1
|
Mandal T, Kishor Paul B, Islam M, De Sarkar S. Demonstrating Synergistic Activity of Magnetic Iron Oxide Nano Photocatalyst for C-H Activation in Heterogeneous Phase. Chemistry 2024; 30:e202403284. [PMID: 39394726 DOI: 10.1002/chem.202403284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
This report describes a dual catalytic approach for the versatile C-H arylation of arenes under photo-excitation at room temperature. The cooperative catalysis utilizes iron oxide magnetic nanoparticles (which mostly contain Fe3O4 along with some γ-Fe2O3) as the potential photocatalyst, which merges with the Pd-catalyzed C-H activation cycle for the reductive generation of aryl radical from aryl diazonium salt, revealing its photocatalytic activities. The method is applicable to a wide range of aryl coupling partners and different directing groups, demonstrating excellent productivity, nice co-operativity and recyclability. Adequate control experiments and mechanistic studies assisted in establishing the radical-based reaction mechanism for the C-H arylation occurring in the heterogeneous phase.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Braja Kishor Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Malekul Islam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
2
|
Elmuradov B, Okmanov R, Juraev B, Dräger G, Butenschön H. New Tricyclic Aryl Quinazoline Derivatives by Suzuki-Miyaura Cross-Coupling. ChemistryOpen 2024; 13:e202400197. [PMID: 39329258 PMCID: PMC11625927 DOI: 10.1002/open.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Indexed: 09/28/2024] Open
Abstract
A number of new deoxyvasicinone (2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one) and mackinazolinone (6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-one) derivatives with aryl substituents at C7/C8 and at C5 are reported. These compounds are rare representatives of their kind and were prepared in high yields by Suzuki-Miyaura cross-coupling reactions between 7-bromo-2,3-dihydro[2,1-b]quinazoline-9-(1H)-one, 5,7-dibromo-2,3-dihydro[2,1-b]quinazoline-9-(1H)-one or 8-bromomackinazolinone and respective arylboronic acids with palladium acetate as the catalyst. The products were characterized spectroscopically and, in addition, by X-ray crystal structure analyses in six cases.
Collapse
Affiliation(s)
- Burkhon Elmuradov
- Leibniz Universität HannoverInstitut für Organische ChemieSchneiderberg 1BD-30167HannoverGermany
- Institute of the Chemistry of Plant SubstancesAcademy of Sciences of Uzbekistan100170Mirzo-Ulugbek str. 77TashkentUzbekistan
| | - Rasul Okmanov
- Institute of the Chemistry of Plant SubstancesAcademy of Sciences of Uzbekistan100170Mirzo-Ulugbek str. 77TashkentUzbekistan
| | - Bakhromjon Juraev
- Institute of the Chemistry of Plant SubstancesAcademy of Sciences of Uzbekistan100170Mirzo-Ulugbek str. 77TashkentUzbekistan
| | - Gerald Dräger
- Leibniz Universität HannoverInstitut für Organische ChemieSchneiderberg 1BD-30167HannoverGermany
| | - Holger Butenschön
- Leibniz Universität HannoverInstitut für Organische ChemieSchneiderberg 1BD-30167HannoverGermany
| |
Collapse
|
3
|
Kumar A, Bhattacharya N, Mane MV, Patil NT. Ligand-Enabled Gold-Catalyzed Cyanation of Organohalides. Angew Chem Int Ed Engl 2024; 63:e202412682. [PMID: 39129346 DOI: 10.1002/anie.202412682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/13/2024]
Abstract
Herein, we disclose the first report on gold-catalyzed C(sp2)-CN cross-coupling reaction by employing a ligand-enabled Au(I)/Au(III) redox catalysis. This transformation utilizes acetone cyanohydrin as a nucleophilic cyanide source to convert simple aryl and alkenyl iodides into the corresponding nitriles. Combined experimental and computational studies highlighted the crucial role of cationic silver salts in activating the stable (P,N)-AuCN complex towards the oxidative addition of aryl iodides to subsequently generate key aryl-Au(III) cyanide complexes.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Nandita Bhattacharya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus Kanakapura, Bangalore, Karnataka, 562112, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
4
|
Liu H, Chen G, Xu B. Synthesis of Aryl Thiocyanates, Aryl Dithiocarbamates, Aryl Sulfones, and Aryl Thiobenzoates via Au-Catalyzed C-S Cross-Couplings. Org Lett 2024. [PMID: 39526851 DOI: 10.1021/acs.orglett.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We have developed an efficient gold-catalyzed C-S cross-coupling of various silver-based thionucleophiles with aryl iodides. Our method offers a one-stop-shop solution for synthesizing diverse sulfur-containing aromatics, including aryl thiocyanic acids, aryl diethyldithiocarbamates, aryl sulfones, and aryl thiobenzoates. Our protocol gives moderate to excellent yields and compatibility with various functional groups. In comparison to other transition-metal-catalyzed C-S cross-couplings, our method has advantages in broad applicability and high tolerance toward air and moisture.
Collapse
Affiliation(s)
- Hongyan Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China
- Guangdong Dymatic Chemicals Group Company, Limited, Foshan, Guangdong 528305, People's Republic of China
| | - Guifang Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China
- Guangdong Dymatic Chemicals Group Company, Limited, Foshan, Guangdong 528305, People's Republic of China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
5
|
Bhoyare VW, Bera A, Gandon V, Patil NT. Gold-Catalyzed Alkoxy-Carbonylation of Aryl and Vinyl Iodides. Angew Chem Int Ed Engl 2024; 63:e202410794. [PMID: 39039857 DOI: 10.1002/anie.202410794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Herein, for the first time, we disclose the gold-catalyzed alkoxy-carbonylation of aryl and vinyl iodides utilizing ligand-enabled Au(I)/Au(III) redox catalysis. The present methodology is found to be general, efficient, employs mild reaction conditions and showcases a broad substrate scope even with structurally complex molecules. Density functional theory (DFT) calculations revealed mechanistic pathways distinct from those of conventional transition metal-catalyzed carbonylation reactions.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Asish Bera
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Henri Moissan, 17 avenue des sciences, 91400, Orsay, France
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| |
Collapse
|
6
|
González JA, Arribas A, Tian P, Díaz-Alonso S, Mascareñas JL, López F, Nevado C. Gold(III) Auracycles Featuring C(sp 3)-Au-C(sp 2) Bonds: Synthesis and Mechanistic Insights into the Cycloauration Step. Angew Chem Int Ed Engl 2024; 63:e202402798. [PMID: 38776235 DOI: 10.1002/anie.202402798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
The direct auration of arenes is a key step in numerous gold-catalyzed reactions. Although reported more than 100 years ago, understanding of its underlying mechanism has been hampered by the difficulties in the isolation of relevant intermediates given the propensity of gold(III) species to undergo reductive elimination. Here, we report the synthesis and isolation of a new family of intriguing zwitterionic [C(sp3)^C(sp2)]-auracyclopentanes, as well as of their alkyl-gold(III) precursors and demonstrate their value as mechanistic probes to study the C(sp2)-Au bond-forming event. Experimental investigations employing Kinetic Isotope Effects (KIE), Hammett plot, and Eyring analysis provided important insights into the formation of the auracycle. The data suggest a SEAr mechanism wherein the slowest step might be the π-coordination between the arene and the gold(III) center, en route to the Wheland intermediate. We also show that these auracyclopentanes can work as catalysts in several gold-promoted transformations.
Collapse
Affiliation(s)
- Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Puyang Tian
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sergio Díaz-Alonso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
7
|
Li Y, Zhang Z, Wang R, Tang A, Ma C, Lian C, Tian H, Li H. Suppressing the Conductance of Single-Molecule Junctions Fabricated by sp 2 C-H Bond Metalation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497376 DOI: 10.1021/acsami.3c16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-conducting single-molecule junctions have attracted a great deal of attention, but insulating single-molecule junctions, which are critical in molecular circuits, have been less investigated due to the long-standing challenges. Herein, the in situ formation of a Au-C linker via electrical-potential-mediated sp2 C-H bond metalation of polyfluoroarenes with the assistance of scanning tunneling microscope-based break junction technique is reported. This metalation process is bias-dependent and occurs with an electropositive electrode, and the formed junction is highly oriented. Surprisingly, these polyfluoroarenes exhibit unexpected low conductance even under short molecular lengths and are superior molecular insulators. Flicker noise analysis and DFT calculations confirm that the insulating properties of polyfluoroarenes are ascribed to their multiple fluorine substituents. Our results pave a way for constructing oriented asymmetric molecular junctions and provide an efficient strategy to suppress the single-molecule conductance, which will aid in the design of molecular insulators and advance the development of self-integrating functional molecular circuits.
Collapse
Affiliation(s)
- Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zekai Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Muratov K, Zaripov E, Berezovski MV, Gagosz F. DFT-Enabled Development of Hemilabile (P ∧N) Ligands for Gold(I/III) RedOx Catalysis: Application to the Thiotosylation of Aryl Iodides. J Am Chem Soc 2024; 146:3660-3674. [PMID: 38315643 DOI: 10.1021/jacs.3c08943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ligand-enabled oxidative addition of Csp2-X bonds to Au(I) centers has recently appeared as a valuable strategy for the development of catalytic RedOx processes. Several cross-coupling reactions that were previously considered difficult to achieve were reported lately, thus expanding the synthetic potential of gold(I) complexes beyond the traditional nucleophilic functionalization of π-systems. MeDalPhos has played an important role in this development and, despite several studies on alternative structures, remains, so far, the only general ligand for such process. We report herein the discovery and DFT-enabled structural optimization of a new family of hemilabile (P∧N) ligands that can promote the oxidative addition of aryl iodides to gold(I). These flexible ligands, which possess a common 2-methylamino heteroaromatic N-donor motif, are structurally and electronically tunable, beyond being easily accessible and affordable. The corresponding Au(I) complexes were shown to outperform the reactivity of (MeDalPhos)Au(I) in a series of alkoxy- and amidoarylations of alkenes. Their synthetic potential and comparatively higher reactivity were further highlighted in the thiotosylation of aryl iodides, a challenging unreported C-S cross-coupling reaction that could not be achieved under classical Pd(0/II) catalysis and that allows for general and divergent access to aryl sulfur derivatives.
Collapse
Affiliation(s)
- Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
9
|
Zhang X, Lu Y, Wang H, Chen M, Lin S, Huang X. Palladium-Catalyzed C2-Selective Direct Arylation of Benzo[ b]thiophene 1,1-Dioxides with Arylboronic Acids. ACS OMEGA 2024; 9:1738-1747. [PMID: 38222557 PMCID: PMC10785645 DOI: 10.1021/acsomega.3c08334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
A novel oxidative cross-coupling of benzo[b]thiophene 1,1-dioxides with arylboronic acids was reported. The efficient reaction occurred at the C2-position via C-H activation, followed by Pd(II)-catalyzed arylation. Furthermore, a series of C2-arylated products with significant photoluminescence properties have been synthesized and characterized, which illustrates the potential applications of our method in the aggregation-induced emission field.
Collapse
Affiliation(s)
- Xinwei Zhang
- Key Laboratory of the Ministry of Education
for Advanced Catalysis Materials, College of Chemistry and Materials
Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yaoyao Lu
- Key Laboratory of the Ministry of Education
for Advanced Catalysis Materials, College of Chemistry and Materials
Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hongzhen Wang
- Key Laboratory of the Ministry of Education
for Advanced Catalysis Materials, College of Chemistry and Materials
Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Mengting Chen
- Key Laboratory of the Ministry of Education
for Advanced Catalysis Materials, College of Chemistry and Materials
Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuizhen Lin
- Key Laboratory of the Ministry of Education
for Advanced Catalysis Materials, College of Chemistry and Materials
Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiaolei Huang
- Key Laboratory of the Ministry of Education
for Advanced Catalysis Materials, College of Chemistry and Materials
Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
10
|
Bhoyare VW, Tathe AG, Gandon V, Patil NT. Unlocking the Chain-Walking Process in Gold Catalysis. Angew Chem Int Ed Engl 2023; 62:e202312786. [PMID: 37779346 DOI: 10.1002/anie.202312786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
The successful realization of gold-catalyzed chain-walking reactions, facilitated by ligand-enabled Au(I)/Au(III) redox catalysis, has been reported for the first time. This breakthrough has led to the development of gold-catalyzed annulation reaction of alkenes with iodoarenes by leveraging the interplay of chain-walking and π-activation reactivity mode. The reaction mechanism has been elucidated through comprehensive experimental and computational studies.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, India
| | - Akash G Tathe
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Henri Moissan, 17 avenue des sciences, 91400, Orsay, France
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, India
| |
Collapse
|
11
|
Scott SC, Cadge JA, Boden GK, Bower JF, Russell CA. A Hemilabile NHC-Gold Complex and its Application to the Redox Neutral 1,2-Oxyarylation of Feedstock Alkenes. Angew Chem Int Ed Engl 2023; 62:e202301526. [PMID: 36995930 PMCID: PMC10962591 DOI: 10.1002/anie.202301526] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 03/31/2023]
Abstract
We describe a AuI complex of a hemi-labile (C^N) N-heterocyclic carbene ligand that is able to mediate oxidative addition of aryl iodides. Detailed computational and experimental investigations have been undertaken to verify and rationalize the oxidative addition process. Application of this initiation mode has resulted in the first examples of "exogenous oxidant-free" AuI /AuIII catalyzed 1,2-oxyarylations of ethylene and propylene. These demanding yet powerful processes establish these commodity chemicals as nucleophilic-electrophilic building blocks in catalytic reaction design.
Collapse
Affiliation(s)
- Samuel C. Scott
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jamie A. Cadge
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Grace K. Boden
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | | |
Collapse
|
12
|
Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. L-Shaped Heterobidentate Imidazo[1,5-a]pyridin-3-ylidene (N,C)-Ligands for Oxidant-Free Au I /Au III Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218427. [PMID: 36696514 PMCID: PMC9992098 DOI: 10.1002/anie.202218427] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI /AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI /AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052 (Poland)
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373 (Poland)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383 (Poland)
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
13
|
Das A, Patil NT. Ligand-Enabled Gold-Catalyzed C(sp 2)–O Cross-Coupling Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
14
|
McCallum T. Heart of gold: enabling ligands for oxidative addition of haloorganics in Au(I)/Au(III) catalysed cross-coupling reactions. Org Biomol Chem 2023; 21:1629-1646. [PMID: 36727215 DOI: 10.1039/d3ob00002h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The field of Au-catalysis has been an area rich with new discoveries due to the unique properties of the lustrous element. In the past decade, developments in Au(I)/Au(III) cross-coupling methodology have been made possible with the use of external oxidants that facilitate the challenging oxidation of Au(I) to Au(III) in a stable and catalytically competent fashion. Until recently, Au-chemistry was not known to undergo catalytic transformations that feature oxidative addition of haloarenes like those that were made famous by transition metals such as Pd and Ni. The discovery that ligand modification could facilitate the oxidative addition of Au(I) with haloorganics to provide Au(III) intermediates that are competent in other areas of catalysis (i.e. Lewis acid catalysis) has revolutionized this field and has led to the invention of new cross-coupling methodology. The recent advances at the leading edge in the emerging field of Au(I)/Au(III) catalysis under redox-neutral conditions are highlighted.
Collapse
Affiliation(s)
- Terry McCallum
- The Canadian Bank Note Company, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Fernández-Moyano S, Marcos-Ayuso G, Peñas-Defrutos MN, Bartolomé C, Espinet P. Intimate relationship between C-I reductive elimination, aryl scrambling and isomerization processes in Au(III) complexes. Chem Commun (Camb) 2023; 59:1975-1978. [PMID: 36727423 DOI: 10.1039/d2cc06415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
19F NMR monitoring shows that heating trans-[AuIIIRf2I2]- solutions (Rf = C6F3Cl2-3,5) leads to formation of cis-[AuRf2I2]-, [AuRf3I]- and [AuRfI3]-via kinetic competition between isomerization and Rf/I scrambling. The system evolution is driven by the easy Rf-I reductive elimination from [AuRfI3]- (forming also [AuI2]-), which is faster than any of the Rf-Rf couplings from the coexisting species, hindering the commonly desired and thermodynamically preferred C-C coupling. A kinetic model where I- dissociation triggers both isomerization and transmetalation steps is proposed, which fits well the experimental data. DFT calculations support that the lower bond strength of AuIII-I compared to other halides produces a pathway switch that makes C-I coupling kinetically preferred. Consequently, it is better avoided in reactions looking for C-C coupling.
Collapse
Affiliation(s)
- Sara Fernández-Moyano
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071, Spain.
| | - Guillermo Marcos-Ayuso
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071, Spain.
| | - Marconi N Peñas-Defrutos
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071, Spain.
| | - Camino Bartolomé
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071, Spain.
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071, Spain.
| |
Collapse
|
16
|
Portugués A, Martínez-Nortes MÁ, Bautista D, González-Herrero P, Gil-Rubio J. Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp 3)-X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs S N2 Pathways. Inorg Chem 2023; 62:1708-1718. [PMID: 36658748 PMCID: PMC9890567 DOI: 10.1021/acs.inorgchem.2c04166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactions leading to the formation of C-heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au-heteroatom bonds. Complexes [Au(CF3)(Me)(X)(PR3)] (R = Ph, X = OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of trans-[Au(CF3)(Me)2(PR3)] (R = Ph, Cy) with HX. The cationic complex cis-[Au(CF3)(Me)(PPh3)2]OTf was obtained by the reaction of [Au(CF3)(Me)(OTf)(PPh3)] with PPh3. Heating these complexes led to the reductive elimination of MeX (X = Me, Ph3P+, OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br). Mechanistic studies indicate that these reductive elimination reactions occur either through (a) the formation of tricoordinate intermediates by phosphine dissociation, followed by reductive elimination of MeX, or (b) the attack of weakly coordinating anionic (TfO- or ClO4-) or neutral nucleophiles (PPh3 or NEt3) to the Au-bound methyl carbon. The obtained results show for the first time that the nucleophilic substitution should be considered as a likely reductive elimination pathway in Au(III) alkyl complexes.
Collapse
Affiliation(s)
- Alejandro Portugués
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Miguel Ángel Martínez-Nortes
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Delia Bautista
- ACTI,
Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juan Gil-Rubio
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain,
| |
Collapse
|
17
|
Mehara J, Koovakattil Surendran A, van Wieringen T, Setia D, Foroutan-Nejad C, Straka M, Rulíšek L, Roithová J. Cationic Gold(II) Complexes: Experimental and Theoretical Study. Chemistry 2022; 28:e202201794. [PMID: 35946558 DOI: 10.1002/chem.202201794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Gold(II) complexes are rare, and their application to the catalysis of chemical transformations is underexplored. The reason is their easy oxidation or reduction to more stable gold(III) or gold(I) complexes, respectively. We explored the thermodynamics of the formation of [AuII (L)(X)]+ complexes (L=ligand, X=halogen) from the corresponding gold(III) precursors and investigated their stability and spectral properties in the IR and visible range in the gas phase. The results show that the best ancillary ligands L for stabilizing gaseous [AuII (L)(X)]+ complexes are bidentate and tridentate ligands with nitrogen donor atoms. The electronic structure and spectral properties of the investigated gold(II) complexes were correlated with quantum chemical calculations. The results show that the molecular and electronic structure of the gold(II) complexes as well as their spectroscopic properties are very similar to those of analogous stable copper(II) complexes.
Collapse
Affiliation(s)
- Jaya Mehara
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Adarsh Koovakattil Surendran
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Teun van Wieringen
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Deeksha Setia
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| |
Collapse
|
18
|
Dahiya A, Schoenebeck F. Orthogonal and Modular Arylation of Alkynylgermanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
19
|
Das A, Patil NT. Enantioselective C-H Functionalization Reactions under Gold Catalysis. Chemistry 2022; 28:e202104371. [PMID: 35014732 DOI: 10.1002/chem.202104371] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 01/18/2023]
Abstract
Transition metal-catalyzed enantioselective functionalization of ubiquitous C-H bonds has proven to be promising field as it offers the construction of chiral molecular complexity in a step- and atom-economical manner. In recent years, gold has emerged as an attractive contender for catalyzing such reactions. The unique reactivities and selectivities offered by gold catalysts have been exploited to access numerous asymmetric transformations based on gold-catalyzed C-H functionalization processes. Herein, this review critically highlights the major advances and discoveries made in the enantioselective C-H functionalization under gold catalysis which is accompanied by mechanistic insights at appropriate places.
Collapse
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462 066, India
| |
Collapse
|
20
|
Shchepochkin AV, Antipin FV, Charushin VN, Chupakhin ON. Oxidative C–H Functionalization of Arenes: Main Tool of 21st Century Green Chemistry. A Review. DOKLADY CHEMISTRY 2021. [DOI: 10.1134/s0012500821070016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Cadge JA, Bower JF, Russell CA. A Systematic Study of the Effects of Complex Structure on Aryl Iodide Oxidative Addition at Bipyridyl‐Ligated Gold(I) Centers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jamie A. Cadge
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
| | - John F. Bower
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| | - Christopher A. Russell
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS United Kingdom
| |
Collapse
|
22
|
Cadge JA, Bower JF, Russell CA. A Systematic Study of the Effects of Complex Structure on Aryl Iodide Oxidative Addition at Bipyridyl-Ligated Gold(I) Centers. Angew Chem Int Ed Engl 2021; 60:24976-24983. [PMID: 34533267 PMCID: PMC9298241 DOI: 10.1002/anie.202108744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Indexed: 01/30/2023]
Abstract
A combined theoretical and experimental approach has been used to study the unusual mechanism of oxidative addition of aryl iodides to [bipyAu(C2 H4 )]+ complexes. The modular nature of this system allowed a systematic assessment of the effects of complex structure. Computational comparisons between cationic gold and the isolobal (neutral) Pd0 and Pt0 complexes revealed similar mechanistic features, but with oxidative addition being significantly favored for the group 10 metals. Further differences between Au and Pd were seen in experimental studies: studying reaction rates as a function of electronic and steric properties showed that ligands bearing more electron-poor functionality increase the rate of oxidative addition; in a complementary way, electron-rich aryl iodides give faster rates. This divergence in mechanism compared to Pd suggests that Ar-X oxidative addition with Au can underpin a broad range of new or complementary transformations.
Collapse
Affiliation(s)
- Jamie A. Cadge
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUnited Kingdom
| | - John F. Bower
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUnited Kingdom
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | | |
Collapse
|
23
|
Bonsignore R, Thomas SR, Rigoulet M, Jandl C, Pöthig A, Bourissou D, Barone G, Casini A. C-C Cross-Couplings from a Cyclometalated Au(III) C ∧ N Complex: Mechanistic Insights and Synthetic Developments. Chemistry 2021; 27:14322-14334. [PMID: 34310783 PMCID: PMC8597034 DOI: 10.1002/chem.202102668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/11/2022]
Abstract
In recent years, the reactivity of gold complexes was shown to extend well beyond π-activation and to hold promises to achieve selective cross-couplings in several C-C and C-E (E=heteroatom) bond forming reactions. Here, with the aim of exploiting new organometallic species for cross-coupling reactions, we report on the Au(III)-mediated C(sp2 )-C(sp) occurring upon reaction of the cyclometalated complex [Au(CCH2 N)Cl2 ] (1, CCH2 N=2-benzylpyridine) with AgPhCC. The reaction progress has been monitored by NMR spectroscopy, demonstrating the involvement of a number of key intermediates, whose structures have been unambiguously ascertained through 1D and 2D NMR analyses (1 H, 13 C, 1 H-1 H COSY, 1 H-13 C HSQC and 1 H-13 C HMBC) as well as by HR-ESI-MS and X-ray diffraction studies. Furthermore, crystallographic studies have serendipitously resulted in the authentication of zwitterionic Au(I) complexes as side-products arising from cyclization of the coupling product in the coordination sphere of gold. The experimental work has been paralleled and complemented by DFT calculations of the reaction profiles, providing valuable insight into the structure and energetics of the key intermediates and transition states, as well as on the coordination sphere of gold along the whole process. Of note, the broader scope of the cross-coupling at the Au(III) CCH2 N centre has also been demonstrated studying the reaction of 1 with C(sp2 )-based nucleophiles, namely vinyl and heteroaryl tin and zinc reagents. These reactions stand as rare examples of C(sp2 )-C(sp2 ) cross-couplings at Au(III).
Collapse
Affiliation(s)
- Riccardo Bonsignore
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Sophie R. Thomas
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCF10 3ATCardiffUK
| | - Mathilde Rigoulet
- CNRS/Université Paul SabatierLaboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Christian Jandl
- Catalysis Research Center & Department of ChemistryTechnical University of MunichErnst-Otto-Fischer Str. 185748Garching b. MünchenGermany
| | - Alexander Pöthig
- Catalysis Research Center & Department of ChemistryTechnical University of MunichErnst-Otto-Fischer Str. 185748Garching b. MünchenGermany
| | - Didier Bourissou
- CNRS/Université Paul SabatierLaboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| |
Collapse
|
24
|
Yasukawa N, Yamada Y, Furugen C, Miki Y, Sajiki H, Sawama Y. Gold-Catalyzed Tandem Oxidative Coupling Reaction between β-Ketoallenes and Electron-Rich Arenes to 2-Furylmethylarenes. Org Lett 2021; 23:5891-5895. [PMID: 34320804 DOI: 10.1021/acs.orglett.1c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A tandem oxidative coupling reaction of β-ketoallenes and arenes was developed, which leads to the formation of 2-furylmethylarenes using AuCl3 and phenyliodine diacetate. The AuIII salt catalyzed the cyclization of β-ketoallenes to form a 2-furylmethyl gold intermediate, and the subsequent C-H functionalization of arenes proceeded smoothly. During the oxidative coupling, nucleophilic additions occurred at the center and terminal carbon atoms of the allene moiety to form C-O and C-C bonds.
Collapse
Affiliation(s)
- Naoki Yasukawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yutaro Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Chikara Furugen
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuya Miki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
25
|
Joshi A, De SR. Diaryliodonium Salts in Transition‐Metal‐Catalyzed Chelation‐Induced C(sp
2
/sp
3
)−H Arylations. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Asha Joshi
- Dept. of Chemistry National Institute of Technology, Uttarakhand Srinagar-Garhwal Uttarakhand 246174 India
| | - Saroj Ranjan De
- Dept. of Chemistry National Institute of Technology, Uttarakhand Srinagar-Garhwal Uttarakhand 246174 India
| |
Collapse
|
26
|
Fricke C, Schoenebeck F. Organogermanes as Orthogonal Coupling Partners in Synthesis and Catalysis. Acc Chem Res 2020; 53:2715-2725. [PMID: 33118804 DOI: 10.1021/acs.accounts.0c00527] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since the advent of metal-catalyzed cross-coupling technology more than 40 years ago, the field has grown to be ever-increasingly enabling, yet the employed coupling partners are largely still those that were originally employed in the context of Pd-catalyzed cross-coupling, namely, arylboronic esters/acids, aryl silanes, aryl stannanes, or organometallic reagents (RMgX, RZnX). Aryl germanes have little precedent in the literature; they were historically explored in the context of Pd0/PdII-catalyzed cross-coupling reactions but were found to be much less reactive than the already established reagents. Consequently, few efforts were made by the community on their further mechanistic or synthetic exploration.In 2019, our group described trialkyl aryl germanes as robust, convenient, and nontoxic reagents. Although structurally similar to trialkyl aryl stannanes or silanes, the GeEt3 site does not engage in the traditional transmetalation mode of PdII complexes. Our studies instead provided strong support for an unprecedented and orthogonal reactivity of organogermanes that follows electrophilic aromatic substitution (SEAr)-type reactivity. This mode of bond activation allowed us to devise a number of synthetic strategies in which the Ge functionality was for the first time more reactive and exclusively functionalized in preference over several of the established coupling partners (e.g., silanes, boronic acids/esters, halogens).Within the past year we have showcased the unique reactivity of organogermanes in C-C and C-X bond-forming transformations. Because of the exquisite mode of bond activation, the new strategies offer access to complementary chemical transformations, tolerating other cross-coupling enabling functionalities, and allow for their further downstream diversification. We have for instance demonstrated that organogermanes can be coupled efficiently with aryl halides under Pd nanoparticle conditions with tolerance of all other established cross-coupling partners, while under homogeneous Pd0/PdII catalysis all of the other established groups can be functionalized preferentially over the Ge functionality. We similarly were able to harness this orthogonal reactivity mode in oxidative gold catalysis, where organogermanes proved to be more reactive than the established silanes or boronic esters. We have also developed an orthogonal approach for metal-free halogenation of organogermanes with convenient halogenation agents, offering access to the chemo- and regioselective installation of valuable halide motifs in the presence of alternative groups that can also engage in electrophilic halogenations.In this Account, we wish to provide an overview of (i) the historic versus current reactivity findings and synthetic utility of organogermanes, (ii) the current state of mechanistic understanding of their reactivity, and (iii) the synthetic repertoire and ease of installing the germanium functionality in organic molecules.
Collapse
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
27
|
Ball LT, Corrie TJA, Cresswell AJ, Lloyd-Jones GC. Kinetic Analysis of Domino Catalysis: A Case Study on Gold-Catalyzed Arylation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liam T. Ball
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Tom J. A. Corrie
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Alexander J. Cresswell
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|