1
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Zhu S, Jia L, Cheng Q, Sun Q, Chen X, Yu H, Han Y, Hou H. Visible-Light-Induced Stereoselective Radical trans-Iodoalkylation of Terminal Alkyne with Iodoform. Org Lett 2024; 26:8400-8404. [PMID: 39321069 DOI: 10.1021/acs.orglett.4c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We describe herein a novel stereoselective trans-iodoalkylation protocol by using three components of nucleophilic dicarbonyl compounds, iodoform and terminal alkynes. The generation of tertiary carbon radical species under mild reaction conditions allows this radical addition and stereoselective iodine atom transfer sequence with terminal alkyne to access highly synthetic applicable disubstituted vinyl iodide. The synthetic application of the present three-component photochemical protocol was demonstrated by the gram-scale reaction and product derivatization.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Lizi Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qi Cheng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiu Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Kommoju A, Snehita K, Sowjanya K, Mukkamala SB, Padala K. Recent advances in dual photoredox/nickel catalyzed alkene carbofunctionalised reactions. Chem Commun (Camb) 2024; 60:8946-8977. [PMID: 39086201 DOI: 10.1039/d4cc02914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Alkene carbofunctionalization reactions have great potential for synthesizing complex molecules and constructing complex structures in natural products and medicinal chemistry. Recently, dual photoredox/nickel catalysis has emerged as a novel strategy for alkene carbofunctionalization. Nickel offers numerous advantages over other transition metals, such as cost-effectiveness, abundance, and low toxicity, and moreover, it has many oxidation states. Nickel catalysts exhibit excellent catalytic activity in dual photoredox/transition metal catalysis, facilitating the formation of carbon-carbon or carbon-heteroatom bonds in organic transformations. This review highlights the latest advancements in dual photoredox/nickel-catalyzed alkene carbofunctionalizations and includes the literature published from 2020 to 2024.
Collapse
Affiliation(s)
- Anilkumar Kommoju
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kattamuri Snehita
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kandi Sowjanya
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Saratchandra Babu Mukkamala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| |
Collapse
|
4
|
Bai X, Yao J, Li W, Zhao X, Yin Y, Yu S, Jiang Z. Enantioselective Hydroaminoalkylation of Azaaryl Ketones through Asymmetric Photoredox Catalysis. Org Lett 2024; 26:5037-5042. [PMID: 38836577 DOI: 10.1021/acs.orglett.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
An enantioselective hydroaminoalkylation of azaaryl ketones under a transition-metal-free asymmetric photoredox catalysis platform is reported. A series of valuable azaarene-functionalized 1,2-amino alcohols featuring attractive quaternary carbon stereocenters have been synthesized in high yields with good to excellent enantioselectivities. The viability of readily accessible N-aryl glycines as reaction partners facilitates the conjugate modification of these products into important derivatives, thereby enhancing the synthetic utility of the current approach.
Collapse
Affiliation(s)
- Xiangbin Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jialu Yao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenxian Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiaowei Zhao
- College of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- College of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhiyong Jiang
- College of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
5
|
Ghosh D, Samal AK, Parida A, Ikbal M, Jana A, Jana R, Sahu PK, Giri S, Samanta S. Progress in Electrochemically Empowered C-O Bond Formation: Unveiling the Pathway of Efficient Green Synthesis. Chem Asian J 2024:e202400116. [PMID: 38584137 DOI: 10.1002/asia.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
(C-X) bonds (X=C, N, O) are the main backbone for making different skeleton in the organic synthetic transformations. Among all the sustainable techniques, electro-organic synthesis for C-X bond formation is the advanced tool as it offers a greener and more cost-effective approach to chemical reactions by utilizing electrons as reagents. In this review, we want to explore the recent advancements in electrochemical C-O bond formation. The electrochemically driven C-O bond formation represents an emerging and exciting area of research. In this context, electrochemical techniques offers numerous advantages, including higher yields, cost-efficient production, and simplified work-up procedures. This method enables the continuous and consistent formation of C-O bonds in molecules, significantly enhancing overall reaction yields. Furthermore, both intramolecular and intermolecular C-O bond forming reaction provided valuable products of O-containing acyclic/cyclic analogue. Hence, carbonyl (C=O), ether -O-), and ester (-COOR) functionalization in both cyclic/acyclic analogues have been prepared continuously via this innovative pathway. In this context, we want to discuss one-decade electrochemical synthetic pathways of various C-O bond contains functional group in chronological manner. This review focused on all the synthetic aspects including mechanistic path and has also mentioned overall critical finding regarding the C-O bond formation via electrochemical pathways.
Collapse
Affiliation(s)
- Debosmit Ghosh
- Department of Chemistry, Bidhannagar College, Kolkata, 700064, India
| | - Aroop Kumar Samal
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Anita Parida
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Mohammed Ikbal
- Department of Chemistry, Berhampore Girls' College, Berhampore, 742101, India
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur741246, India
| | - Rathin Jana
- Department of Chemistry, Shahid Matangini Hazra Govt. General Degree College for women, West Bengal, India
| | - Pradeepta Kumar Sahu
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Soumen Giri
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | | |
Collapse
|
6
|
Dang M, Jia R, Tan K, Hao D, Yang W, Zhou CY, Guo Z. Heterogeneous Photocatalytic Ring Expansion of Cyclic Ketones for the Construction of Medium-Sized Lactams. J Org Chem 2024; 89:4031-4036. [PMID: 38447165 DOI: 10.1021/acs.joc.3c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Construction of medium-sized ring compounds remains challenging in synthetic chemistry. Herein, we describe the synthesis of medium-sized lactams via a photoinduced ring expansion of benzo-fused cyclic ketones using graphitic carbon nitride (g-C3N4) as a photocatalyst. The ring expansion protocol provided an efficient access to 8-10-membered lactams in good yields and displayed good tolerance to a range of functional groups. The mechanism studies revealed that the photochemical reaction proceeds via an intermediary of a nitrogen radical, which is generated through an oxidative hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Mengzhen Dang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Ruizhi Jia
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Kai Tan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danyang Hao
- College of Engineering, Westlake University, Hangzhou, Zhejiang 310012, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| |
Collapse
|
7
|
Kumar PV, Madhumitha G. Clay based heterogeneous catalysts for carbon-nitrogen bond formation: a review. RSC Adv 2024; 14:4810-4834. [PMID: 38318622 PMCID: PMC10840681 DOI: 10.1039/d3ra06358e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Clay and modified clay-based catalysts are widely used in organic transformation. Owing to the interlayer ions and good ion exchange capacity of clay, replacement with another ion and incorporation of different nanomaterials can be done. Due to these significant properties of clay, it can be utilized in the synthesis of various organic compounds. Carbon-nitrogen bonded compounds possess diverse applications in different fields. These compounds are prepared using different solid acid heterogeneous catalysts. This review presents a detailed discussion on clay used for the carbon-nitrogen bond formation reaction, such as the Biginelli reaction and A3 and KA2 coupling reactions. Additionally, other C-N bond formation reactions using various clay-based catalysts such as bentonite, montmorillonite, hydrotalcite and halloysite clay with various metals, metal oxides, Kegging type heteropoly acid and various nanomaterial incorporated clay heterogeneous catalysts are discussed.
Collapse
Affiliation(s)
- P Vinoth Kumar
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamilnadu India
| | - G Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamilnadu India
| |
Collapse
|
8
|
Mishra K, Guyon D, San Martin J, Yan Y. Chiral Perovskite Nanocrystals for Asymmetric Reactions: A Highly Enantioselective Strategy for Photocatalytic Synthesis of N-C Axially Chiral Heterocycles. J Am Chem Soc 2023; 145:17242-17252. [PMID: 37499231 PMCID: PMC10926773 DOI: 10.1021/jacs.3c04593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Catalytic approaches to generate enantiospecific chiral centers are the major premise of modern organic chemistry. Heterogeneous catalysis is responsible for the vast majority of chemical transformations, yet the direct employment of chiral solid catalysts for asymmetric synthesis is mostly overlooked. Here, we demonstrated that a heterogeneous metal-halide perovskite nanocrystal (NC) catalyst is active for asymmetric organic synthesis under visible-light activation. Chiral 1-phenylethylamine (PEA)-hybridized perovskite PEA/CsPbBr3 NC photocatalysts exhibit an enantioselective (up to 99% enantiomer excess, ee) avenue to produce N-C axially chiral N-heterocycles, i.e., N-arylindoles from N-arylamine photo-oxidation. Mechanistic investigation indicated a discriminated prochiral binding of the N-arylamine substrates onto the chiral-NC surface with ca. -2.4 kcal/mol enantiodifferentiation. Our perovskite NC heterogeneous catalytic system not only demonstrates a promising strategy to address the long-term challenges in atroposelective pharmaceutical scaffold synthesis but also paves the road to directly employ chiral solids for asymmetric synthesis.
Collapse
Affiliation(s)
- Kanchan Mishra
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Dylana Guyon
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Jovan San Martin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
9
|
Ghosh S, Majumder S, Ghosh D, Hajra A. Redox-neutral carbon-heteroatom bond formation under photoredox catalysis. Chem Commun (Camb) 2023. [PMID: 37171250 DOI: 10.1039/d3cc01873c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, visible-light-mediated photoredox catalysis has been emerging as one of the fastest growing fields in organic chemistry because of its low cost, easy availability and environmental benignness. In the past five years, a new yet challenging trend, visible-light-induced redox-neutral carbon-heteroatom bond formation reaction involving presumed radical intermediates, has been flourishing rapidly. Although mostly transition metal-based photoredox catalysts were reported, a few organophotoredox catalysts have also shown efficacy towards carbon-heteroatom bond formation reactions. This review intends to summarize the recent research progress in redox-neutral carbon-heteroatom bond formations based on active intermediate(s) involved under photoredox catalysis.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Debashis Ghosh
- Department of Chemistry, St. Joseph's University, Bangalore 560027, Karnataka, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
10
|
Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Brahmachari G, Bhowmick A, Karmakar I. Catalyst- and Additive-Free C(sp 3)-H Functionalization of (Thio)barbituric Acids via C-5 Dehydrogenative Aza-Coupling Under Ambient Conditions. ACS OMEGA 2022; 7:30051-30063. [PMID: 36061699 PMCID: PMC9434791 DOI: 10.1021/acsomega.2c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A one-pot room-temperature-based three-component reaction strategy has been accomplished to access a new series of bio-relevant barbituric/2-thiobarbituric acid hydrazones from the reaction between barbituric/2-thiobarbituric acids, primary aromatic amines, and tert-butyl nitrite in an acetonitrile solvent, without the aid of any catalysts/additives. The ambient reaction conditions can efficiently implement the C(sp3)-H functionalization of barbituric/2-thiobarbituric acids via C-5 dehydrogenative aza-coupling. The process does not require column chromatographic purification; pure products are obtained by simple filtration of the resulting reaction mixture, followed by washing the crude residue with distilled water. The catalyst-free ambient reaction conditions, operational simplicity, broad substrate scope and tolerance for various functional groups, no need for chromatographic purification, good to excellent yields of products within reasonable reaction times in minutes, clean reaction profile, and gram-scale synthetic applicability make this procedure attractive, green, and cost-effective.
Collapse
|
12
|
Rufino-Felipe E, Valdes H, Morales-Morales D. C‐S cross‐coupling reactions catalyzed by well‐defined copper and nickel complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ernesto Rufino-Felipe
- Instituto de Quimica UNAM: Universidad Nacional Autonoma de Mexico Instituto de Quimica Inorganic Chemistry MEXICO
| | - Hugo Valdes
- University of Girona - Montilivi Campus: Universitat de Girona - Campus de Montilivi Chemistry SPAIN
| | - David Morales-Morales
- Instituto de Quimica. Universidad Nacional Autonoma de Mexico Quimica inorganica Ciudad UniversitariaCircuito Exterior S/NCoyoacan 04510 Mexico City MEXICO
| |
Collapse
|
13
|
Recent developments in promiscuous enzymatic reactions for carbon-nitrogen bond formation. Bioorg Chem 2022; 127:106014. [PMID: 35841668 DOI: 10.1016/j.bioorg.2022.106014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
Abstract
Biocatalytic promiscuity is a new field of enzyme application in biochemistry, which has received much attention and has developed rapidly in recent years. The promiscuous biocatalysis has been promoted as a useful supplement to traditional strategy for the formation of C-heteroatom bonds. The generation of carbon-nitrogen (CN) bonds is an important issue in synthetic chemistry and is indispensable for the manufacturing of various pharmaceuticals and agrochemicals. Therefore, numerous efficient and reliable synthetic methods for the formation of CN bonds have been developed in recent years. Enzymatic CN bond forming reactions catalyzed by lipases, cytochrome P450 monooxygenases, glycosyltransferases, amine dehydrogenases, proteases, acylases, amylases and halohydrin dehalogenases are well established for synthetic purposes. This review introduces the recent progress in the construction of CN bonds using promiscuous enzymes.
Collapse
|
14
|
Go SY, Chung H, Shin SJ, An S, Youn JH, Im TY, Kim JY, Chung TD, Lee HG. A Unified Synthetic Strategy to Introduce Heteroatoms via Electrochemical Functionalization of Alkyl Organoboron Reagents. J Am Chem Soc 2022; 144:9149-9160. [PMID: 35575552 DOI: 10.1021/jacs.2c03213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on systematic electrochemical analysis, an integrated synthetic platform of C(sp3)-based organoboron compounds was established for the introduction of heteroatoms. The electrochemically mediated bond-forming strategy was shown to be highly effective for the functionalization of sp3-hybridized carbon atoms with significant steric hindrance. Moreover, virtually all the nonmetallic heteroatoms could be utilized as reaction partners using one unified protocol. The observed reactivity stems from the two consecutive single-electron oxidations of the substrate, which eventually generates an extremely reactive carbocation as the key intermediate. The detailed reaction profile could be elucidated through multifaceted electrochemical studies. Ultimately, a new dimension in the activation strategies for organoboron compounds was accomplished through the electrochemically driven reaction development.
Collapse
Affiliation(s)
- Su Yong Go
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Hyunho Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Samuel Jaeho Shin
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sohee An
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ju Hyun Youn
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Tae Yeong Im
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do 16229 Republic of Korea
| | - Hong Geun Lee
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Li Y, Han C, Wang Y, Huang X, Zhao X, Qiao B, Jiang Z. Catalytic Asymmetric Reductive Azaarylation of Olefins via Enantioselective Radical Coupling. J Am Chem Soc 2022; 144:7805-7814. [PMID: 35471031 DOI: 10.1021/jacs.2c01458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Visible-light-driven photocatalytic reductive azaarylation has been widely used to construct the important imine-containing azaarene derivatives. In addition to the direct use of various commercially available cyanoazaarenes as feedstocks, the synthetic advantages include precise regioselectivity, high efficiency, mild reaction conditions, and good functional group tolerance. However, although many efficient reductive azaarylation methods have been established, the example of an enantioselective manner is still unmet, which most likely can be ascribed to the highly reactive radical coupling as the key step of forming stereocenters. Exploring the feasibility of enantiocontrol thus constitutes an attractive but highly challenging task. Here, we demonstrate that chiral hydrogen-bonding/photosensitizer catalysis is a viable platform as it enables the realization of the first enantioselective manifold. A variety of acyclic and cyclic enones as the reaction partners are compatible with the dual catalyst system, leading to a wide array of valuable enantioenriched azaarene variants with high yields and ees. Regulating the types of chiral catalysts represents one of the important manners to success, in which several readily accessible Cinchona alkaloid-derived bifunctional catalysts are introduced in asymmetric photochemical reactions.
Collapse
Affiliation(s)
- Yajuan Li
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Cuijie Han
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yanyan Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xin Huang
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Xiaowei Zhao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Baokun Qiao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng 475004, Henan, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| |
Collapse
|
16
|
Padma Priya V, Natarajan K, Nandi GC. Advances in the photoredox catalysis of S(VI) compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Transition-Metal-Free Synthesis of Unsymmetrical Diaryl Tellurides via S H2 Reaction of Aryl Radicals on Tellurium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030809. [PMID: 35164075 PMCID: PMC8839872 DOI: 10.3390/molecules27030809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Although diaryl tellurides are parent organotellurium compounds, their synthesis methods, especially for unsymmetrical ones, are limited. This may be due to the instability of diaryl tellurides and their synthesis intermediates under reaction conditions. Radical reactions are known to exhibit excellent functional group selectivity; therefore, we focused on a bimolecular homolytic substitution (SH2) reaction between the aryl radical and diaryl ditelluride. Aryl radicals are generated from arylhydrazines in air and captured by diaryl ditellurides, resulting in a selective formation of unsymmetrical diaryl tellurides with high yields. The electronic effects of the substituents on both arylhydrazines and diaryl ditellurides on the SH2 reaction of tellurium are also discussed in detail.
Collapse
|
18
|
Song G, Xue D. Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhu Y, Zu W, Tian Q, Cao Z, Wei Y, Xu L. A nickel/organoboron catalyzed metallaphotoredox platform for C(sp 2)–P and C(sp 2)–S bond construction. Org Chem Front 2022. [DOI: 10.1039/d1qo01778k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A boron-based organic photocatalyst has been applied in metallaphotoredox catalyzed C–P and C–S bond construction reactions.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Weisai Zu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Qing Tian
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Zifeng Cao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
20
|
Visible-Light-Induced Catalytic Selective Halogenation with Photocatalyst. Molecules 2021; 26:molecules26237380. [PMID: 34885962 PMCID: PMC8659127 DOI: 10.3390/molecules26237380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Halide moieties are essential structures of compounds in organic chemistry due to their popularity and wide applications in many fields such as natural compounds, agrochemicals, and pharmaceuticals. Thus, many methods have been developed to introduce halides into various organic molecules. Recently, visible-light-driven reactions have emerged as useful methods of organic synthesis. Particularly, halogenation strategies using visible light have significantly improved the reaction efficiency and reduced toxicity, as well as promoted reactions under mild conditions. In this review, we have summarized recent studies in visible-light-mediated halogenation (chlorination, bromination, and iodination) with photocatalysts.
Collapse
|
21
|
Chen X, Wei W, Li C, Zhou H, Qiao B, Jiang Z. Photoredox-Catalyzed Synthesis of Remote Fluoroalkylated Azaarene Derivatives and the α-Deuterated Analogues via 1, n-Hydrogen-Atom-Transfer-Involving Radical Reactions. Org Lett 2021; 23:8744-8749. [PMID: 34723556 DOI: 10.1021/acs.orglett.1c03204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A modular strategy to access the remote fluoroalkylated azaarene derivatives and the α-deuterated analogues, which are the isosteres of many pharmaceutically important compounds, is reported. Transformations under the sustainable photoredox catalysis platform could efficiently experience cascade radical addition, 1,n-hydrogen atom transfer (HAT), and single-electron reduction to offer the crucial anions α to azaarenes. Through reacting with H2O or the inexpensive D2O, two series of valuable products were obtained in high yields with substantial deuterium incorporation. The work demonstrates that the HAT of the α-sp3 C-H of the electron-withdrawing azaarenes with alkyl radicals is viable.
Collapse
Affiliation(s)
- Xiaowei Chen
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Wenhui Wei
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chunyang Li
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Baokun Qiao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
22
|
Pezzetta C, Folli A, Matuszewska O, Murphy D, Davidson RWM, Bonifazi D. peri
‐Xanthenoxanthene (PXX): a Versatile Organic Photocatalyst in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristofer Pezzetta
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Andrea Folli
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Oliwia Matuszewska
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Damien Murphy
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Robert W. M. Davidson
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Davide Bonifazi
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
23
|
Reischauer S, Pieber B. Recyclable, Bifunctional Metallaphotocatalysts for C−S Cross‐Coupling Reactions. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Susanne Reischauer
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
24
|
Batra A, Singh P, Singh KN. Latest Advancements in Transition‐Metal‐Free Carbon‐Heteroatom Bond Formation Reactions
via
Cross‐ Dehydrogenative Coupling. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women, Sec 36/A Chandigarh 160036 India
| | | | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
25
|
Kong M, Tan Y, Zhao X, Qiao B, Tan CH, Cao S, Jiang Z. Catalytic Reductive Cross Coupling and Enantioselective Protonation of Olefins to Construct Remote Stereocenters for Azaarenes. J Am Chem Soc 2021; 143:4024-4031. [DOI: 10.1021/jacs.1c01073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manman Kong
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yaqi Tan
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaowei Zhao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Baokun Qiao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Choon-Hong Tan
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371
| | - Shanshan Cao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
26
|
Cao L, Hua Y, Cheng HG, Zhou Q. C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates. Org Chem Front 2021. [DOI: 10.1039/d0qo01350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review article, we summarized recent advances in C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates.
Collapse
Affiliation(s)
- Liming Cao
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Yu Hua
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| |
Collapse
|
27
|
Yang J, Wang G, Chen S, Ma B, Zhou H, Song M, Liu C, Huo C. Catalyst-free, visible-light-promoted S-H insertion reaction between thiols and α-diazoesters. Org Biomol Chem 2020; 18:9494-9498. [PMID: 33180081 DOI: 10.1039/d0ob02006k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-promoted S-H insertion reaction between thiols and α-diazoesters was developed. The reaction proceeded smoothly at room temperature with a broad substrate scope, affording various thioethers in moderate to excellent yields. The catalyst- and additive-free nature, sustainable energy source and mild reaction conditions make this strategy more eco-friendly.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuwen Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. and College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Menghui Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Cai Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
28
|
Mata A, Tran DN, Weigl U, Williams JD, Kappe CO. Continuous flow synthesis of arylhydrazines via nickel/photoredox coupling of tert-butyl carbazate with aryl halides. Chem Commun (Camb) 2020; 56:14621-14624. [PMID: 33151210 DOI: 10.1039/d0cc06787c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nickel/photoredox catalyzed C-N couplings of hydrazine-derived nucleophiles provide a powerful alternative to Pd-catalyzed methods. This continuous-flow photochemical protocol, optimized using design of experiments, achieves these couplings in short residence times, with high selectivity. A range of (hetero)aryl bromides and chlorides are compatible and understanding of process stability/reactor fouling has been discerned.
Collapse
Affiliation(s)
- Alejandro Mata
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria. and Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Duc N Tran
- Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ulrich Weigl
- Cilag AG, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Jason D Williams
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria. and Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria. and Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
29
|
Le Vaillant F, Reijerse EJ, Leutzsch M, Cornella J. Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc 2020; 142:19540-19550. [PMID: 33143423 PMCID: PMC7677934 DOI: 10.1021/jacs.0c07381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
In this article, we investigated the I2-promoted cyclic dialkyl ether formation from 6-membered oxanickelacycles originally reported by Hillhouse. A detailed mechanistic investigation based on spectroscopic and crystallographic analysis revealed that a putative reductive elimination to forge C(sp3)-OC(sp3) using I2 might not be operative. We isolated a paramagnetic bimetallic NiIII intermediate featuring a unique Ni2(OR)2 (OR = alkoxide) diamond-like core complemented by a μ-iodo bridge between the two Ni centers, which remains stable at low temperatures, thus permitting its characterization by NMR, EPR, X-ray, and HRMS. At higher temperatures (>-10 °C), such bimetallic intermediate thermally decomposes to afford large amounts of elimination products together with iodoalkanols. Observation of the latter suggests that a C(sp3)-I bond reductive elimination occurs preferentially to any other challenging C-O bond reductive elimination. Formation of cyclized THF rings is then believed to occur through cyclization of an alcohol/alkoxide to the recently forged C(sp3)-I bond. The results of this article indicate that the use of F+ oxidants permits the challenging C(sp3)-OC(sp3) bond formation at a high-valent nickel center to proceed in good yields while minimizing deleterious elimination reactions. Preliminary investigations suggest the involvement of a high-valent bimetallic NiIII intermediate which rapidly extrudes the C-O bond product at remarkably low temperatures. The new set of conditions permitted the elusive synthesis of diethyl ether through reductive elimination, a remarkable feature currently beyond the scope of Ni.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
30
|
Reischauer S, Strauss V, Pieber B. Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susanne Reischauer
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimalle 22, 14195 Berlin, Germany
| | - Volker Strauss
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
31
|
Empel C, Jana S, Pei C, Nguyen TV, Koenigs RM. Photochemical O–H Functionalization of Aryldiazoacetates with Phenols via Proton Transfer. Org Lett 2020; 22:7225-7229. [DOI: 10.1021/acs.orglett.0c02564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
- School of Chemistry, University of New South Waley, Sydney 2052, Australia
| | - Sripati Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Chao Pei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Waley, Sydney 2052, Australia
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
- School of Chemistry, University of New South Waley, Sydney 2052, Australia
| |
Collapse
|
32
|
Poliakoff M, George MW. Manufacturing chemicals with light: any role in the circular economy? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190260. [PMID: 32623996 PMCID: PMC7422894 DOI: 10.1098/rsta.2019.0260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We outline how recent developments in photochemistry can contribute to the realization of the 1912 vision of the pioneering Italian scientist Giacomo Ciamician, namely world-wide chemical-using industry-based chemical plants fuelled solely by the Sun. We then show how a combination of organic photochemistry and flow chemistry could contribute to the circular economy by harnessing the ability of light to provide the energy to promote reactions without the need for some of the added reagents that are necessary in more traditional chemical routes, so-called 'reagentless' chemistry. Photochemistry has a long history but recently it has undergone a renaissance, particularly with the rise in interest in photoredox chemistry. Continuous photoreactors offer a route to scaling up such reactions to a productivity needed for smaller scale pharmaceutical manufacture. We describe some reactor designs from our own laboratory and outline some of their applications. We then relate these to the requirements of the circular economy and the need to conserve the stocks of the less abundant chemical elements. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
- M. Poliakoff
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - M. W. George
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, People's Republic of China
- e-mail:
| |
Collapse
|
33
|
Vil' VA, Grishin SS, Baberkina EP, Kostyagina VA, Kovalenko AE, Terent'ev AO. Radical addition of tetrahydrofuran to imines assisted by tert-butyl hydroperoxide. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Zu W, Day C, Wei L, Jia X, Xu L. Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon-oxygen bond construction. Chem Commun (Camb) 2020; 56:8273-8276. [PMID: 32568331 DOI: 10.1039/d0cc03230a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, aminoquinolate diarylboron complexes are utilized as photocatalysts in dual Ni/photoredox catalyzed carbon-oxygen construction reactions. Via this unified metallaphotoredox platform, diverse (hetero)aryl halides can be conveniently coupled with acids, alcohols and water. This method features operational simplicity, broad substrate scope and good compatibility with functional groups.
Collapse
Affiliation(s)
- Weisai Zu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | | | | | | | | |
Collapse
|
35
|
Zhu DL, Xu R, Wu Q, Li HY, Lang JP, Li HX. Nickel-Catalyzed Sonogashira C(sp)–C(sp2) Coupling through Visible-Light Sensitization. J Org Chem 2020; 85:9201-9212. [DOI: 10.1021/acs.joc.0c01177] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ruijie Xu
- College of Overseas Education, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
36
|
Malik JA, Madani A, Pieber B, Seeberger PH. Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate O-Arylations. J Am Chem Soc 2020; 142:11042-11049. [PMID: 32469219 PMCID: PMC7467672 DOI: 10.1021/jacs.0c02848] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dual photocatalysis and nickel catalysis can effect cross-coupling under mild conditions, but little is known about the in situ kinetics of this class of reactions. We report a comprehensive kinetic examination of a model carboxylate O-arylation, comparing a state-of-the-art homogeneous photocatalyst (Ir(ppy)3) with a competitive heterogeneous photocatalyst (graphitic carbon nitride). Experimental conditions were adjusted such that the nickel catalytic cycle is saturated with excited photocatalyst. This approach was designed to remove the role of the photocatalyst, by which only the intrinsic behaviors of the nickel catalytic cycles are observed. The two reactions did not display identical kinetics. Ir(ppy)3 deactivates the nickel catalytic cycle and creates more dehalogenated side product. Kinetic data for the reaction using Ir(ppy)3 supports a turnover-limiting reductive elimination. Graphitic carbon nitride gave higher selectivity, even at high photocatalyst-to-nickel ratios. The heterogeneous reaction also showed a rate dependence on aryl halide, indicating that oxidative addition plays a role in rate determination. The results argue against the current mechanistic hypothesis, which states that the photocatalyst is only involved to trigger reductive elimination.
Collapse
Affiliation(s)
- Jamal A Malik
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Amiera Madani
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
37
|
Cui HL. Recent progress in (hetero)arene cation radical-based heteroarene modification. Org Biomol Chem 2020; 18:2975-2990. [PMID: 32239015 DOI: 10.1039/d0ob00441c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The transformation of (hetero)arene cation radicals has become a powerful tool for the construction of highly functionalized (hetero)arenes. These (hetero)arene cation radicals could be generated under electrochemical, photochemical or chemical oxidation systems. The in situ generated (hetero)arene cation radicals can be attacked by various nucleophiles, such as (hetero)aromatics and anions, yielding structurally diverse molecules. Recently, a large number of impressive heteroarene modifications have been designed by this strategy. This review summarizes the advances in heteroarene modification via reactions of in situ formed (hetero)arene cation radicals, ranging from 2010 to 2020.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| |
Collapse
|
38
|
Yang Y, Zhang D, Vessally E. Direct Amination of Aromatic C-H Bonds with Free Amines. Top Curr Chem (Cham) 2020; 378:37. [PMID: 32236795 DOI: 10.1007/s41061-020-0300-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/07/2020] [Indexed: 02/01/2023]
Abstract
Aromatic amines belong to a highly important class of organic compounds which are found in various natural products, functional materials, and pharmaceutical agents. Their prevalence has sparked continuing interest in the development of highly efficient and environmentally benign synthetic strategies for the construction of these compounds. Cross-dehydrogenative coupling reactions between two unmodified C(X)-H bonds have recently emerged as a versatile and powerful strategy for the fabrication of new C(X)-C(X) bonds. In this context, several procedures have been reported for the synthesis of aromatic amines through the direct amination of aromatic C-H bonds with free amines. This review highlights recent advances and progress in this appealing research arena, with special emphasis on the mechanistic features of the reactions.
Collapse
Affiliation(s)
- Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
39
|
Affiliation(s)
- Sebastian Gisbertz
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and BiochemistryFreie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Bartholomäus Pieber
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|