Shirai T. Cationic Iridium‐Catalyzed Asymmetric Decarbonylative Aryl Addition of Aromatic Aldehydes to Bicyclic Alkenes. Chemistry 2022; 28:e202104347. [DOI: 10.1002/chem.202104347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Reina Nonami
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Yusei Morimoto
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry Institute of Science and Engineering Chuo University Kasuga 1-3-27, Bunkyo-ku Tokyo 112-8551 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohiko Shirai
- Department of Social Design Engineering National Institute of Technology Kochi College 200-1 Monobe Otsu Nankoku Kochi 783-8508 Japan
| |
Collapse
|
17
|
Mechanochemical Solvent‐Free Suzuki–Miyaura Cross‐Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Liu C, Szostak M. Decarbonylative Sonogashira Cross-Coupling: Fruitful Marriage of Alkynes with Carboxylic Acid Electrophiles. Org Chem Front 2022; 9:216-222. [PMID: 35495770 PMCID: PMC9049177 DOI: 10.1039/d1qo01539g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Sonogashira cross-coupling is one of the most fundamental C-C bond forming reactions, wherein the strategic value of the alkyne moiety has found widespread application at the frontiers of organic chemistry, materials science and drug discovery as the cornerstone building block of chemical synthesis. Although traditional variants of Sonogashira cross-coupling involve aryl halides and pseudohalides as electrophiles, recently, tremendous advances have been made in the unconventional disconnection exploiting common carboxylic acids by decarbonylation/transmetalation pathway. This manifold (1) permits to take advantage of carboxylic acids as a ubiquitous class of substrates in organic synthesis that are derived from an orthogonal pool of precursors to aryl halides and pseudohalides, (2) combines the benefits of the palladium catalyzed C(sp2)-C(sp) coupling of terminal alkynes with the inherent presence of the carboxylic acid moiety in pharmaceuticals, natural products and organic materials. In this highlight article, we summarize recent progress generated by the decarbonylative Sonogashira cross-coupling of carboxylic acid electrophiles to produce arylalkynes and conjugated enynes as a novel avenue for chemical synthesis, whereby a large number of chemical reactions critically rely on transformations of alkynes.
Collapse
Affiliation(s)
- Chengwei Liu
- School of Chemical Engineering and Technology, Yantai Nanshan University, Longkou, Yantai, Shandong 265713, China; School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
19
|
Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical Solvent-Free Suzuki-Miyaura Cross-Coupling of Amides via Highly Chemoselective N-C Cleavage. Angew Chem Int Ed Engl 2021; 61:e202114146. [PMID: 34877756 DOI: 10.1002/anie.202114146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Although cross-coupling reactions of amides by selective N-C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N-C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N-C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N-C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Lei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102, United States
| |
Collapse
|
20
|
An T, Lee Y. Nucleophilic Substitution at the Guanidine Carbon Center via Guanidine Cyclic Diimide Activation. Org Lett 2021; 23:9163-9167. [PMID: 34766783 DOI: 10.1021/acs.orglett.1c03473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the electron-deficient nature of the guanidine carbon centers, nucleophilic reactions at these sites have been underdeveloped because of the resonance stabilization of the guanidine group. We propose a guanidine C-N bond substitution strategy entailing the formation of guanidine cyclic diimide (GCDI) structures, which effectively destabilize the resonance structure of the guanidine group. In the presence of acid additives, the guanidine carbon center of GCDIs undergoes nucleophilic substitution reactions with various amines and alcohols.
Collapse
Affiliation(s)
- Taeyang An
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Govindan K, Chen NQ, Chuang YW, Lin WY. Unlocking Amides through Selective C-N Bond Cleavage: Allyl Bromide-Mediated Divergent Synthesis of Nitrogen-Containing Functional Groups. Org Lett 2021; 23:9419-9424. [PMID: 34784227 DOI: 10.1021/acs.orglett.1c03541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a new set of reactions based on the unlocking of amides through simple treatment with allyl bromide, creating a common platform for accessing a diverse range of nitrogen-containing functional groups such as primary amides, sulfonamides, primary amines, N-acyl compounds (esters, thioesters, amides), and N-sulfonyl esters. The method has potential industrial applicability, as demonstrated through gram-scale syntheses in batch and in a continuous flow system.
Collapse
Affiliation(s)
- Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Yu-Wei Chuang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
22
|
Lalloo N, Malapit CA, Taimoory SM, Brigham CE, Sanford MS. Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis. J Am Chem Soc 2021; 143:18617-18625. [PMID: 34709804 DOI: 10.1021/jacs.1c08551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Article describes the development of a decarbonylative Pd-catalyzed aryl-fluoroalkyl bond-forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [RFC(O)X] with aryl organometallics (Ar-M'). This reaction was optimized by interrogating the individual steps of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. These stoichiometric organometallic studies revealed several critical elements for reaction design. First, uncatalyzed background reactions between RFC(O)X and Ar-M' can be avoided by using M' = boronate ester. Second, carbonyl de-insertion and Ar-RF reductive elimination are the two slowest steps of the catalytic cycle when RF = CF3. Both steps are dramatically accelerated upon changing to RF = CHF2. Computational studies reveal that a favorable F2C-H---X interaction contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate esters with difluoroacetyl fluoride.
Collapse
Affiliation(s)
- Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christian A Malapit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S Maryamdokht Taimoory
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel‐Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
- Department of Chemistry University of Colorado Denver Campus Box 194, P. O. Box 173364 Denver CO 80217-3364 USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
24
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
25
|
Liu S, Yang L, Wang T, Fu J, Tao J, Yu W. Nickel-Catalyzed Oxidative Transamidation of Tertiary Aromatic Amines with N-Acylsaccharins. Synlett 2021. [DOI: 10.1055/a-1517-5895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe use of tertiary amines as surrogates for secondary amines has prominent advantages in terms of stabilization and ease of handling. A Ni-catalyzed transamidation of N-acylsaccharins with tertiary aromatic amines is reported. By using tert-butyl hydroperoxide as the terminal oxidant, this reaction permits selective cleavage of the C(sp3)–N bonds of unsymmetrical tertiary aromatic amines depending on the sizes of the alkyl substituents.
Collapse
Affiliation(s)
- Shengzhang Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
| | - Lingyun Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
| | - Tao Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
- National Research Center for Carbohydrate Synthesis, Jiangxi Province’s Key Laboratory of Chemical Biology, Jiangxi Normal University
| | - Junkai Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
- National Research Center for Carbohydrate Synthesis, Jiangxi Province’s Key Laboratory of Chemical Biology, Jiangxi Normal University
| | - Jiasi Tao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
| | - Weijie Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
| |
Collapse
|
26
|
Rahman MM, Pyle DJ, Bisz E, Dziuk B, Ejsmont K, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl-δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. J Org Chem 2021; 86:10455-10466. [PMID: 34275281 DOI: 10.1021/acs.joc.1c01110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of efficient methods for facilitating N-C(O) bond activation in amides is an important objective in organic synthesis that permits the manipulation of the traditionally unreactive amide bonds. Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N-C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered rings using Pd(II)-NHC and Pd-phosphine systems reveals the relative reactivity order of N-activating groups in Suzuki-Miyaura cross-coupling. The reactivity of activated phenolic esters and thioesters is evaluated for comparison in O-C(O) and S-C(O) cross-coupling under the same reaction conditions. Most notably, the study reveals N-acyl-δ-valerolactams as a highly effective class of mono-N-acyl-activated amide precursors in cross-coupling. The X-ray structure of the model N-acyl-δ-valerolactam is characterized by an additive Winkler-Dunitz distortion parameter Σ(τ+χN) of 54.0°, placing this amide in a medium distortion range of twisted amides. Computational studies provide insight into the structural and energetic parameters of the amide bond, including amidic resonance, N/O-protonation aptitude, and the rotational barrier around the N-C(O) axis. This class of N-acyl-lactams will be a valuable addition to the growing portfolio of amide electrophiles for cross-coupling reactions by acyl-metal intermediates.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Daniel J Pyle
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.,Department of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6 14, Wroclaw 50-373, Poland
| | - Krzysztof Ejsmont
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
27
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel-Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021; 60:24510-24518. [PMID: 34235828 DOI: 10.1002/anie.202106356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The Ni-catalyzed decarbonylative borylation of (hetero)aryl carboxylic acids with B2 cat2 has been achieved without recourse to any additives. This Ni-catalyzed method exhibits a broad substrate scope covering poorly reactive non-ortho-substituted (hetero)aryl carboxylic acids, and tolerates diverse functional groups including some of the groups active to Ni0 catalysts. The key to achieve this decarbonylative borylation reaction is the choice of B2 cat2 as a coupling partner that not only acts as a borylating reagent, but also chemoselectively activates aryl carboxylic acids towards oxidative addition of their C(acyl)-O bond to Ni0 catalyst via the formation of acyloxyboron compounds. A combination of experimental and computational studies reveals a detailed plausible mechanism for this reaction system, which involves a hitherto unknown concerted decarbonylation and reductive elimination step that generates the aryl boronic ester product. This mode of boron-promoted carboxylic acid activation is also applicable to other types of reactions.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, CO, 80217-3364, USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Rendón-Nava D, Angeles-Beltrán D, Rheingold AL, Mendoza-Espinosa D. Palladium(II) Complexes of a Neutral CCC-Tris(N-heterocyclic carbene) Pincer Ligand: Synthesis and Catalytic Applications. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Rendón-Nava
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| | - Deyanira Angeles-Beltrán
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, Ciudad de México, Mexico 02200
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Daniel Mendoza-Espinosa
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| |
Collapse
|
29
|
Wierzba AJ, Gryko DT, Gryko D. Acylation of electrophilic bicyclo[1.1.0]butanes via Co/Ni-catalyzed reductive cross-coupling. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyclobutane scaffold is appreciated in medicinal chemistry for its strained, well-defined three-dimensional structure. Consequently, methods for the synthesis of cyclobutyl derivatives have become highly desired, particularly those offering access to compounds with new patterns of substituents. Herein, an acylation of electrophilic strained molecules at the bridgehead carbon with [Formula: see text]-acyl-glutarimides is reported. For this, the polarity-reversal strategy based on cobalt catalysis that enables the generation of cyclobutyl radicals in a strain release event was harnessed. These nucleophilic species, in the presence of a Ni-complex, couple with [Formula: see text]-acyl-glutarimides to give cyclobutyl ketones in decent yields.
Collapse
Affiliation(s)
- Aleksandra J. Wierzba
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
30
|
Kadam AA, Metz TL, David CM, Koeritz MT, Stanley LM. Palladium-Catalyzed Intermolecular Acylative Heck Reactions with Imides as Acyl Electrophiles. J Org Chem 2021; 86:6863-6868. [PMID: 33881868 DOI: 10.1021/acs.joc.1c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We disclose palladium-catalyzed, intermolecular, acylative Heck reactions that use imides as acyl electrophiles. The catalyst generated from [Pd(allyl)Cl]2 and DPEphos promotes the reaction between N-benzoylglutarimides and norbornene in the presence of silver phosphate. The acylative Heck reaction encompasses an array of N-benzoylglutarimide electrophiles that contain electron-donating, halogenated, and electron-withdrawing substituents to generate α,β-unsaturated ketones in moderate to high yields (25-82%). The bicylic α,β-unsaturated ketones are readily transformed into polycyclic architectures via thermal hetero-Diels-Alder reactions that occur by the dimerization of the α,β-unsaturated ketones.
Collapse
Affiliation(s)
- Abhishek A Kadam
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Tanner L Metz
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Colton M David
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mason T Koeritz
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
31
|
Yang S, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Suzuki-Miyaura Cross-Coupling of Esters by Selective O-C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Catalyst Evaluation and Mechanism. Catal Sci Technol 2021; 11:3189-3197. [PMID: 34211698 PMCID: PMC8240519 DOI: 10.1039/d1cy00312g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C-O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki-Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts [Pd(NHC)(μ-Cl)Cl]2. We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl]2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl]2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utility of this unconventional O-C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl]2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd(II)-NHC catalysts, and versatile reactivity, these should be considered as the 'first-choice' catalysts for all routine applications in ester O-C(O) bond activation.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- King Abdullah University of Science & Technology, KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| | - Steven P Nolan
- Department of Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
32
|
Govindan K, Lin WY. Ring Opening/Site Selective Cleavage in N-Acyl Glutarimide to Synthesize Primary Amides. Org Lett 2021; 23:1600-1605. [PMID: 33570960 DOI: 10.1021/acs.orglett.1c00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A LiOH-promoted hydrolysis selective C-N cleavage of twisted N-acyl glutarimide for the synthesis of primary amides under mild conditions has been developed. The reaction is triggered by a ring opening of glutarimide followed by C-N cleavage to afford primary amides using 2 equiv of LiOH as the base at room temperature. The efficacy of the reactions was considered and administrated for various aryl and alkyl substituents in good yield with high selectivity. Moreover, gram-scale synthesis of primary amides using a continuous flow method was achieved. It is noted that our new methodology can apply under both batch and flow conditions for synthetic and industrial applications.
Collapse
Affiliation(s)
- Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
33
|
Li CX, Ning Q, Zhao W, Cao HJ, Wang YP, Yan H, Lu CS, Liang Y. Rh-Catalyzed Decarbonylative Cross-Coupling between o-Carboranes and Twisted Amides: A Regioselective, Additive-Free, and Concise Late-Stage Carboranylation. Chemistry 2021; 27:2699-2706. [PMID: 32969106 DOI: 10.1002/chem.202003634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/06/2020] [Indexed: 12/17/2022]
Abstract
The convenient cross-coupling of sp2 or sp3 carbons with a specific boron vertex on carborane cage represents significant synthetic values and insurmountable challenges. In this work, we report an Rh-catalyzed reaction between o-carborane and N-acyl-glutarimides to construct various Bcage -C bonds. Under the optimized condition, the removable imine directing group (DG) leads to B(3)- or B(3,6)-C couplings, while the pyridyl DG leads to B(3,5)-Ar coupling. In particular, an unexpected rearrangement of amide reagent is observed in pyridyl directed B(4)-C(sp3 ) formation. This scalable protocol has many advantages, including easy access, the use of cheap and widely available coupling agents, no requirement of an external ligand, base or oxidant, high efficiency, and a broad substrate scope. Leveraging the RhI dimer and twisted amides, this method enables straightforward access to diversely substituted and therapeutically important carborane derivatives at boron site, and provides a highly valuable vista for carborane-based drug screening.
Collapse
Affiliation(s)
- Chun-Xiao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Ning
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hou-Ji Cao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Ping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
34
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel‐Catalyzed Suzuki–Miyaura‐Coupling and Transfer‐Hydrogenation Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy B. Boit
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Milauni M. Mehta
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Emma L. Baker
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
35
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel-Catalyzed Suzuki-Miyaura-Coupling and Transfer-Hydrogenation Cascade. Angew Chem Int Ed Engl 2021; 60:2472-2477. [PMID: 33029868 PMCID: PMC7855255 DOI: 10.1002/anie.202012048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Indexed: 12/11/2022]
Abstract
We report a means to achieve the addition of two disparate nucleophiles to the amide carbonyl carbon in a single operational step. Our method takes advantage of non-precious-metal catalysis and allows for the facile conversion of amides to chiral alcohols via a one-pot Suzuki-Miyaura cross-coupling/transfer-hydrogenation process. This study is anticipated to promote the development of new transformations that allow for the conversion of carboxylic acid derivatives to functional groups bearing stereogenic centers via cascade processes.
Collapse
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Milauni M Mehta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Emma L Baker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
36
|
Lu H, Zhao TT, Bai JH, Ye D, Xu PF, Wei H. Divergent Coupling of Benzocyclobutenones with Indoles via C-H and C-C Activations. Angew Chem Int Ed Engl 2020; 59:23537-23543. [PMID: 32896964 DOI: 10.1002/anie.202010244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 11/07/2022]
Abstract
Highly selective divergent coupling reactions of benzocyclobutenones and indoles, in which the chemoselectivity is controlled by catalysts, are reported herein. The substrates undergo C2(indole)-C8(benzocyclobutenone) coupling to produce benzylated indoles and benzo[b]carbazoles in the Ni- and Ru-catalyzed reactions. A completely different selectivity pattern C2(indole)-C2(benzocyclobutenone) coupling to form arylated indoles is observed in the Rh-catalyzed reaction. Preliminary mechanistic studies suggest C-H and C-C activations in the reaction pathway. Synthetic utility of this protocol is demonstrated by the selective synthesis of three different types of carbazoles from the representative products.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Hua Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Dan Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
37
|
Lu H, Zhao T, Bai J, Ye D, Xu P, Wei H. Divergent Coupling of Benzocyclobutenones with Indoles via C−H and C−C Activations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Tian‐Tian Zhao
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jin‐Hua Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Dan Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Peng‐Fei Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
38
|
Garcı́a-Cárceles J, Bahou KA, Bower JF. Recent Methodologies That Exploit Oxidative Addition of C–N Bonds to Transition Metals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03341] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Karim A. Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
39
|
Lee GS, Won J, Choi S, Baik M, Hong SH. Synergistic Activation of Amides and Hydrocarbons for Direct C(sp
3
)–H Acylation Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Geun Seok Lee
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Department of Chemistry College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Joonghee Won
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seulhui Choi
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mu‐Hyun Baik
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
40
|
Sakurai Y, Ogiwara Y, Sakai N. Palladium‐Catalyzed Annulation of Acyl Fluorides with Norbornene via Decarbonylation and CO Reinsertion. Chemistry 2020; 26:12972-12977. [DOI: 10.1002/chem.202001374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yuka Sakurai
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| |
Collapse
|
41
|
Hirai T, Kato D, Mai BK, Katayama S, Akiyama S, Nagae H, Himo F, Mashima K. Esterification of Tertiary Amides: Remarkable Additive Effects of Potassium Alkoxides for Generating Hetero Manganese-Potassium Dinuclear Active Species. Chemistry 2020; 26:10735-10742. [PMID: 32346933 PMCID: PMC7496701 DOI: 10.1002/chem.202001447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 02/03/2023]
Abstract
A catalyst system of mononuclear manganese precursor 3 combined with potassium alkoxide served as a superior catalyst compared with our previously reported manganese homodinuclear catalyst 2 a for esterification of not only tertiary aryl amides, but also tertiary aliphatic amides. On the basis of stoichiometric reactions of 3 and potassium alkoxide salt, kinetic studies, and density functional theory (DFT) calculations, we clarified a plausible reaction mechanism in which in situ generated manganese-potassium heterodinuclear species cooperatively activates the carbonyl moiety of the amide and the OH moiety of the alcohols. We also revealed details of the reaction mechanism of our previous manganese homodinuclear system 2 a, and we found that the activation free energy (ΔG≠ ) for the manganese-potassium heterodinuclear complex catalyzed esterification of amides is lower than that for the manganese homodinuclear system, which was consistent with the experimental results. We further applied our catalyst system to deprotect the acetyl moiety of primary and secondary amines.
Collapse
Affiliation(s)
- Takahiro Hirai
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Daiki Kato
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Binh Khanh Mai
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Shoichiro Katayama
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Shoko Akiyama
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Haruki Nagae
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Kazushi Mashima
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| |
Collapse
|
42
|
Brigham CE, Malapit CA, Lalloo N, Sanford MS. Nickel-Catalyzed Decarbonylative Synthesis of Fluoroalkyl Thioethers. ACS Catal 2020; 10:8315-8320. [PMID: 34306801 DOI: 10.1021/acscatal.0c02950] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report describes the development of a nickel-catalyzed decarbonylative reaction for the synthesis of fluoroalkyl thioethers (RFSR) from the corresponding thioesters. Readily available, inexpensive, and stable fluoroalkyl carboxylic acids (RFCO2H) serve as the fluoroalkyl (RF) source in this transformation. Stoichiometric organometallic studies reveal that RF-S bond-forming reductive elimination is a challenging step in the catalytic cycle. This led to the identification of diphenylphosphinoferrocene as the optimal ligand for this transformation. Ultimately, this method was applied to the construction of diverse fluoroalkyl thioethers (RFSR), with R = both aryl and alkyl.
Collapse
Affiliation(s)
- Conor E. Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christian A. Malapit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Lee GS, Won J, Choi S, Baik M, Hong SH. Synergistic Activation of Amides and Hydrocarbons for Direct C(sp
3
)–H Acylation Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:16933-16942. [DOI: 10.1002/anie.202004441] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Geun Seok Lee
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Department of Chemistry College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Joonghee Won
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seulhui Choi
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mu‐Hyun Baik
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
44
|
Lu H, Yu TY, Xu PF, Wei H. Selective Decarbonylation via Transition-Metal-Catalyzed Carbon–Carbon Bond Cleavage. Chem Rev 2020; 121:365-411. [DOI: 10.1021/acs.chemrev.0c00153] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Tian-Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
45
|
Szostak M, Li G. Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal-catalyzed, transition-metal-free, or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN → π*C=O delocalization in amides and nO → π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC-catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.1 Introduction2 Transamidation of Amides2.1 Transamidation by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)2.2 Transition-Metal-Free Transamidation via Tetrahedral Intermediates2.3 Reductive Transamidation2.4 New Acyl-Transfer Reagents2.5 Tandem Transamidations3 Amidation of Esters3.1 Amidation of Esters by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)3.2 Transition-Metal-Free Amidation of Esters via Tetrahedral Intermediates3.3 Reductive Amidation of Esters4 Transamidations of Amides by Other Mechanisms5 Conclusions and Outlook
Collapse
|
46
|
Kandasamy M, Amalraj AJJ, Perumal G, Ganesan B, Senadi GC, Lin WY. Continuous flow as a benign strategy for the synthesis of Thioesters via selective C-N bond cleavage. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00090-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Ma S, Zhou T, Li G, Szostak M. Suzuki‐Miyaura Cross‐Coupling of Amides using Well‐Defined, Air‐Stable [(PR
3
)
2
Pd(II)X
2
] Precatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siyue Ma
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Tongliang Zhou
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Guangchen Li
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| |
Collapse
|
48
|
Synthesis of N-unsubstituted cyclic imides from anhydride with urea in deep eutectic solvent (DES) choline chloride/urea. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Gulledge ZZ, Carrick JD. Deprotection of
N
‐
tert
‐Butoxycarbonyl (Boc) Protected Functionalized Heteroarenes via Addition–Elimination with 3‐Methoxypropylamine. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zachary Z. Gulledge
- Department of Chemistry Tennessee Technological University 55 University Drive 38505‐0001 Cookeville TN USA
| | - Jesse D. Carrick
- Department of Chemistry Tennessee Technological University 55 University Drive 38505‐0001 Cookeville TN USA
| |
Collapse
|
50
|
Suzuki–Miyaura Cross-Coupling of Amides Using Well-Defined, Air- and Moisture-Stable Nickel/NHC (NHC = N-Heterocyclic Carbene) Complexes. Catalysts 2020. [DOI: 10.3390/catal10040372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this Special Issue on N-Heterocyclic Carbenes and Their Complexes in Catalysis, we report the first example of Suzuki–Miyaura cross-coupling of amides catalyzed by well-defined, air- and moisture-stable nickel/NHC (NHC = N-heterocyclic carbene) complexes. The selective amide bond N–C(O) activation is achieved by half-sandwich, cyclopentadienyl [CpNi(NHC)Cl] complexes. The following order of reactivity of NHC ligands has been found: IPr > IMes > IPaul ≈ IPr*. Both the neutral and the cationic complexes are efficient catalysts for the Suzuki–Miyaura cross-coupling of amides. Kinetic studies demonstrate that the reactions are complete in < 1 h at 80 °C. Complete selectivity for the cleavage of exocyclic N-acyl bond has been observed under the experimental conditions. Given the utility of nickel catalysis in activating unreactive bonds, we believe that well-defined and bench-stable [CpNi(NHC)Cl] complexes will find broad application in amide bond and related cross-couplings of bench-stable acyl-electrophiles.
Collapse
|